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Abstract

Since the industrial age, mankind has become increasingly more sedentary. For the
first time in human history we are spending more than 80% of our day sitting down
and it is causing detrimental health effects on a global scale. This has widely been
attributed to the rapid advancement of technology and its impact on modern spaces.
Prolonged sitting increases the chances of posture related problems. Poor posture
leads to negative health conditions such as muscular pain and injury, increased risk of
cardiac disease, headaches, stress and fatigue. However, on the contrary, good posture
has a variety of benefits such as improved physical health, pain prevention, healthy
respiration, relaxation and enhanced productivity. Research shows that we as humans
acknowledge the posture problem and often make efforts to sit correctly but we tend to
quickly fall back into a slouching position as we become immersed in the distractions
of everyday life. In the modern world, human sitting behaviour is largely influenced
by our supportive structures and social contexts. The chair itself has remained an
ancient technology facing little innovation across thousands of years. Human sitting
behaviours, the chair and social contexts are all deeply connected. As the advancement
of technology proves to be an unstoppable force, so to must the chair evolve through
the realms of IoT, to accommodate changes in our modern workspaces and improve
the human condition.

My hypothesis is that a user’s posture and wellness habits can be positively shaped
through an IoT embodied interface that provides real-time feedback and status in-
formation. In exploration of this hypothesis I also emphasized the necessity for a
human-centric based design in order to implement this platform in real world settings.
My vision was to invent a device that was both sophisticated, minimally invasive and
ubiquitous in order to seamlessly augment the user’s posture coordination without
encumbering their daily productivity. In order to augment the user’s posture coordina-
tion the device required precise real-time classification of the user’s posture and an
effective non-binary feedback system. I also hypothesized that different spatial haptic
cues on the user’s back can be used to communicate various types of information about
their posture without the need to refer to a visual or audial interface. Through this
IoT device I sought to increase the duration of upright posture in order to prevent
slouching related problems.

I have developed the LifeChair, a smart cushion for the back of the chair that actively
trains the user to sit upright in real time and improve their wellness habits. It does
this through sensing the user’s posture and providing vibrotactile feedback patterns
to notify the user how to fix their posture. The system utilizes my patented eTextile
sensing technology which allows for flexible, adaptive and accurate pressure sensing
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and can be customized to develop sensor interfaces of various shapes and sizes. My
developed posture classifier can detect over 11 different sitting postures in real time
with over 98.1% accuracy. The LifeChair is also capable of detecting the user’s heart
rate and respiration rate from their back. This is the only cushion or chair device which
is capable of active vitals sign sensing. The LifeChair system pairs with a dedicated
smart phone application that provides real time performance tracking. Extensively, I
introduced additional wellness features such as stretching, meditation and standing
reminders, that utilized the same eTextile technology and human posture models
developed in my research.

I designed and continuously improved the posture classifier accuracy through consecu-
tive user studies to reach a threshold-based accuracy of 98.1%. In my two hour study I
demonstrated that all 10 participants experienced significant improvements in upright
sitting posture when LifeChair was enabled. Overall a 68.1% increase in upright posture
time was observed in these trials. The pressure heat maps for all 10 participants showed
that LifeChair prevented rounded shoulders, improved overall posture symmetry and
balance and reduced high pressure zones on the user’s back. My 1-week trials presented
fascinating insight into the behavioral aspect of sedentary workers through posture
monitoring. The LifeChair trials in real offices was able to improve the overall sitting
habits of all 10 users with improved posture habits being retained after LifeChair was
disabled. The pilot studies have also demonstrated a breakthrough development in
being able to sense the heart rate and respiration rate of the user from only contact
with the LifeChair interface and the user’s back. Non-invasive vitals information along
with accurate real-time posture detection has paved the way for human condition
classification such as stress, fatigue and relaxation. The LifeChair also seamlessly
transitioned to be used for driver posture monitoring in a real car. During a free
drive experiment, the LifeChair was able to successfully develop a relationship between
driver posture and in-vehicle actions. The high sensitivity of the eTextile system could
detect changes in driver steering wheel contact, turning the car and engaging with
the pedal controls. The precise real-time posture monitoring can be used for driver
fatigue prevention through safety and awareness alerts. This demonstrated LifeChair’s
vast capabilities and scalability and the successful development of an IoT platform to
augment human posture coordination.

Through global business ventures, exhibitions and real-world trials – the LifeChair
has been experienced by over a thousand people with positive reception. Its reach has
extended beyond the labs and into corporate offices, automotive, rehabilitation and
entertainment sectors. The proposed smart cushion has successfully been adopted as a
posture augmentation device for improved wellbeing.
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Introduction 

These days we spend more than 80% of our time sitting down. The daily condition of being 

sedentary is detrimental to our health as it opens opportunities for poor posture related health 

conditions. Slouching in particular, leads to muscular pain and injury, stress, fatigue, headaches, 

loss of focus and loss of productivity (Biswas, et al., 2015). On the other hand, good posture habits 

and upright posture have an abundance of positive health benefits including improved physical 

health, muscular pain prevention, heightened mood and productivity (Association, 1985). 

 

In this research I have developed the LifeChair (Ishac K. &., 2018) (Ishac & Suzuki, 2016). It is a 

smart cushion for the back of the chair that uses our novel pressure sensing system, vibrotactile 

feedback and posture classifier to actively train sitting posture. It does this by detecting poor 

posture and sending haptic alerts to encourage the user to sit upright. By using unique vibration 

patterns, it communicates to the user spatial information, such as how to correct their posture. 

The LifeChair system can detect over 11 different sitting postures with an accuracy of 98.1% and 

has demonstrated effectiveness in increasing upright posture duration by 68.1%. The key 

component of the LifeChair is the design and implementation of the specially developed fabric 

pressure sensing array and our posture classification model. I designed and developed a 

conductive fabric-based pressure sensing technology that provides force sensitive output, can be 

used in large variables sizes and has demonstrated manufacturability and customizability. The 

LifeChair is also the only chair or cushion-based device capable of sensing the user’s heart rate 

and respiration rate from their back. In more recent studies, the LifeChair has also demonstrated 

wide capabilities for being used in detecting driver actions and status. 

Related Works 

There are many types of posture training devices, including (1) cushion types, (2) mobile types and 

(3) wearable types. In our research, we utilized a cushion type interface due to its non-invasive 

approach and functional capabilities. Other cushion type systems, such as Cushionware (Liang, 

Cao, Liu, & Han, 2014) and eCushion (Xu, Huang, Amini, He, & Sarrafzadeh, 2013), have 

attempted to detect sitting posture by using a pressure sensing pillow that the user sits on. These 

systems tend to move around as the user is sitting and are very basic indicators of good posture as 

they can only scan for simple pressure equilibrium or pressure along the spine. This does not 



guarantee good posture, as the user may still be experiencing the common rounded shoulders 

posture from mobile phone and electronic device overuse (Gold, et al., 2012) or the forward head 

posture  (Cho, Kim, Yoon, & Choi, 2014) which are primary sources of sitting posture-based 

discomfort  (Szeto, Straker, & Raine, 2002).  Wearable systems, such as Waiston (Matsuda, 

Hasegaway, Arai, Arakawa, & Yasumoto, 2016), detect posture using a basic tilt sensor, yet this is 

not a good indicator of posture as it does not prevent rounded shoulders, the forward head problem 

and slouching to the sides. 

  

Effective vibrotactile feedback as a communication cue on a human's back has been previously 

explored (Stronks, Parker, & Barnes, 2016). A challenging aspect is the size, location, power and 

distance between tactors. As outlined in this study (Stronks, Parker, & Barnes, 2015), the ideal 

spacing for lower back haptic acuity is 36 mm to 63 mm between motors. In the design of our 

spatial haptic feedback system, we used previous literature (Alahakone & Senanayake, 2009) as a 

foundation but experienced that there are many factors that can affect the feedback quality. This 

study (Zheng & Morrell, 2012) explored the affective reaction of haptic feedback as a positive or 

negative cue. It was demonstrated that haptic feedback as a negative cue more effectively 

generated a feedback response from the user.  

System Design 

In order to design the LifeChair system I considered several design criteria: 

 

• Detects the user ’s current posture with over 90% accuracy. 

• Real-time active feedback about the user ’s posture status. 

• Thin profile to not cause discomfort or push the user off the edge of the chair. 

• Soft and flexible to adapt to different chair shapes and sizes. 

• Biomechanics based design to cater to various human body shapes and sizes. 

• Portable to be able to easily carry and place on different chairs in daily life. 

• Wireless to improve simplicity and reduce setup strain. 

 

The base LifeChair material is composed of a breathable black 3D mesh fabric and PU leather that 

is detachable and hand washable. The LifeChair utilizes a double adjustable Velcro strap 

mechanism that is suitable for use with most office chairs as well as automotive seats.  

 



 

Figure 1: LifeChair system overview 

 

The LifeChair shape and size is designed based on anthropomorphic measurements of the 95th 

percentile US adult male and the 5th percentile Japanese adult female by considering parameters 

such as back height, shoulder width and seated shoulder height. Based on these parameters the 

cushion dimensions were set to 40cm width, 52cm height and 2.2cm thickness. The cushion was 

designed specifically to account for all critical posture regions on the user ’s back, including the 

shoulders, neck, upper back, middle back, lumbar regions and pelvic area. An important design 

consideration was the aspect of portability of the system to improve simplicity and ease setup. 

Most other devices are complex to setup, are often confined to a chair or require wired connections 

to operate. The LifeChair was designed to be lightweight, wireless and simple, so that it could 

easily be placed on most office chairs and be ready to use within a few seconds. The LifeChair is 

wireless and operates using a rechargeable 3.7V LiPo battery and communicates bi-directional 

data through BLE directly to a partnered smartphone application.  

 

 

Figure 2: LifeChair Fabric Sensor System 



 

The most critical part of the mechatronics was the pressure sensing system. The only readily 

available technology was printed conductive material onto a PET plastic sheet. During initial 

trials we observed that large PET plastic sheets were not ideal for human interfacing during 

seating due to their rigidity, noise output when pressed and variations in resistance based on 

sensor distance to the pcb. We developed our own fabric sensing system that was composed of 2 

copper weaved conductive fabric layers with a carbon filled conductive film layer in the middle. 

The top conductive fabric layer contained the 9 individual sensors with wires connecting to the 

PCB. The bottom layer was composed of a single sheet of conductive fabric that covered the surface 

area of the sensor array and behaved as the ground reference plane. The system was encased in an 

anti-bacterial black PVC cover.  

 

In designing the haptics system of the LifeChair, we had to consider how many tactors would be 

needed in order to create various patterns that could be differentiated by the human back. 

Through pilot trials we had decided that 4 tactors would be used in total and be placed 

approximately to align with the upper left side, upper right side, lower left side and lower right 

side of the human back. Our pilot experiments aided in determining the appropriate horizontal 

and vertical separation between motors through simple haptics perception tests across 6 

individuals. Based on these tests we positioned the motors with a horizontal distance of 22cm and 

the vertical distance between the motors was set to 17cm. The final selected actuators were DC 

coin-type motors C1234B016F mainly due to their high vibration G-force even while operating 

from a battery supply. The haptic feedback of each motor was tuned to vibrate in pulses. This is 

achieved by activating the motor with a PWM signal. Depending on customization options this is 

defined by an ON time t and an OFF time t which would combine to generate a pulse effect. In 

most standard cases of the LifeChair trials, the frequency was set at 4Hz or 250ms ON/OFF time.  

 

The vitals sensing system was a major advancement in the development of the LifeChair interface. 

There has been little to no research in sensing the heart rate of the user from their back and no 

prior research has done so using a chair or cushion interface. Our sensing system utilizes a 

piezoresistive sensor that is attached to an amplifier and filter circuit and placed on the front face 

of the LifeChair cushion between the foam and the fabric cover. Even with a layer of 3D mesh over 

the sensor, we were able to detect the user ’s heart rate from only their back while sitting. Although 

the signal strength varied depending on the thickness of the clothes the user was wearing, in most 

cases a reading could be extracted and processed. We implemented a bandpass filter to only detect 

signals in the range of 40 BPM – 120 BPM which is the normal heart beat range of the human 

being while seated. After the bandpass filter we amplify the resultant signal to be more readable 



for further processing. The output signal can be used to estimate BPM and HRV.  

Implementation 

We developed a sitting posture classification algorithm that was based on real-time pressure data 

from our sensor array system. The posture classifier was designed based on human 

anthropomorphic dimensions and tested in a pilot study of 6 participants. It utilizes a 

threshold-based approach by taking as reference a calibration posture at time t is 0. This 

calibration reference is regarded as good or upright posture and is checked based on standard 

upright posture criterium in the field. These criterium for good posture include (1) vertical 

symmetry (2) pulled back and relaxed shoulder contact (3) lumbar contact (4) horizontal balance. 

Our calibration algorithm examines the sensor data to ensure it satisfies all 4 of these criteria 

before storing it as the calibration reference frame. 

 

 

Figure 3: Posture Classification System 

  

The sensor values are voltages which are mapped to output pressure between 0 and 600 where 0 is 

no force and 600 is full force applied. Full force is considered 5kg and beyond, as after more than 

5kg of force is applied the reading becomes saturated. The 9 sensor values are collected and sent 

simultaneously to the classifier which then compares the values to the calibration frame. The 

algorithm detects the absolute difference between each real time sensor value to its calibrated 

value. If the absolute difference is above a value alpha, then that sensor is deemed to have a 

posture error. The collective locations of sensor errors are then used to classify the user’s current 



posture. The value of alpha is selected based on pilot studies and has been widely set to an integer 

value of 30. The list of postures classified, their sensor parameters and the provided feedback cue 

is detailed in Figure 3.  

 

The LifeChair partners with the dedicated LifeChair smartphone app. 

 

  

Figure 4: LifeChair system process overview 

 

The project contains more than 600 individual files including 250 class files, 100 xml files and over 

300 resource files. In total the app contains over 900,000 lines of programming. Internet 

connectivity is required for user account verification and synchronizing user statistics and 

preferences across multiple devices. Detailed user healthcare information is stored in a file on the 

smartphone and occasionally uploaded to the firebase. The firebase uses this data specifically for 

AI-generated healthcare reports for each individual user. 

Experiments 

Throughout this research we conducted various studies to evaluate core scientific parameters to 

human informatics and embodied interfaces. These studies focused on: 

 

1) Feasibility verification of newly proposed technologies and designs. 

2) Evaluation of the design, comfort and ergonomics of the embodied interfaces. 

3) Evaluation of the effect of vibrotactile feedback and human response in different scenarios. 

4) Analysis of human posture classification accuracy in different scenarios. 

5) Analysis of human motion and behavior in different scenarios. 



 

In chronological order the experiments conducted with brief results for each are as follows.  

 

1) Pilot System Design: 6 person study to evaluate first prototype design. 

i. Haptics Design Study: Tested the vibration force, frequency, spacing, positioning and user 

response. Verified that the 4 quadrant motor positioning was effective. Spacing of 

22cm horizontal and 17cm vertical allowed users to distinguish different vibration 

locations on the back. 

ii. Posture Classification Test: Analyzed the classification accuracy of the first 10 postures 

and demonstrated at 94% accuracy rate using the threshold method. 

iii. Vibrotactile Posture Performance Study: Showed that with vibration feedback, it was 

possible to positively shape the posture of all 6 participants. 

2) System Upgrade Feasibility Tests: Developed new LifeChair based on pilot experiments 

and demonstrated its improvement compared to the first prototype. 

a. Smart Fabric Sensor Feasibility Study: Tested the functionality and piezoresistive 

properties of the fabric sensor. Demonstrated it was a more suitable solution. 

b. 20 Person Posture Classification Study: Observed that the posture classification 

accuracy with the new fabric sensors was higher than the previous study that used 

conventional sensors. Achieved 98.1% accuracy. 

3) 10 Person Performance Study: Tested the improved system on 10 participants. 

a. Vibrotactile Performance Study: Further proved that vibrotactile feedback 

positively guided all participants towards an upright posture. 

b. User Interaction Survey: feedback demonstrated positive reception, especially 

towards comfort, functionality and design. 

4) LifeChair Heart Rate Sensing Feasibility Study: Verifying the vitals extension of the 

LifeChair to prove heart rate can be detected. 

a. Detecting User Heart Rate: Demonstrated it is possible to detect heart rate from 

the user ’s backside through the LifeChair device. 

5) 2 person real world study: in-office LifeChair study at 3M and Rebel Sports HQ . 

a. Vibrotactile Performance Study: Showed that the day when LifeChair was 

activated, both users experienced significant improvements in posture. 

b. User Interaction Survey: Positive feedback around comfort, novelty and 

effectiveness – some haptics design improvements were requested such as a semi 

real-time mode and silent mode. 

6) 10 person Long term study: Tested vibrotactile effect for a week in a secretarial office and 

lab based environment. 



a. 3 Person Pilot Study: Prior to the test we proved the concept of an alternating days 

vibration ON/OFF experimental setup and also verified the potential positive 

effects of semi real-time vibration feedback in improving posture. 

b. Semi Real-time Vibrotactile Performance Study: Results showed that all 

participants experience improvements in posture on the days when vibration was 

activated. Furthermore, good posture was retained on the final day when there 

was no vibration and was better than when the subjects began the study. 

c. User Behavioural Study: We analyzed patterns in each users posture based on 

their job type. 

7) Automotive Studies 

a. Driver Posture Classification Study: LifeChair was able to classify all main 

postures in the car with close to 100% accuracy. It could also detect if the driver 

was making contact with the steering wheel or not. 

b. Driver Action Study in 90 minute Free Drive: Successfully related driver actions 

such as turning the car, steering forward, accelerating and braking to LifeChair 

posture patterns.   

 

 

 

Figure 5: 10 person LifeChair performance study 



 

Figure 6: Average back pressure distribution across 10 subjects with and without LifeChair 

Discussion 

In regards to feasibility verification of newly proposed technologies and designs, the trend of 

results show clear improvements between consecutive prototypes. The switch to fabric based 

sensing from conventional FSR sensing, showed user approval in the survey as well as higher 

classification accuracy and increased upright sitting duration amongst all participants. This leads 

us to believe that the flexible and adaptive nature of etextiles is a better solution for embodied 

interfaces for human posture monitoring. 

 

In relation to the interface ergonomics, throughout our experiments we maintained a 

human-centric design approach by constantly surveying the user ’s reception in each study. The 

haptic feedback module was upgraded to include a range of customizable parameters in the smart 

phone app to allow for personalized user experiences. By fine tuning the frequency and strength of 

the motors we observed an increase in upright posture duration as experiments progressed. As the 

LifeChair system was constantly refined based on user feedback and observations, we 

continuously tested the improvements it would provide on the user ’s upright posture. Between the 

first group of experiments, we clearly observed an increase to 68.1% in upright posture duration 

between the LifeChair models. As the LifeChair was tested in different scenarios, including real 

world offices and companies, it became evident that vibrotactile feedback was indeed effective in 

posture guiding, but required a minor level of personalization and customization between users to 

cater for individual preferences and changing workspace environments. As the research 

progressed, we were able to achieve higher classification accuracies between different users, 

reaching an accuracy of 98.1% using the threshold method. In latter stages of the research we 

extended the list of classifiable postures to include forward head posture and rounded shoulders 

posture, the 2 most detrimental and critical postures of todays technology filled world. Our 

heatmap results showed that we were successful in reducing both the negative effects of forward 



head posture and rounded shoulders amongst all 10 participants.  

Future Works 

Beyond this thesis, we are endeavoring to scale the LifeChair technology to multiple forms, 

implementable in real-world spaces. These include a chair-based version that embeds LifeChair 

technology, for a premium posture training experience. As well as a floor-based interface that will 

open new avenues assisted augmentation of human standing posture and motion.  

Conclusion 

In this research, we developed an embodied interface, named LifeChair, for posture correction that 

implemented our novel conductive fabric pressure sensor array and successfully improved the 

sitting posture of all participants. This system was also scaled to other embodied interfaces to 

demonstrate the vast sensing and augmentation range of the core LifeChair technology. As part of 

this research, we developed an adaptable, flexible, cost-effective and human compliant pressure 

sensing system for use especially in embedded complex interfaces, such as smart cushions and 

chairs. Our pressure sensors use a novel fabric-based layering method which is proposed as a full 

solution for manufacturing and real world use. The classification experiment demonstrated that 

the new LifeChair installed with the fabric sensing system could accurately classify 98.1% of all 

postures across 20 participants with significantly less variance than a flexible printed PCB system. 

After improving the system based on our initial findings, the performance study showed further 

improvement in posture correction by demonstrating a 68.1% increase in time spent seated 

upright when using the LifeChair which, in turn, reduced the overall time spent slouching. The 

automotive studies demonstrated the scalability of the LifeChair system to be used in the car. It 

established a clear relationship between driver actions such as steering and associated driver 

postures detected by the LifeChair. Our human-centric design approach allowed us deeper 

effective design into haptics feedback systems and interface ergonomics. Through constant 

analysis of user interaction and haptics we were able to produce an effective posture guidance 

system that the user positively responded to with minimal discomfort and disturbance. The 

combination of our extensive works in interface design, novel fabric sensing technology, 

vibrotactile feedback, detailed smartphone application and accurate posture classifier has 

successfully demonstrated augmentation and empowerment for human posture guidance and 

training. Preliminary studies also suggest that this system is capable of much more with the 

addition of human motion and behavioral classification and vitals sensing module. These systems 

will branch out the LifeChair to new fields of study in which it will continue to take on the 

everyday challenges of human life for the betterment of the human condition. 
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