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Abstract 

 

The water transparency, is a direct record of water optics and an important indicator of water 

quality. It is measured by the Secchi disk depth(ZSD) and has been a routine measurement in field 

survey of aquatic environments since the 1860s. Over a century later, the remote sensing technique 

has also been widely used for retrieving the ZSD values because of the technique's large area 

coverage and rapid data acquisition.  

Lee et al. (2015) proposed a new theory for underwater visibility. Based on this new theory, 

Lee et al. (2015) also developed a semi-analytical algorithm for retrieving the ZSD from remote 

sensing data (termed as Lee15 hereafter). Generally, there are three requirements for accurately 

estimating ZSD when the Lee15 algorithm is used: (1) accurate measurements of remote sensing 

reflectance (Rrs); (2) accurate estimations of diffuse attenuation coefficient of downwelling 

irradiance (Kd); and (3) the proper values of KT/Kd ratios (KT is the diffuse attenuation coefficient 

of upwelling radiance).  

However, challenges are still remained for each requirement. They are: (1)the widely used 

above-water approach for measuring Rrs suffers from the residual reflected skylight (∆) effect, 

which will influence the accuracy of in situ Rrs; (2) the sixth version of quasi-analytical algorithm 

(QAA_v6) used for estimating absorption and backscattering coefficients (a and bb) often failed 

in turbid inland waters, and thus reduced the estimation accuracy of Kd; and (3) the KT/Kd ratio has 

been reported to be varied in a wide range. Therefore, the errors in Rrs, Kd and KT/Kd ratios will be 
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finally propagated to the estimations of the ZSD. 

To address the above challenges, first, I proposed a new simple method, which only required 

the in situ Rrs spectrum itself as input, to further remove the ∆ effects in the in situ Rrs measurements. 

The performance of the proposed method was evaluated using both simulation data and in situ Rrs 

spectra measured using a radiance sensor with a black tube (∆-free in situ Rrs). The results showed 

that the proposed method outperformed other existing methods and can be applied to various types 

of waters. In addition, the proposed method can improve the quality of Rrs spectra collected under 

various sky conditions (e.g., clear, scattered clouds and overcast). Second, I proposed a hybrid 

quasi-analytical algorithm (QAA_hybrid) instead of the QAA_v6 for retrieving more accurate a 

and bb even in turbid inland waters. Third, I proposed a new algorithm to estimate a dynamic KT/Kd 

ratio instead of using the fixed ratio in the original algorithm. The results obtained from in situ Rrs 

showed that the improved ZSD estimation algorithm gave more accurate ZSD estimations, with the 

root mean square error (RMSE) reduced from 2 m to 1.7 m, mean absolute percentage error 

(MAPE) reduced from 54 % to 35 % (N=472, ZSD ranges from 0.2 m to 45 m).  

The improved ZSD estimation algorithm was applied to the 2003–2012 MERIS images for six 

Japanese lakes (i.e. Lakes Mashu, Kussharo, Inawashiro, Kasumigaura, Suwa and Biwa). The 

results obtained from 66 matchups demonstrated that the improved ZSD algorithm estimated ZSD 

values from MERIS data with the RMSE of 2 m and the MAPE of 38%, even though some 

overestimations were still observed in Lake Biwa due mainly to the imperfect atmospheric 

correction for satellite images. The satellite-derived long-term ZSD trends agreed well with that 
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derived from the in situ long-term ZSD. The results indicate that the improved ZSD algorithm has 

good potential in monitoring ZSD from remote sensing data.  
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Chapter I General Introduction 

 

1.1. Water transparency  

Water transparency, also termed water clarity in aquatic science, is measured by Secchi disk 

depth (ZSD, m) in the field. As water transparency is a direct record of water optics and an important 

indicator of water quality (Wernand et al., 2010), it has been a routine measurement in field survey 

of aquatic environments using a called Secchi disk since the 1860s (Secchi, 1864). 

The measurement of ZSD in a field survey is by lowering down a white or half white and half 

black disk into the water, the depth when the disk is no more visible is recorded as the ZSD (Figure 

1.1). However, measuring ZSD in the field is time-consuming, laborious and costly. The collected 

ZSD data is limited in temporal and spatial coverages, which may influence the judgement of the 

trophic status of a water body (Binding et al., 2015; Kim et al., 2015; Stock, 2015; Luis et al., 

2019). In addition, some waters in developing countries or remote areas lack of in situ ZSD data, 

possible reasons include financial shortage or physical inaccessibility (Setiawan et al., 2019).  

 

Figure 1.1. (a)Secchi disk and (b) Secchi disk depth measurement in the field. 
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1.2. Remote sensing of water transparency 

With the development of remote sensing technique, retrieving the ZSD values from space has 

been widely used. Compared with the field survey, remote sensing technique has many advantages, 

e.g. large area coverage and rapid data acquisition (Yarger and McCauley, 1975; Binding et al., 

2015; Shang et al., 2016). Many satellites/sensors have been launched since 1970s, such as 

Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), MEdium Resolution 

Imaging Spectrometer (MERIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Sentinel, 

and so on. These satellites/sensors provide long-term and various data sources for ZSD monitoring. 

Generally, there are two approaches for retrieving the ZSD from remote sensing data: empirical 

and semi-analytical approaches.  

 

1.2.1. Empirical approach 

The empirical approach usually estimates the ZSD by directly carrying out a regression 

analysis between the remote sensing data and in situ ZSD measurements (e.g., Giardino et al., 2001; 

Kloiber et al., 2002; Kratzer et al., 2003; Chen et al., 2007; Olmanson et al., 2008; Kabbara et al., 

2008; Kratzer et al., 2008; Zhao et al., 2011; Olmanson et al., 2016).  

However, the algorithm developed based on empirical approach always need recalibration 

before applying to another water body, this significantly limits its usage specially in waters without 

in situ data. 
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1.2.2. Semi-analytical approach 

The semi-analytical approach retrieves the ZSD based on an underwater visibility theory 

(Doron et al., 2011; Fukushima et al., 2016, 2018; Alikas and Kratzer, 2017; Rodrigues et al., 2017). 

Compared to the empirical approach, the semi-analytical approach has two advantages: (1) a 

clearer mechanism and thus more reliable results; and (2) this approach often does not need in situ 

data for recalibrating the retrieval algorithm. It can thus be considered that the semi-analytical 

approach would be more useful for monitoring the ZSD in various water bodies, especially for those 

that lack in situ measurements. 

Before 2015, semi-analytical algorithms for ZSD retrieval were based mainly on an underwater 

visibility theory proposed by Duntley (1952) (hereafter referred to as the 'classical theory'). 

According to the classical theory, when the air-water surface effect is neglected, the ZSD is 

inversely proportional to the sum of the beam attenuation coefficient (c, m−1) and the diffuse 

attenuation coefficient of downwelling irradiance (Kd, m
−1) within the visible domain (Tyler, 1968; 

Preisendorfer, 1986): 

��� = Γ����������     (1.1) 

Γ = ln ����� ��� !,     (1.2) 

where Kd(v) is the diffuse attenuation coefficient of downwelling irradiance (m−1) in visible 

domain, c(v) is the beam attenuation coefficient (m−1) in visible domain, Γ is the coupling constant 

with a reported range of 5-10 and can also be estimated using Eq. (1.2), which Rt is the submerged 

disk reflectance, Rw is the reflectance of water body around the disk, and Ct is the threshold of 
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contrast for detecting a disk. 

However, Lee et al. (2015a, 2018) pointed out that there are some drawbacks or mistakes in 

the classical theory, which has been used for more than 60 years. First, the critical assumption, i.e., 

that the radiance distribution over the target is equal to the radiance distribution over the 

background, may not be valid for water bodies because a 30-cm Secchi disk cannot be treated as 

a point at a distance shorter than tens of meters. Second, the use of full visible domain to determine 

a ZSD value is not appropriate because how far the human eye-brain system is able to see should 

depend on information from a visible wavelength with maximum transmittance in a water body. 

Third, the use of relative difference between water and Secchi disk just match the sharpness of an 

object, which is not the case of using a 30-cm Secchi disk to measure ZSD within tens of meters. 

To overcome the above problems, Lee et al. (2015a) proposed a new theory for underwater 

visibility (hereafter referred to as the 'new theory'). Based on this new theory, Lee et al. (2015a) 

also developed a semi-analytical algorithm for retrieving the ZSD from remote sensing data 

(hereafter referred to as the 'Lee15'):  

��� = "#.%&'(���� ln �)*."+��,-./)��, !,    (1.3) 

Where Min(Kd) is the minimum diffuse attenuation coefficient of downwelling irradiance (Kd) 

value in the visible domain. 0��1� is the corresponding remote sensing reflectance (Rrs, sr-1) at the 

band with the minimum Kd, and ��� is the contrast threshold for sighting a white disk by eyes (i.e., 

0.013 sr−1). The coefficient of 2.5 was obtained under an assumption of KT = 1.5Kd, with KT is the 

upwelling radiance diffuse attenuation coefficient (m-1). 
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1.3. The challenges of applying the Lee15 ZSD algorithm 

To retrieve accurate ZSD using the Lee15 algorithm, there are three requirements: (1) accurate 

measurements of Rrs; (2) accurate estimations of Kd; and (3) the proper values of KT/Kd ratios. 

 

1.3.1. The problem of Rrs 

Remote sensing reflectance (Rrs) is defined as the ratio of water-leaving radiance (Lw) and 

downwelling irradiance (Ed) just above the water surface (Kirk, 2011). It is an important parameter 

in ocean (water) color remote sensing, which is always required to develop estimation algorithms 

of water quality parameters and to evaluate the performances of the developed atmospheric 

correction algorithms (Wang et al., 2009; Guanter et al., 2010; Goyens et al., 2013; Jaelani et al., 

2013; Wei et al., 2016; Cao et al., 2018; Jiang et al., 2019).  

There are two sources of Rrs data, from satellite image and from field survey. Obtaining 

accurate Rrs from satellite images is still challengeable because of the difficult of atmospheric 

correction (Jaelani et al., 2013; Goyens et al., 2013). Because of easy operation, measuring Rrs in 

the field using the above-water approach is widely used to collect Rrs data (Zibordi et al., 2006; 

Zibordi et al., 2012). However, the Lw cannot be directly measured due to the specular reflections 

on the water surface caused by diffuse solar irradiance (i.e., surface-reflected radiance), which are 

picked-up simultaneously by this method. To solve this problem, measuring the radiance of 

skylight (Ls) has been suggested (as Figure 1.2 showed). 
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Figure 1.2. Illustration of the Rrs measurement using above-water approach in the field. 

 

Finally, Rrs is calculated using the following equation (Mobley, 1999): 

0���λ� = 23��λ� 4 53��λ�6/8 9�:�λ�3;�λ�< ,   (1.4) 

where Lt(λ) is the total upwelling radiance from the water and can be directly measured by a sensor; 

ρ is the skylight reflectance, which is equal to 0.028 when the wind speed is less than 5 m/s and a 

sensor zenith angle (θ) of 40° and an azimuth angle (φ) of 135° are used; Lg(λ) is the upwelling 

radiance from a standard gray board; and Rg(λ) is the reflectance of the gray board. An example 

of the in situ measurement from Lake Senbako, Japan is illustrated in Figure 1.3, with measured 

Lt, Ls, Ed in Figure 1.3a, and the corresponding calculated Rrs in Figure 1.3b. 
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Figure 1.3. An example of in situ measurement in Lake Senbako. (a) measured Lt, Ls, Ed, (b) the 

corresponding Rrs. 

 

Recently, researchers have gradually noticed that the use of only Eq. (1.4) cannot completely 

remove the water surface-reflected radiance (e.g., Ruddick et al., 2005; Lee et al., 2010; Kutser et 

al., 2013; Groetsch et al., 2017; Bernardo et al., 2018). Their results suggest that further removal 

of residual reflected skylight (hereafter ∆, sr-1) is necessary to obtain more accurate Rrs spectra, 

i.e.: 

0���λ� = 23��λ� 4 53��λ�6/8 9�:�λ�3;�λ�< 4 ∆ .  (1.5) 

Currently, there are three types of approaches for removing residual reflected skylight effects 

(∆). The first type involves assuming ∆ to be equal to the Rrs value at near-infrared (for clear 

waters) or middle-infrared (for turbid waters) wavelengths because the Rrs values at these 

wavelengths can be assumed to be zero due to the strong absorption of pure water and the weak 

backscatters of suspended particles (i.e., black water assumption) (e.g., Choi et al., 2012, 2014; 
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Qiu, 2013; Zhang et al., 2010; Cai et al., 2015; Dierssen et al., 2006; Brewin et al., 2016; 

Froidefond et al., 2002; Knaeps et al., 2012; Song et al., 2012). However, since the wavelength of 

the black water assumption will change in different water types, it is difficult to objectively 

determine an appropriate wavelength. 

The second type of approach is estimating ∆ based on various assumptions (e.g., Ruddick et 

al., 2005, 2006; Lee et al., 2010; Dev and Shanmugam, 2014). For example, Ruddick et al. (2005, 

2006) found that the spectral shape in the near-infrared domain (700–900 nm) is almost invariant, 

and thus they proposed a similarity spectrum method under the assumption of a fixed ratio of 

Rrs(720) and Rrs(780) (i.e., Rrs(720)/Rrs(780)=2.35). However, as pointed out in Ruddick et al. 

(2005), the applicability of this method is limited to medium turbid waters with Rrs(720) ≤ 0.0095 

sr-1 (corresponding to water-leaving irradiance reflectance of 0.03 in Ruddick et al., 2005). Lee et 

al. (2010) proposed an optimization method to estimate ∆. They first simulated the Rrs as the 

magnitude of the absorption coefficient of phytoplankton, gelbstoff and the backscattering 

coefficient of particles, and then solved for ∆ by matching the simulated Rrs with the in situ-

measured Rrs spectra. However, since the method requires the specific inherent optical properties 

(SIOPs) of each optical active matter in a water body to generate synthetic Rrs spectra, it can be 

considered that a larger error will occur if the method is applied to a water body with different 

SIOPs. In addition, the wavelength ranges used for optimization should be changed according to 

the turbidity of a water body (Lee et al., 2010).  

The third type of approach involves directly estimating the surface-reflected radiance rather 
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than estimating ∆ (Kutser et al., 2013; Groetsch et al., 2017). Kutser et al. (2013) found that the 

surface-reflected radiance can be obtained by fitting the spectral ranges of 350–380 nm and 890–

900 nm using a power function. However, this finding is only suitable for colored dissolved organic 

matter (CDOM)-rich waters (Kutser et al., 2013). Groetsch et al. (2017) proposed to apply a three-

component reflectance model (3C) to above-water radiometric measurements for estimating 

surface-reflected radiance. Similar to the method of Lee et al. (2010), the 3C-based method also 

needs SIOPs to generate synthetic Lt spectra for optimization, and thus has limitations in its 

application to waters with different SIOPs. 

Therefore, developing a new simple method which is applicable for various waters for 

removing the residual reflected skylight effects in above-water measured spectra is necessary. 

 

1.3.2. The problem of Kd 

The diffuse attenuation coefficient of downwelling irradiance (	�) can be estimated from 

absorption coefficient (> , m-1) and backscattering coefficient (�� , m-1) using the following 

equation (Lee et al., 2005, 2013): 

	��λ� = �1 + 0.005C�>�λ� + 4.259�1 4 0.265η��λ�! 21 4 0.52H�"*.IJ�λ�6���λ�,  (1.6) 

where θ is the solar zenith angle,	 η��λ� is the ratio of ����λ� (the backscattering coefficient of 

pure water, Morel, 1974; Zhang et al., 2009) and ���λ�. >�λ� and ���λ� can be estimated from 

Rrs(λ) using the sixth version of Quasi-analytic algorithm (QAA_v6, Lee et al., 2002; IOCCG, 

2014). However, several research groups have reported that the QAA_v6 or its previous version 
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(QAA_v5) often failed in turbid inland waters (Le et al., 2009; Yang et al., 2013; Huang et al., 

2014; Mishra et al., 2014; Watanabe et al., 2016; Wang et al., 2017), which will lead errors in Kd 

estimations. It is thus necessary to propose a QAA which can retrieve accurate a and bb in various 

waters and then used for calculating accurate Kd. 

 

1.3.3. The problem of the KT/Kd ratio 

For the ratio of KT and Kd, empirically, the constant ratio value of 1.5 was used in the original 

Lee15 algorithm (i.e., KT = 1.5Kd). However, a wide range of ratios have been reported (0.5–2.0). 

For example, Philpot (1989) pointed out that the reasonable range for 	L/	� was from 0.5 to 2. 

Maritorena et al. (1994) reported that 	L/	� ranged from 1.02 to 1.66 based on simulations. A 

	L/	� range of 1.4–1.7 can also be estimated when the solar zenith angle θ = 0 degrees according 

to Lee et al. (1994). It can thus be speculated that using a fixed 	L/	� value in a ZSD estimation 

may lead to errors, and more realistic 	L/	� ratios are needed to further improve the performance 

of the Lee15 algorithm. 

 

1.4. Research objectives of this study 

To enable the Lee15 ZSD algorithm to estimate accurate ZSD values in various water types, the 

above mentioned three problems (i.e. problems of Rrs, Kd, KT/Kd ratio) should be addressed. Thus, 

the objectives of this study are to:  

(1) develop a new method to remove the residual reflected skylight (∆) in the above-water 
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measured Rrs, to ensure the accuracy of Rrs for various types of waters (chapter II); 

(2) integrate different types of QAAs to estimate more accurate a and bb for both clear and 

turbid waters, thus to ensure the accuracy of Kd estimations for both clear and turbid waters 

(chapter III);  

(3) propose a new algorithm to calculate more accurate ratio of KT/Kd, and replace the 

constant KT/Kd =1.5 with a dynamic KT/Kd in the ZSD estimation algorithm (chapter III);  

(4) validate the improved ZSD algorithm by using in situ spectrum collected from field survey 

in Japan and downloaded data from SeaBASS database (chapter III); 

(5) apply the improved ZSD algorithm to MERIS satellite images over six Japanese Lakes, 

Lake Mashu, Lake Kussharo, Lake Inawashiro, Lake Kasumigaura, Lake Suwa and Lake Biwa, 

between 2003 and 2012, to produce the long-term ZSD products and analyze the changing trend of 

ZSD over these six Japanese Lakes (chapter IV).   
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Chapter II A Simple and Effective Method 

for Removing Residual Reflected Skylight in 

Above-water Remote Sensing Reflectance 

Measurements 

 

2.1. Introduction 

As mentioned in chapter I, remote sensing reflectance (Rrs) measured using above-water 

approach suffers from the problem of residual reflected skylight (∆). Existing methods for 

removing the ∆ effects either limited for specific waters (e.g. clear water or CDOM-rich water) or 

complicated to execute (need SIOPs or optimization method). 

In this chapter, the problem of ∆ effects in Rrs will be addressed. The detailed objectives are 

to: (1) develop a new method for removing the ∆ effects in above-water Rrs measurements that can 

overcome the shortcomings in the existing methods; (2) evaluate the performance of the proposed 

method by comparing it with four existing methods using both simulated and in situ collected data. 

 

2.2. Methods 

2.2.1. Data collection 

2.2.1.1. In situ data collection 

In situ Rrs spectra and corresponding Secchi disk depth (ZSD) data were collected from field 

surveys in 21 Japanese inland waters during 2009 and 2019 and the SeaWiFS Bio-optical Archive 
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and Storage System (SeaBASS) database.  

The 21 Japanese inland waters include 20 lakes and 1 bay (Tokyo Bay; Figure 2.1a), with ZSD 

values ranging from 0.3 m to 16.4 m, chlorophyll-a (Chl-a) concentrations ranging from 0.5 mg/m3 

to 187.7 mg/m3, and total suspended solids (TSS) concentrations ranging from 0.4 g/m3 to 73.7 

g/m3 (Table 2.1). For each site, the radiance of the skylight (Ls), the radiance from a standard board 

(Lg), and the total upwelling radiance from the water (Lt) were measured using a FieldSpec® 

HandHeld spectroradiometer (ASD Inc., Boulder, CO) with a sensor zenith angle (θ) of 40° and 

an azimuth angle (φ) of 135°. The Rrs was then calculated using Eq. (1.4) with the skylight 

reflectance ρ =0.028 (when the wind speed was < 5 m/s, Mobley, 1999). ZSD was measured by 

lowering a 30 cm diameter white disk into the water until the disk was no longer visible. I kept all 

Rrs spectra collected under different sky conditions (i.e., clear, scattered clouds, and overcast). 

These sky conditions were distinguished using the method of Groetsch et al. (2017). In total, 305 

pairs of in situ Rrs spectra and corresponding ZSD values were obtained from Japanese inland waters. 

Moreover, three experiments were carried out in two Japanese lakes (Lake Kasumigaura with 

ZSD=0.8 m on March 12, 2019 and Lake Chuzenji with ZSD=9.7 m on June 4, 2019) and one 

Indonesian lake (Lake Tamblingan with ZSD=2.1 m on March 20, 2019). Except for in situ Rrs 

spectra measured using the above-water approach, three ∆-free Rrs spectra were also measured 

using RAMSES spectroradiometer (TriOS, Rastede, Germany). Since a black tube (5 cm) was 

installed in front of the downward radiance sensor and kept just below water surface, Lw was 

directly measured without ∆ effects (Lee et al., 2010; Kutser et al., 2013). At the same time, Ed 
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just above the water surface was measured using an upward irradiance sensor. All Rrs spectra were 

measured under clear sky condition with wind speed lower than 5 m/s. 

For the SeaBASS database, I only chose the Rrs spectra with wavelengths ranging from 400 

nm to 850 nm and the corresponding ZSD values. As a result, a total of 167 data pairs were obtained. 

These data pairs were collected from San Francisco Bay, the northern Gulf of Mexico, Chesapeake 

Bay, and Lake Erie (Figure 2.1b). The ∆ corrections had already been carried out by the providers 

for some of the selected in situ Rrs spectra. The ZSD values of the selected data pairs ranged from 

0.2 m to 45 m. 

 

Figure 2.1. Locations of in situ data used in this study. (a) Data collected from 21 Japanese inland 

waters; (b) data collected from SeaBASS. 

 

Table 2.1. Name, area, ZSD, Chl-a, TSS, and number of data of the 21 Japanese inland waters. 

Name Area (km2) ZSD (m) Chl-a (mg/m3) TSS (g/m3) Number of data Sampling year 

Biwa 670.3 2.3-10.7 0.6-7.0 0.6-3.4 58 2009-2011 

Kasumigaura 167.6 0.3-1.2 12.0-187.7 4.1-73.7 181 2009-2019 

Inawashino 103.3 9.3-10 0.6-0.7 1.0-1.1 2 2010 

Akan 13.0 6.7 0.8 1.5 1 2013 
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Suwa 12.9 0.9-1.9 9.8-29.4 4.4-9.6 21 2010-2018 

Ikeda 10.9 9.3 1.4 0.7 1 2011 

Hibara 10.7 6.1-7.3 1.7-2.3 1.0-1.3 4 2018 

Motosu 4.7 9.3-16.4 0.6 0.4 2 2014 

Suigetsu 4.2 1.0-1.5 3.9 3.6 2 2016 

Mikata 3.6 0.8 6.3 8.0 1 2016 

Sai 2.1 6.8-7.1 1.8 1.3 2 2014 

Kugushi 1.4 1.4 27.4 5.9 1 2016 

Unagi 1.2 12.8 0.5 0.4 1 2011 

Suga 0.9 0.8 57.0 7.5 1 2016 

Shoji 0.5 3.5-4.2 3.2-8.5 1.7-2.4 2 2014 

Shirakaba 0.4 1.0-3.5 2.3-26.9 2.8-9.1 3 2010-2018 

Senbako 0.33 0.6 98.9 29.2 1 2019 

Yunoko 0.32 3.4 4.5 1.9 1 2011 

Megami 0.12 2.4 5.7 3.8 1 2018 

Tateshina 0.08 2.5 6.5 3.1 1 2018 

Tokyo Bay 1500 1.9-5.5 2.9-32.0 2.1-4.3 18 2010-2011 

Total  -- 0.3-16.4 0.5-187.7 0.4-73.7 305 2009-2019 

 

2.2.1.2. Generating synthetic data 

As it is very difficult to measure an error-free Rrs spectrum in the field, I used a bio-optical 

model to obtain error-free Rrs spectra. The bio-optical model can be expressed as follows (Gordon 

et al., 1988; Lee et al., 2002): 

0���λ� = *.%#M,-�λ�"�".NM,-�λ�     (2.1) 

���λ� = 0.089� PQ�λ�J�λ��PQ�λ�� + 0.125 � PQ�λ�J�λ��PQ�λ�!# ,   (2.2) 

where rrs(λ) is the remote sensing reflectance just below the water surface, a(λ) is the total 

absorption coefficient of water, and bb(λ) is the total backscattering coefficient of water. The a(λ) 

and bb(λ) can be further separated as follows (Vahtmäe et al., 2006; Yang et al., 2011):  

>�λ� = �STU ∙ >�T∗ �λ� + ��� ∙ >��∗ �λ� + ���X& ∙ >��X&∗ �λ� + >��λ�   (2.3) 
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���λ� = �STU ∙ ���T∗ �λ� + ��� ∙ ����∗ �λ� + ����λ� ,   (2.4) 

where Cchl is the concentration of Chl-a, Ctr is the concentration of tripton, and CCDOM is the 

absorption coefficient of CDOM at 440 nm. The parameters a*
ph(λ), a*

tr(λ), and a*
CDOM (λ) are the 

specific absorption coefficients of phytoplankton, tripton, and CDOM, respectively. b*
bph(λ) and 

b*
btr(λ) are the specific backscattering coefficients of phytoplankton and tripton, respectively. 

aw(λ) is the absorption coefficient of pure water (Kou et al., 1993; Pope and Fry, 1997; Lee et al., 

2015b), and bbw(λ) is the backscattering coefficient of pure water (Zhang et al., 2009).  

 

Figure 2.2. Specific inherent optical properties (SIOPs) collected from Lake Kasumigaura, Japan, 

on May 11, 2018. (a) aw (m-1), a*
ph (m

2/mg), a*
tr (m

2/g), and a*
CDOM (dimensionless); (b) bbw (m-1), 

b*
bph (m

2/mg) and b*
btr (m

2/g).  

 

I generated two synthetic datasets using the above bio-optical model (hereafter Synthetic 

Dataset I and Synthetic Dataset III), and another synthetic dataset using Hydrolight (Mobley, 1994; 

hereafter Synthetic Dataset II). Dataset I was used to develop a method for ∆ correction, and 
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Dataset II and Dataset III were used to evaluate the performance of the developed method. 

Synthetic Dataset I was generated for various water turbidities. The concentrations of Chl-a 

and tripton were varied between 0.01 mg/m3 and 300 mg/m3 and between 0.01 g/m3 and 300 g/m3, 

respectively. The absorption coefficient of CDOM at 440 nm was varied between 0.01 m-1 and 10 

m-1. The intervals of the Chl-a (tripton) concentration were 0.01 mg/m3 (g/m3) for 0.01–0.1 mg/m3 

(g/m3), 0.1 mg/m3 (g/m3) for 0.1–1.0 mg/m3 (g/m3), 1.0 mg/m3 (g/m3) for 1.0–10 mg/m3 (g/m3), 2 

mg/m3 (g/m3) for 10–20 mg/m3 (g/m3), 5 mg/m3 (g/m3) for 20–50 mg/m3 (g/m3), 10 mg/m3 (g/m3) 

for 50–100 mg/m3, and 20 mg/m3(g/m3) for 100–300 mg/m3(g/m3). For CDOM, the intervals were 

0.01 m-1 for 0.01–0.1 m-1, 0.1 m-1 for 0.1–1.0 m-1, 1.0 m-1 for 1.0–5 m-1, and 2 m-1 for 5–10 m-1. 

The SIOPs were collected from Lake Kasumigaura on May 11, 2018 (Figure 2. 2). In total, 75816 

error-free Rrs spectra were generated. Figure 2.3 shows 200 randomly selected examples of 

simulated Rrs spectra.  

 

Figure 2.3. 200 randomly selected Rrs spectra from Synthetic Dataset I. 

 



18 

Synthetic Dataset II was generated using the Hydrolight radiative transfer model (version 5, 

Sequoia Scientific), which can solve the radiative transfer equation to compute the radiance 

distribution within and leaving a water body. The Hydrolight provides default SIOPs for four 

components (pure water, Chl-a, mineral particles, and CDOM), which were directly used in this 

study. 

The water was assumed to be homogeneous and of infinite depth. Raman scattering was 

ignored in this simulation. The refraction index was set as 1.34, and the sun zenith angle was kept 

at 30 degrees. The semi-empirical sky-model based on RADTRAN was used to simulate the solar 

and sky irradiance incident onto the water surface. The Chl-a concentration was set as 35 mg/m3, 

the mineral particles concentration was set as 15 g/m3, and the CDOM absorption coefficient at 

440 nm was set as 0.8 m-1. 

To simulate various environmental conditions that people may face in the field, I ran the 

Hydrolight by combining different wind speeds, cloud cover percentages, and view geometries 

(Table 2.2). In total, I simulated 12 cases and obtained the corresponding Lt, Ls, and Ed spectra 

between 350–900 nm with a 5 nm interval. The Rrs spectrum simulated under the conditions of a 

clear sky, wind speed=0 m/s, and the recommended view geometry (θ=40°, φ=135°) was 

considered to be ∆-free Rrs (i.e., Case 1 in Table 2.2). The other 11 Rrs spectra calculated from the 

simulated Lt, Ls, and Ed spectra by Eq. (1.4) were considered to be ∆-contaminated Rrs and were 

used to evaluate the proposed ∆ correction method. 
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Table 2.2. Conditions of radiative transfer simulation for generating Synthetic Dataset II. 

Case Wind speed (m/s) Cloud cover (%) View geometry(θ,φ) 

1 (∆-free) 0 0 (clear sky) (40°, 135°) 

2 (with ∆ effects) 0 50 (scattered clouds) (40°, 135°) 

3 (with ∆ effects) 0 100 (overcast) (40°, 135°) 

4 (with ∆ effects) 10 0 (clear sky) (40°, 135°) 

5 (with ∆ effects) 10 50 (scattered clouds) (40°, 135°) 

6 (with ∆ effects) 10 100 (overcast) (40°, 135°) 

7 (with ∆ effects) 0 0 (clear sky) (50°, 90°) 

8 (with ∆ effects) 0 50 (scattered clouds) (50°, 90°) 

9 (with ∆ effects) 0 100 (overcast) (50°, 90°) 

10 (with ∆ effects) 10 0 (clear sky) (50°, 90°) 

11 (with ∆ effects) 10 50 (scattered clouds) (50°, 90°) 

12 (with ∆ effects) 10 100 (overcast) (50°, 90°) 

 

For Synthetic Dataset III, I first randomly selected 1000 Chl-a concentrations in the range of 

0.01–300 mg/m3, 1000 tripton concentrations in the range of 0.01–300 g/m3, and 1000 absorption 

coefficients of CDOM at 440 nm in the range of 0.01–10 m-1, to generate 1000 error-free Rrs spectra 

using the same bio-optical model described above. Secondly, I randomly generated 1000 ∆ values 

in the range of 0 sr-1 to 0.01 sr-1 (true ∆) and added them to each error-free Rrs spectra to generate 

1000 ∆-contaminated Rrs spectra. Synthetic Dataset III was used to evaluate the performance of 

the proposed method by comparing the estimated ∆ values using the proposed method with the 

true ∆ values.  

 

2.2.2. Model development 

2.2.2.1. Find an index without ∆ effect 

Residual reflected skylight (i.e., ∆), such as an error due to an imperfect atmospheric 
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correction, is a kind of noise from the light environment in addition to the Rrs spectrum. Therefore, 

the ∆ effect can be minimized/removed using baseline-based indices such as FLH (Fluorescence 

Line Height), MCI (Maximum Chlorophyll-a Index), CI (Color Index) and so on, if assuming the 

∆ is a wavelength-independent variable (e.g., Gower, 1980; Gower et al., 2005; Hu et al., 2012; 

Matsushita et al., 2016).  

On the other hand, to make a baseline-based index that can be applied to various waters, it is 

desirable that the index be insensitive to the variation of water SIOPs. From Figure 2.2, it can be 

seen that the SIOPs in the near-infrared domain are only dominated by the absorption coefficient 

of pure water. Therefore, a baseline-based index using near-infrared wavelengths can meet this 

requirement. 

According to the above considerations, I noticed that the relative height of the water-

absorption-dip-induced-reflectance-peak-at-810 nm (hereafter RHW; Figures 2.2 and 2.3) can 

meet both requirements. The RHW can be calculated using the following equations:  

RHW = 0���810� 4 0��\ �810�     (2.5) 

0��\ �810� = 0���780� + 20���840� 4 0���780�6 × �810 4 780�/�8404 780�,  (2.6) 

where Rrs(780), Rrs(810), and Rrs(840) are the remote sensing reflectance at 780 nm, 810 nm, and 

840 nm measured from above the water surface, respectively.  

 

2.2.2.2. Estimating ∆-free Rrs(750) from RHW 

Previous studies have confirmed that there exists a strong correlation between the 
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concentration of TSS and Rrs values in the near-infrared domain (e.g., Nechad et al., 2010; Yang 

et al., 2011). Therefore, TSS can be expressed as follows using Rrs values in the near-infrared 

domain. For example: 

TSS=f1(Rrs(750))     (2.7) 

TSS=f2(Rrs(780))     (2.8) 

TSS=f3(Rrs(810))     (2.9) 

TSS=f4(Rrs(840)),    (2.10) 

where f1 – f4 represent functions to obtain TSS from Rrs values in the near-infrared domain. From 

Eqs. (2.7) – (2.10), the following relationships can be obtained: 

    Rrs(780)= f5(Rrs(750))                        (2.11) 

    Rrs(810)= f6(Rrs(750))                        (2.12) 

    Rrs(840)= f7(Rrs(750)) ,                       (2.13) 

where f5 – f7 represent functions to obtain Rrs(780), Rrs(810), and Rrs(840) from Rrs(750). By 

combining Eqs. (2.5) – (2.6) and Eqs. (2.11) – (2.13), thus the following equation can be obtained: 

    Rrs(750)=f8(RHW),                         (2.14) 

where f8 represents a function to obtain Rrs(750) from RHW. Eq. (2.14) indicates that ∆-free 

Rrs(750) can be obtained even when using Rrs spectra with ∆ effects if a relationship between ∆-

free Rrs(750) and RHW was constructed.  

To construct the relationship between ∆-free Rrs(750) and RHW, I used Synthetic Dataset I 

(N = 75816). In addition, by considering larger noise effects on an in situ-measured Rrs spectrum 
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in the near-infrared domain due to the low signal-to-noise ratio at these wavelengths, especially 

for in situ Rrs collected from clear waters, I suggest the use of the median Rrs value between Rrs(750) 

and Rrs(780) instead of the use of a single wavelength of Rrs(750) (hereafter Median[Rrs(750), 

Rrs(780)]). I also used the median Rrs values between Rrs(775)–Rrs(785), Rrs(805)–Rrs(815), and 

Rrs(835)–Rrs(845) instead of the single wavelengths of Rrs(780), Rrs(810), and Rrs(840) for the 

RHW calculation.  

Figure 2.4 shows the relationship between Median[Rrs(750), Rrs(780)] and RHW. It can be 

seen that there exists a very good nonlinear relationship between the two variables, with R2=1.0. 

The nonlinear relationship is as follows: 

Mediand0���750�, 0���780�f = 20170.853RHWh 4 111.611RHW# + 2.967RHW. (2.15) 

 

Figure 2.4. Relationship between Median[Rrs(750), Rrs(780)] and RHW obtained from Synthetic 

Dataset I. 
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2.2.2.3. Estimating ∆ 

First, the Rrs can be calculated from the measured Ls, Lt, and Lg using Eq. (1.4), and obtain 

the median Rrs value between Rrs(750) and Rrs(780) (hereafter referred to as measured-

Median[Rrs(750), Rrs(780)]). Clearly, the measured-Median[Rrs(750), Rrs(780)] value contains an 

∆ effect. Then, based on the assumption of a wavelength independent of ∆, it can be considered 

that one can estimate ∆-free Median[Rrs(750), Rrs(780)] using Eq. (2.15) even if an Rrs spectrum 

with an ∆ effect was used (hereafter referred to as estimated-Median[Rrs(750), Rrs(780)]). Finally, 

∆ can be calculated by taking the difference between measured-Median[Rrs(750), Rrs(780)] and 

estimated-Median[Rrs(750), Rrs(780)].  

Practically speaking, to further reduce the noise effects on in situ-measured Rrs spectra, the 

implementation of a Savitzky–Golay filter with a 21 nm window is recommended after calculating 

Rrs spectra using Eq. (1.4). The flowchart for ∆ correction is shown in Figure 2.5.  
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Figure 2.5. Flowchart of the proposed method for ∆ correction. Rrs(M99) represents the remote 

sensing reflectance calculated using Eq. (1.4) (Mobley, 1999).  

 

2.2.3. Accuracy assessment 

I mainly used the root mean square error (RMSE), the mean absolute percentage error 

(MAPE), and bias to evaluate the performance of the proposed method. The equations are as 

follows: 

RMSE = k∑ 2mn-�opq�n�,r�mpnq-s,n�,r6turvw x    (2.16) 

MAPE = "x∑ {mn-�opq�n�,r�mpnq-s,n�,rmpnq-s,n�,r { ∙ 100%x}~"   (2.17) 

Bias = "x∑ 2����'�����,} 4 ���������,}6x}~"  ,   (2.18) 
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where ����'����� is the estimated parameter (e.g., Rrs, ∆), ��������� is the corresponding in situ 

measurement (or true value), and N is the number of data pairs. The regression results between 

estimated and in situ-measured parameters were also used for assistance (e.g., slope, intercept, and 

R2).  

In addition, a spectral quality assessment system proposed by Wei et al. (2016) was also used 

to calculate quality assurance (QA) scores for the Rrs spectra before and after ∆ corrections. The 

QA scores can vary from 0/9 (which means that none of the 9 tested wavelengths can be used, i.e., 

unusable Rrs spectra) to 9/9 (which means that all 9 tested wavelengths are useful, i.e., perfect Rrs 

spectra).  

The performances of the four existing methods for ∆ correction were also evaluated using the 

above indices and compared to the new method. The four existing methods were proposed by 

Ruddick et al. (2005, hereafter R05), Lee et al. (2010, hereafter L10), Kutser et al. (2013, hereafter 

K13), and Groetsch et al. (2017, hereafter G17), respectively. Note that the K13 method and G17 

method were only applied to Rrs spectra collected in Japan and Indonesia, as these two methods 

require Ls, Lt, and Ed as inputs, which are not available from the SeaBASS database. In addition, I 

refer to the method proposed by Mobley (1999, i.e. Eq. (1.4)) with a fixed ρ value of 0.028 as 

“M99” in this study. 

 

2.3. Results  

2.3.1. Evaluation using in situ data 
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Figure 2.6 shows the comparisons of above-water Rrs measurements corrected by different 

methods (solid lines) and corresponding in situ-measured ∆-free Rrs spectra (dashed lines) in two 

Japanese lakes and one Indonesian lake. It can be seen that: (1) overall, the method proposed in 

this study showed the best performance with the smallest RMSE (0.00047 sr-1), MAPE (57%), and 

bias (0.00014 sr-1), but also with noticeable inconsistencies at wavelengths shorter than 450 nm in 

the two Japanese lakes (red and blue lines in Figure 2.6f); (2) the K13 method failed in correcting 

all above-water Rrs measurements with the largest error indices (Figure 2.6b); (3) the G17 method 

and the L10 method mainly showed worse performance than the proposed method in this study in 

Lake Kasumigaura (red lines in Figure 2.6c) and Lake Tamblingan (green lines in Figure 2.6d), 

respectively; and (4) comparing to the method proposed in this study, the R05 method had lower 

accuracy in Lake Kasumigaura and similar accuracies in the other two lakes (Figure 2.6e).  
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Figure 2.6. Comparison of above-water Rrs measurements corrected by different methods (solid 

lines) and corresponding in situ-measured ∆-free Rrs spectra (dashed lines) in two Japanese lakes 

(Lake Kasumigaura with ZSD=0.8 m, and Lake Chuzenji with ZSD=9.7 m) and one Indonesian lake 

(Lake Tamblingan with ZSD=2.1 m). (a) using the M99 method (without ∆ correction); (b) using 

the K13 method; (c) using the G17 method; (d) using the L10 method; (e) using the R05 method; 

(f) using the new method proposed in this study. 
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2.3.2. Evaluation using simulated data 

As it is really not easy to obtain a large number of ∆-free Rrs spectra from the field surveys, I 

also used synthetic data to further evaluate the performance of the new method. Figure 2.7 shows 

the comparisons of ∆-corrected Rrs spectra (blue lines) and the true Rrs spectrum (red line) using 

Synthetic Dataset II. It can be seen that the Rrs spectra estimated using the M99 method exhibited 

substantial variation at all wavelengths, even though they had the same IOPs (Figure 2.7a). This 

variation was reduced after ∆ corrections were carried out (Figures 2.7b-7f). The method proposed 

in this study performed well at all wavelengths with the smallest RMSE (0.00044 sr-1) and MAPE 

(6%), followed by the G17 method (RMSE=0.00059 sr-1, MAPE=11%, overcorrections at shorter 

wavelengths), R05 method (RMSE=0.00066 sr-1, MAPE=19%, overcorrections at both shorter and 

longer wavelengths), and L10 method (RMSE=0.00099 sr-1, MAPE=20%, under corrections at all 

wavelengths). The K13 method overcorrected the ∆ effects at all wavelengths with a large RMSE 

(0.0016 sr-1) and MAPE (39%).  
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Figure 2.7. Comparison of ∆-corrected Rrs spectra (blue lines) and the true Rrs spectrum (red line) 

using Synthetic Dataset II. (a) Rrs spectra calculated using the M99 method (without ∆ correction); 

(b) Rrs spectra corrected using the K13 method; (c) Rrs spectra corrected using the G17 method; 

(d) Rrs spectra corrected using the L10 method; (e) Rrs spectra corrected using the R05 method; (f) 

Rrs spectra corrected using the new method proposed in this study. 

 

Figure 2.8 shows the comparisons of the estimated and true ∆ values. The estimated ∆ values 
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were obtained from Synthetic Dataset III using the method proposed in this study (Eq. (2.15)), the 

L10 method, and the R05 method, respectively. From the figure, it can be seen that: (1) both the 

L10 and R05 methods properly estimated ∆ in clear waters (i.e., waters with Rrs(720) ≤ 0.0095 sr-

1), but significantly overestimated ∆ values in turbid waters (i.e., waters with Rrs(720) > 0.0095 sr-

1), with overall MAPE=161% and MAPE=213%, respectively (Figures 2.8a and 8b); (2) in contrast, 

the method proposed in this study estimated an accurate ∆ in all water types with MAPE=5% 

(Figure 2.8c). 

 

Figure 2.8. Comparison of estimated and true ∆ values using Synthetic Dataset III. (a) Estimated 

∆ values using the L10 method; (b) estimated ∆ values using the R05 method; (c) estimated ∆ 
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using the method proposed in this study. 

 

2.3.3. Comparison of spectral quality before and after ∆ correction 

I further compared the QA scores of the Rrs spectra before and after the ∆ corrections for the 

data collected from the SeaBASS database and from Japanese inland waters, respectively (Figure 

2.9). For the SeaBASS data, 75% of the Rrs spectra had QA scores higher than 8/9 even without ∆ 

correction because some Rrs spectra had already been corrected by the data providers (M99 in 

Figure 2.9a). Nevertheless, the proportion of QA scores higher than 8/9 increased to 80% after the 

∆ effects was corrected by the new method (this study in Figure 2.9a). In contrast, the other two 

methods showed slightly decreased quality of the Rrs spectra after the ∆ corrections (L10 and R05 

in Figure 2.9a).  

For Japanese inland waters, only 53% of the Rrs spectra had QA scores higher than 8/9 before 

the ∆ corrections were carried out (M99 in Figure 2.9b). After the ∆ corrections were carried out 

using the new method, the proportion of QA scores higher than 8/9 increased to 66%, and the 

proportion of Rrs spectra with lower QA scores decreased greatly (this study in Figure 2.9b). The 

other ∆ correction methods (except for K13) also improved the quality of the Rrs spectra, but not 

as much as the new method (G17, L10, and R05 in Figure 2.9b). 
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Figure 2.9. Comparisons of QA scores of Rrs spectra before (M99) and after (K13, G17, L10, R05, 

and the new method proposed in this study) ∆ corrections. (a) Using Rrs spectra collected from the 

SeaBASS database (N=167); (b) using Rrs spectra collected from 21 Japanese inland waters 

(N=305). 

 

I also separated the Rrs spectra collected from 21 Japanese inland waters into different sky 

condition groups using the method proposed by Groetsch et al. (2017) and compared their QA 

scores before and after the ∆ corrections for each group (Figure 2.10). For the clear sky group (241 

Rrs spectra), 59% of the Rrs spectra had QA scores higher than 8/9 before the ∆ corrections were 

carried out, and the proportion was increased to 67%, 65%, 61%, and 61% by the new method, 

R05 method, G17 method, and L10 method, respectively. The K13 method reduced the QA scores 

even compared to the M99 method (i.e., without ∆ corrections) because CDOM-rich samples were 

lacking in this study (top panel in Figure 2.10). 
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For the scattered cloud (43 Rrs spectra) and overcast (21 Rrs spectra) sky groups, the ∆ 

correction methods greatly improved the Rrs spectra quality (middle and bottom panels in Figure 

2.10). For example, only 35% and 24% of Rrs spectra had QA scores higher than 8/9 in the scattered 

cloud and overcast sky condition groups, respectively, before ∆ corrections were carried out, and 

the proportions increased to 63% and 62% after the ∆ corrections were carried out using the new 

method. In particular, under the overcast sky condition, there were no Rrs spectra with QA scores 

smaller than 4/9 after the ∆ corrections were made using the new method (bottom panels in Figure 

2.10). Except for the K13 method, the other ∆ correction methods also certainly improved the Rrs 

spectra quality, with proportions of Rrs spectra with QA scores higher than 8/9 of 56% (scattered 

cloud) and 57% (overcast) for the L10 method, 56% (scattered cloud) and 62% (overcast) for the 

G17 method, and 47% (scattered cloud) and 48% (overcast) for the R05 method.  
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Figure 2.10. Comparison of QA scores of Rrs spectra before (M99) and after (K13, G17, L10, R05, 

and the new method proposed in this study) ∆ corrections under different sky conditions. Top: 

under a clear sky condition; middle: under a scattered clouds condition; bottom: under an overcast 

sky condition. 

 

2.4. Discussion  

2.4.1. Applicability of the proposed method 

In this study, I proposed a new method for estimating ∆ effects, which are always contained 

in Rrs spectra measured in a field survey using the above-water approach (Ruddick et al., 2005; 

Lee et al., 2010; Kutser et al., 2013; Groetsch et al., 2017). The key point of the new method is to 

construct a relationship between RHW and ∆-free Median[Rrs(750), Rrs(780)] using a synthetic 
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dataset. There are two advantages for using this relationship. First, users do not need to consider 

∆ effects when they apply the relationship. This is because the RHW is used as an independent 

variable in the relationship. The RHW is a kind of baseline-based index, which can cancel noise 

coming from the environment such as ∆ effects or errors due to imperfect atmospheric correction 

(Gower, 1980; Gower et al., 2005; Hu, 2009; Hu et al., 2012; Matsushita et al., 2016). Therefore, 

almost the same RHW values can be obtained even using Rrs spectra before ∆ corrections (e.g., Rrs 

spectra from Eq. (1.4)). The first advantage can be directly confirmed from the results in Figures 

2.6f, 2.7f and 2.8c, which indicate that the new method can retrieve accurate ∆ values from 

contaminated Rrs spectra (i.e., Rrs spectra with ∆ effects).  

The second advantage is that the relationship can be applied to various waters without 

requiring any recalibration. This is mainly because I selected three near-infrared wavelengths to 

calculate RHW. It has been widely known that SIOPs in the near-infrared domain are dominant 

only because of the absorption coefficient of pure water (Babin and Stramski, 2002; Ruddick et 

al., 2006; Babin et al., 2003). Therefore, it can be considered that the constructed relationship can 

be applied to other waters even though I only used SIOPs of Lake Kasumigaura, Japan to generate 

the synthetic dataset for calibrating Eq. (2.15). In addition, I set wide ranges of concentrations of 

Chl-a (0.01-300 mg/m3) and tripton (0.01-300 g/m3) and set the CDOM absorption coefficient at 

440 nm (0.01-10 m-1). These simulation ranges can cover most of the water types in the world 

(Moore et al., 2014).  

The second advantage can be confirmed from the results shown in Figure 2.7f, as I just used 
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the default SIOPs provided by Hydrolight, which are totally different from the SIOPs used for 

obtaining Eq. (2.15). In addition, the results shown in Figure 2.6f can also confirmed the proposed 

method does not depend on the used SIOPs because the SIOPs of Lake Chuzenji and Lake 

Tamblingan are probably different from those of Lake Kasumigaura. This advantage overcame the 

shortcomings of L10 and G17, which require SIOPs to model an Rrs spectrum for optimization 

procedure (Figures 2.6c, 2.6d, 2.7c, and 2.7d). 

In addition, the use of a non-linear relationship can overcome the shortcomings of R05, which 

failed in extreme turbid water (Rrs(720) > 0.0095 sr-1) due to the fact that saturation effects on the 

Rrs spectra induce a ratio of Rrs(720)/Rrs(780) much smaller than the constant ratio of 2.35 used in 

Ruddick et al. (2005). For example, the ratios of Rrs(720)/Rrs(780) in Synthetic Datasets II and III 

varied from 1.99 to 2.03 (average of 2.01) and from 1.18 to 3.11 (average of 2.15), respectively. 

 

2.4.2. Assumption of a spectral independent for ∆ 

In the present study, I assumed that ∆ is a spectral independent parameter because its spectral 

shape is complicated and there is still no clear theory to describe this spectral variation (Lee et al., 

2010). In addition, Craig et al. (2006) reported that uncertainties in Rrs spectra almost all come 

from changed amplitudes of the spectra rather than changed spectral shapes. However, Groetsch 

et al. (2017) reported that the ∆ effect should be a spectrally dependent parameter. Nevertheless, 

their results showed that the spectral shapes of water surface-reflected skylight (ρ·Ls/Ed) are almost 

flat under scattered clouds and overcast sky conditions, but change substantially at shorter 
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wavelengths (350–450 nm) under clear sky conditions (Figure 5 in Groetsch et al., 2017). It should 

be noted that the wavelength dependence of ρ·Ls/Ed has been partly addressed in Eq. (1.4), and 

thus the spectral variation of the remaining part (∆ effects) can be considered to be small and 

negligible. Therefore, assuming a spectrally independent ∆ is probably reasonable.  

The validity of assuming spectral independence for ∆ effects can also be confirmed by our 

results. For example, the simulation results shown in Figure 2.7f indicate that the assumption is 

probably reasonable. Nevertheless, care should be taken when using an Rrs spectrum at a 

wavelength shorter than 450 nm because the inconsistencies were sometimes found at these shorter 

wavelengths (red lines and blue lines in Figure 2.6f). 

 

2.4.3. Significance of ∆ correction 

In situ Rrs spectra are very important for the development of water quality-retrieval algorithms 

and the evaluation of atmospheric-correction algorithms. Water quality-retrieval algorithms 

developed based on inaccurate in situ Rrs spectra (e.g., containing ∆ effects) will lead to erroneous 

model coefficients and will have limited applicability (Kutser et al., 2013; Wei et al., 2016; Zibordi 

et al., 2012). In addition, atmospheric correction is a key procedure for ocean color remote sensing, 

and in situ Rrs spectra are usually used to evaluate the performance of an atmospheric correction 

algorithm. Using inaccurate in situ Rrs spectra for the evaluation might influence the judgment and 

thus lead to an incorrect conclusion.  

The results shown in Figure 2.7 and Figure 2.10 indicate another significant advantage of ∆ 
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correction. From the figures, it can be seen that the proposed method can correct Rrs spectra 

collected under all sky conditions and improve their quality. This finding indicates that in situ Rrs 

spectra will become usable even if they are collected under scattered clouds or overcast sky 

conditions. This property will relax the restriction that in situ spectrum measurement should be 

carried out under a clear sky, and thus can increase the number of usable in situ Rrs spectra in the 

future. Moreover, wind speed data, which are often not available in field surveys, will not be 

necessary to estimate a more appropriate ρ value in Eq. (1.4).  

 

2.5. Conclusions  

In this chapter, I proposed a new method for removing the residual reflected skylight (i.e., ∆ 

corrections) in above-water remote sensing reflectance measurements. The proposed method is 

simple, effective, and universally applicable without requiring any recalibration. It can correct an 

in situ Rrs spectrum measured under various sky conditions (clear, scattered clouds, or overcast). It 

is strongly recommend that the ∆ corrections be carried out for all Rrs spectra measured using the 

above-water approach before they are applied to the development of water quality algorithms or 

the evaluation of atmospheric correction algorithms.  
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Chapter III An Improved Algorithm for 

Estimating the Water Transparency from 

Remote Sensing Data Based on the New 

Underwater Visibility Theory 

 

3.1. Introduction  

There are three requirements of applying the Lee15 ZSD algorithm: (1) accurate measurements 

of Rrs; (2) accurate estimations of Kd; and (3) the proper values of KT/Kd ratios. The problem of Rrs 

has been addressed in chapter II. In this chapter, the objectives are to (1)improve the Lee15 

algorithm by integrating different types of QAAs to estimate more accurate Kd and proposing a 

new algorithm to calculate more accurate 	L/	� ratios; and (2) evaluate the performance of the 

improved ZSD algorithm using in situ data collected from Japanese waters and SeaBASS dataset. 

  

3.2. Methods  

3.2.1. Data collection 

The study area of this research included 21 waters in Japan and coastal waters in United States 

(Figure 2.1). The 21 Japanese inland waters include 20 lakes and 1 bay (Tokyo Bay; Figure 2.1a), 

with ZSD values ranging from 0.3 m to 16.4 m, chlorophyll-a (Chl-a) concentrations ranging from 

0.5 mg/m3 to 187.7 mg/m3, and total suspended solids (TSS) concentrations ranging from 0.4 g/m3 

to 73.7 g/m3 (Table 2.1). 
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Field surveys were carried out in the 21 above-described Japanese waters during 2009–2019. 

Data were collected from a total of 305 sampling sites. For each site, the ZSD was measured by 

vertically lowering down a 30-cm-dia. white disk into the water until the disk was no longer visible 

(or lower a Secchi disk out of sight and then raise the disk until it becomes visible). At the same 

time, the radiance of skylight (Ls), the radiance from a standard board (Lg), and the total upwelling 

radiance from the water (Lt) were measured using a FieldSpec® HandHeld spectroradiometer 

(ASD Inc., Bloulder, CO, USA) between the local time 9:00 to 16:00 (6 measurements between 

8:10 and 9:00), with the sensor zenith angle of 40° and azimuth angle of 135° from the sun. 

Remote sensing reflectance (Rrs) was then calculated using Eq. (1.5) with the skylight 

reflectance ρ =0.028 (when the wind speed was < 5 m/s, Mobley, 1999). ∆ is the contribution of 

the residual reflected skylight, which was calculated using the proposed method in chapter II 

(Figure 3.1a). For the Rrs spectra obtained from SeaBASS, I also processed them using the 

proposed method in chapter II (Figure 3.1b). All Rrs spectra were then converted to MERIS bands 

based on the MERIS Spectral Response Functions. 
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Figure 3.1. Rrs spectra used in this study. (a) 305 Rrs spectra collected from 21 waters in Japan. (b) 

167 Rrs spectra collected from SeaBASS. 

 

For 21 Japanese waters, water samples were collected and kept in ice boxes, and taken to 

the laboratory immediately after finishing the collection. The absorption coefficients of 

phytoplankton (>�T�λ�), tripton (>���λ�) and CDOM (>��X&�λ�) were measured following the 

NASA protocols (Mitchell et al., 2002). The total absorption coefficient >�λ� was calculated as 

the sum of >�T�λ�, >���λ�, >��X&�λ�, and the absorption coefficient of pure water, i.e., >��λ�. 
The values of >��λ� were taken from Lee et al. (2015b), Pope and Fry (1997), and Kou et al. 

(1993). In total, >�λ�  values at 76 sites from Lakes Kasumigaura, Suwa, Hibara, Shirakaba, 

Kugushi, Suigetsu, Suga, Mikata, Megami, Tateshina and Senbako were collected. 

In several Japanese lakes (Lakes Biwa, Kasumigaura, Shirakaba, Suwa, Hibara, Shirakaba, 

Megami, Tateshina, Senbako, Unagi and Sai), the downward irradiance (Ed) at different depths of 

the water column was also measured (before 2018, a Multispectral Radiometer (Satlantic, Halifax, 
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Canada) with available bands of 443 nm, 555 nm, and 669 nm was used; after 2018, a RAMSES 

spectroradiometer (TriOS, Rastede, Germany) with available bands of 320-950 nm was used). 

These data were used to obtain the measured Kd and then compared with Rrs-derived Kd at MERIS 

visible bands. In total, the measured Kd values at 90 sites were collected. 

 

3.2.2. Model development 

I carried out two improvements for the original Lee15 algorithm. First, by considering the 

shortcoming of QAA_v6 in turbid waters, I proposed the use of another QAA, which was 

specifically developed for turbid inland waters by Yang et al. (2013), to estimate >�λ� and	 ���λ� 
in this type of waters (hereafter referred to as the ‘QAA_T’). I selected the QAA_T algorithm in 

this study because all of the equations in the QAA_T are semi-analytical or analytical equations 

without any in situ data used for recalibration (Yang et al., 2013). 

For clear waters, I still used QAA_v5 because of its good performance in this type of waters 

(Lee et al., 2002; Fukushima et al., 2016). I adapted the maximum chlorophyll-a index (MCI) 

originally developed by Gower et al. (2005) for switching the QAA_v5 and QAA_T. The modified 

MCI is defined as (Matsushita et al., 2015): 

MCI = 0���709� 4 0���665� 4 ��N*����%��N%+���%� 20���754� 4 0���665�6�,  (3.1) 

where 0���665�, 0���709� and 0���754� are the remote sensing reflectance at 665 nm, 709 

nm and 754 nm, respectively. According to Matsushita et al. (2015), MCI = 0.001 sr-1 was used to 

distinguish clear and turbid waters. I named this blended QAA as 'QAA_hybrid', and its main steps 
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are summarized in Table 3.1. 

Table 3.1. Main steps of the QAA_hybrid 

Step Property Derivation 

1 ���λ� ���λ� = 0���λ� 20.52 + 1.70���λ�6⁄  

2 ��λ� ��λ� = 40.089 +�0.089# + 4 × 0.125���λ�2 × 0.125  

3 MCI MCI ≤ 0.001	 sr�" (QAA_v5) MCI > 0.001	 sr�" (QAA_T) 

4 >�λ*� � = log� ���443� + ���490����560� + 5 ���670����490� ���670�� 

>�560� = >��560� + 10�"."+��".h����*.+���t 
>�754� = >��754� 

5 ����λ*� ����560� = ��560� × >�560�1 4 ��560� 4 ����560� �P��754� = ��754� × >�754�1 4 ��754�4 ����754� 
6 ����λ� � = 2.0�14 1.2exp840.9���443����560�<� 

����λ� = ����560� �560λ �  

� = 4372.99¡# + 37.286¡ + 0.84 ¡ = logd��754�/��779�f 
����λ� = ����754� �754λ �  

7 >�λ� >�λ� = 21 4 ��λ�6 ��P¢�λ� + �P��λ�! /��λ� 
 

My second improvement for the Lee15 algorithm was to develop another algorithm for 

estimating a more realistic ratio of KT and Kd in various waters. According to previous studies, the 

subsurface remote sensing reflectance (rrs) at optically shallow waters can be expressed as follows 

(Philpot, 1989; Maritorena et al., 1994; Lee et al., 1998): 

�� ≈ ����¤1 4 ¥*expd4�	� + 	���¦f§ + ¥"5�expd4�	� + 	���¦f,  (3.2) 

where ���� is the rrs for optically deep waters, A0 is 1.0, and A1 is 1/π for a lambertian bottom, 	�� 

is the diffuse attenuation coefficient of upwelling radiance from the water column scattering, 	�� 

is the diffuse attenuation coefficient of upwelling radiance from the bottom, ρB is the bottom 

reflectance, and H is the bottom depth. The first term on the right side of the equation refers to the 
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reflectance from the water column, and the second term on the right refers to the reflectance from 

the bottom. According to Lee et al. (1999) and Barnes et al. (2018), Kd and 	��can be estimated 

using the following equations: 

	� = ¨�© ≈ d1/ cos�C��f©    (3.3) 

	�� = ¨��© ≈ d1.04�1 + 5.4��*.%f©,   (3.4) 

where C�  is the subsurface solar zenith angle, α is defined as �> + ��� , and u is defined as 

��/�> + ���. If the bottom of the water is treated as the Secchi disk, and assume that the disk is a 

lambertian object, then the second term on the right side of Eq. (3.2) becomes the light that comes 

from the Secchi disk. Therefore, the 	�� can be considered to be the KT in the new ZSD theory (i.e., 

KT =	��). By converting the subsurface solar zenith angle C� to the above surface solar zenith 

angle θ, and combining the Eqs. (3.3) and (3.4), the ratio of KT and Kd can be expressed as: 

	L/	� = ".*+�"�%.+
�«.¬
" �"�-o�®�t¯t �«.¬°  ,    (3.5) 

where n is the refractive index value of the water (1.34, Lee et al., 1998). By replacing the fixed 

value of 2.5 in Eq. (1.3) with (1+	L/	�), the Lee15 algorithm can be modified as: 

��� = "�"��± ��⁄ �∙&'(���� ln �)*."+��,-./)��, !,   (3.6) 

It should be noted that the wavelength with minimum Kd value at visible bands should be 

used to calculate the KT/Kd ratio in Eq. (3.5). 

 

3.2.3. Accuracy assessment  

I used the root mean square error (RMSE), the mean absolute percentage error (MAPE), and 
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bias to evaluate the performance of the improved ZSD algorithm. The equations are as follows: 

RMSE = k∑ 2mn-�opq�n�,r�mpnq-s,n�,r6turvw x    (3.7) 

MAPE = "x∑ {mn-�opq�n�,r�mpnq-s,n�,rmpnq-s,n�,r { ∙ 100%x}~"   (3.8) 

Bias = "x∑ 2����'�����,} 4 ���������,}6x}~" ,   (3.9) 

where ����'����� is the estimated parameter (e.g., a, Kd or ZSD), ��������� is the corresponding 

in situ measurement, and N is the number of data. The determination coefficient (R2) was also 

calculated for reference. 

 

3.3. Results  

3.3.1. Validation of a 

Figure 3.2 shows the results of comparisons of the derived >�λ� and in situ >�λ� at all 

MERIS visible bands. It can be seen that the QAA_v6 gave larger underestimations of >�λ� at 

all visible bands, with RMSE =1.5 m−1, MAPE = 55% and Bias = −1.0 m−1 (Figure 3.2a). In 

contrast, the QAA_hybrid showed better retrievals of >�λ� at all visible bands with RMSE = 0.78 

m−1, MAPE =24% and Bias = −0.35 m−1 (Figure 3.2b). The determination coefficient was also 

increased from 0.61 to 0.74. However, some retrieved absorption coefficients at 443 nm still 

showed slight underestimations. 

I checked the bands corresponding to the minimum Kd and found that 443 nm was not selected 

for ZSD estimations. If I compare only the retrieved >�λ�	 and the in situ >�λ� at the selected 

bands (i.e., the band with minimum Kd in visible domain and finally used for ZSD estimations), no 
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obvious underestimations or overestimations from the use of QAA_hybrid were observed (Figure 

3.2d), whereas the QAA_v6 still showed larger underestimated >�λ� at the selected bands (Figure 

3.2c). The values of RMSE, MAPE, Bias, and R2 were calculated as 0.23 m−1, 22%, −0.11 m−1, 

and 0.71, respectively, with the use of the QAA_hybrid at the selected bands. 

 

Figure 3.2. Comparison between in situ absorption coefficients and estimated absorption 

coefficients, estimated using (a) QAA_v6 at all MERIS visible bands, (b) QAA_hybrid at all 

MERIS visible bands, (c) QAA_v6 only at the bands corresponding to the minimum Kd values, 
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and (d) the QAA_hybrid only at the bands corresponding to the minimum Kd values. 

 

3.3.2. Validation of Kd 

Figure 3.3 illustrates the results of comparisons of the retrieved Kd and the in situ-measured 

Kd at all MERIS visible bands. It can be seen that using >�λ� and	 ���λ� estimated from the 

QAA_v6 resulted in large underestimations of Kd (RMSE = 2.1 m−1, MAPE = 52% and Bias = −1.5 

m−1, Figure 3.3a), and these underestimations were largely improved by using the QAA_hybrid 

instead of QAA_v6 (RMSE = 0.76 m−1, MAPE = 23% and Bias = −0.4 m−1, Figure 3.3b). I also 

compared only the Kd at the bands finally used for the ZSD estimations (i.e., the minimum Kd) and 

the corresponding in situ-measured Kd, similar improvements were found by comparing the use of 

>�λ� and	 ���λ� obtained from QAA_v6 with those obtained using the QAA_hybrid (Figure 3.3c, 

d). It should be noted that the smaller numbers of data in Figure 3.3c and Figure 3.3d are because 

the estimated minimum Kd values were found at wavelengths without in situ measurements for 

some sampling sites.  
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Figure 3.3. Comparison between in situ-measured Kd and estimated Kd at visible bands. (a) 

Estimated Kd(λ) using a(λ) and bb(λ) from QAA_v6. (b) Estimated Kd(λ) using a(λ) and bb(λ) 

from the QAA_hybrid. (c) Only the estimated Kd at the minimum Kd bands using a(λ) and bb(λ) 

from QAA_v6. (d) Only the estimated Kd at the minimum Kd bands using a(λ) and bb(λ) from the 

QAA_hybrid. 
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3.3.3. Estimated KT/Kd 

Figure 3.4 shows the estimated 	L/	� ratios obtained using Eq. (3.5) for all available data 

(N=472). The results showed that the 	L/	� ratios ranged from 0.85 to 1.70 with an average 

value of 1.28. These ratios were different from the fixed value of 1.5 used in the original Lee15 

algorithm. In addition, the 	L/	� ratios of clear waters (i.e., ZSD values ≥ 2 m) were significantly 

lower than those of turbid waters (i.e., ZSD values < 2 m), with a mean 	L/	� ratio of 1.14 in 

clear waters and 1.35 in turbid waters (p < 0.001). 

 

Figure 3.4. Comparison of estimated KT/Kd values between clear (ZSD values ≥2 m) and turbid 

(ZSD values <2 m) waters. Black star: The mean KT/Kd ratio. Dashed line: KT/Kd=1.5, which was 

used in the original Lee15 algorithm. 
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3.3.4. Validation of ZSD 

Figure 3.5 shows the results of comparisons of the estimated and in situ-measured ZSD values. 

The results showed that: (1) the original Lee15 algorithm clearly underestimated the ZSD in clear 

waters (blue points) and overestimated the ZSD in turbid waters (red points), with the RMSE of 2 

m and MAPE of 54% (Figure 3.5a); (2) the overestimations in turbid waters were improved by 

using the QAA_hybrid instead of QAA_v6, with a reduced MAPE of 36% (Figure 3.5b; red 

points); (3) the underestimations in clear waters were much improved by using dynamic 	L/	� 

ratios instead of the constant ratio of 1.5, with decreased RMSE of 1.7 m (Figure 3.5c; blue points); 

and (4) both overestimations and underestimations were improved by combining the QAA_hybrid 

and dynamic 	L/	� ratios, with a reduced RMSE of 1.7 m and MAPE of 35% (Figure 3.5d). The 

slope and intercept values of the regression lines were also changed from 0.59 to 0.76 and from 

0.89 to 0.51, respectively. 
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Figure 3.5. Comparisons between in situ measured ZSD values and estimated ZSD values from in 

situ Rrs. (a) Estimated ZSD based on QAA_v6 with KT/Kd=1.5 (i.e., original Lee15 algorithm). (b) 

Estimated ZSD based on the QAA_hybrid but still with KT/Kd=1.5. (c) Estimated ZSD based on 

QAA_v6 but with dynamic KT/Kd ratios (est_KT/Kd). (d) Estimated ZSD based on the QAA_hybrid 

with dynamic KT/Kd ratios (i.e., the improved Lee15 algorithm). Blue points represent the ZSD 

estimated using 560 nm as reference band in both QAA_v6 and QAA_hybrid (i.e., QAA_v5), and 

red points represent the ZSD estimated using 670 nm as reference band in QAA_v6 and using 754 

nm as reference band in QAA_hybrid (i.e., QAA_T). 
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3.4. Discussion  

3.4.1. Necessity of the QAA_hybrid 

The estimations of >�λ� and	 ���λ� using QAA_v6 is the first step in the original Lee15 

algorithm (Lee et al., 2015a). Both previous studies and the results of this study have confirmed 

that the estimation errors that occur in this step will be propagated to the Kd(λ) estimations in the 

second step and then the ZSD estimations in the final step (Yang et al., 2014, 2015; Figures 3.2a, 

3.3a, and 3.5a in this study). Failures of QAA_v6 applications usually occurred in turbid waters 

(Yang et al., 2014; Wang et al., 2017; Rodrigues et al., 2017). It is thus necessary to use an 

alternative to QAA_v6 for turbid waters. 

Although several modified QAAs have been proposed for retrieving >�λ�  and 	 ���λ� 
values in turbid waters, two empirical relationships for estimating the absorption coefficient at a 

reference band (>�λ*�, step 4 in Table 3.1) and the spectral slope of the backscattering coefficient 

of suspended particles (Y, step 6 in Table 3.1) must be recalibrated by using in situ data in most of 

these modified QAAs (Le et al., 2009; Huang et al., 2014; Mishra et al., 2014; Wang et al., 2017). 

The constant requirement of in situ data for model recalibration will make the two empirical 

relationships the first important equations in these modified QAAs, and thus will limit their 

applicability in various waters. In contrast, QAA_T proposed by Yang et al. (2013) does not 

include empirical equations for >�λ�  and 	 ���λ�  retrievals, and thus it is the most proper 

algorithm to replace QAA_v6 for retrieving >�λ� and	 ���λ� in turbid waters (Yang et al., 2014, 

2015; Fukushima et al., 2016). 
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However, QAA_T did not work well in clear waters. For example, if I used QAA_T to retrieve 

>�λ� and	 ���λ� for waters with an in situ ZSD ≥ 2 m (there are 158 such points in Figure 3.5), 

larger errors occurred in the estimated ZSD values with the RMSE of 156.4 m, the MAPE of 627%, 

and the very low determination coefficient of <0.01 (data not shown). In contrast, QAA_v5 

performed very well for these points with the RMSE of 2.8 m, the MAPE of 20%, and the 

determination coefficient of 0.78.  

In QAA_hybrid, I selected QAA_v5 for clear waters rather than QAA_v6. This is because 

that I found QAA_v5 outperformed QAA_v6 in my dataset. Figure 3.6 shows the comparison of 

the estimated ZSD values using QAA_v5 and using QAA_v6 for 130 Rrs spectra. The 130 Rrs spectra 

were selected by using the criteria of MCI ≤ 0.001 sr-1 and Rrs(670) > 0.0015 sr-1. In other words, 

the 130 Rrs spectra would select 670 nm as reference band if I used QAA_v6 instead of QAA_v5 

for clear waters. In contrast, all Rrs spectra with MCI ≤ 0.001 sr-1 (225 Rrs spectra in total) only 

used 560 nm as reference band in QAA_hybrid. From Figure 3.6, it can be seen that QAA_v5 

(Figure 3.6a) performed better than QAA_v6 (Figure 3.6b) with the RMSE reduced from 1.2 m to 

1.0 m, the MAPE reduced from 52% to 43%, and the R2 increased from 0.45 to 0.68. The above 

findings indicate that it is necessary to select the appropriate QAA according to water turbidities. 

In other words, it is necessary to use a hybrid QAA to address various waters. 
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Figure 3.6. Comparisons between in situ-measured ZSD values and corresponding estimated ZSD 

values from 130 selected in situ Rrs (see text for details). (a) using 560 nm as reference band; (b) 

using 670 nm as reference band.  

 

In this study, I used MCI = 0.001 sr-1 to switch QAA_v5 and QAA_T. This MCI threshold 

was determined based on Matsushita et al. (2015) based on the data collected from five Asian lakes 

(Lake Erhai and Lake Dianchi in China; Lake Biwa, Lake Suwa, and Lake Kasumigaura in Japan). 

My present findings also demonstrated that this threshold is reasonable. Other information can 

also be used to select the appropriate QAA. For example, Moore et al. (2014) proposed a method 

to classify waters into seven optical water types (OWTs); Spyrakos et al. (2018) identified 13 

OWTs for inland waters based on comprehensive data from more than 250 aquatic systems. Further 

study is needed to compare the performances of different water classification algorithms for 

selecting the most appropriate QAAs. 
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3.4.2. The importance of the estimation of the KT/Kd ratio 

The reported KT/Kd ratios range from 0.5 to 2.0 (Philpot, 1989; Maritorena et al., 1994; Lee 

et al., 1994). In the present study, the KT/Kd ratios were estimated in the range of 0.85–1.70 with 

an average of 1.28 (Figure 3.4). This range is similar to that reported by Maritorena et al. (1994) 

with KT/Kd ratios between 1.02 and 1.66. My results also showed that the KT/Kd ratios in clear 

waters are significantly smaller than those in turbid waters (Figure 3.4, p<0.001). This finding 

agrees with Philpot (1989), who reported that the KT/Kd ratios tended to be higher in strongly 

absorbing waters.  

Compared to the KT/Kd ratios in turbid waters (with a mean ratio of 1.35), the KT/Kd ratios in 

clear waters (with a mean ratio of 1.14) are far smaller than the constant KT/Kd ratio of 1.5 used in 

the original Lee15 algorithm. The above findings indicate that the use of the constant KT/Kd ratio 

of 1.5 will lead to larger underestimations of the ZSD in clear waters. For example, in Lake Motosu, 

a clear Japanese lake with the in situ-measured ZSD of 16.4 m, the KT/Kd ratio was estimated to be 

1.06 by using Eq. (3.5); the estimated ZSD using the original Lee15 algorithm was 12.34 m with a 

relative error of 24.8% (Figure 3.5a), and this error was reduced to 8.5% by using the improved 

ZSD algorithm (the estimated ZSD = 15.01 m, Figure 3.5d). Even in a turbid Japanese lake, i.e., Lake 

Kasumigaura, the use of dynamic KT/Kd ratios also improved the ZSD estimations (Figure 3.5b vs. 

Figure 3.5d). 

Although my results have confirmed that the use of the dynamic KT/Kd ratios can improve 

ZSD estimations in both clear and turbid waters, further study is still needed to evaluate the 



56 

relationship between KT and Kd in various waters due to the Eq. (3.5) is based on an assumption 

of treating a Secchi disk as a lambertian bottom. 

 

3.4.3. Applicability of the improved ZSD algorithm 

Similar to the original Lee15 algorithm, the improved ZSD algorithm does not require any in 

situ data for recalibration. This is because both the QAA_hybrid (the combination of QAA_v5 and 

QAA_T) and the equation for estimating KT/Kd ratios (i.e., Eq. (3.5)) are designed as only using 

semi-analytical equations, which indicates that the assumptions and empirical equations are all of 

secondary importance for ZSD retrievals (Lee et al., 1998, 2002, 2015a; Yang et al., 2013). 

Therefore, although I validated the improved ZSD algorithm by using only the data collected from 

21 Japanese waters and SeaBASS dataset, it is apparent that the algorithm can also be applied for 

ZSD estimations in other waters worldwide. 

Since both the original and improved Lee15 algorithms used only a single band for ZSD 

retrieval (i.e., the band with the minimum Kd), an accurate algorithm for atmospheric correction is 

crucial when actual satellite data are used. For clear ocean waters, the atmospheric correction 

algorithm proposed by Gordon and Wang (1994) will be the best choice, whereas for turbid inland 

waters, although there are several algorithms (e.g., Ruddick et al., 2000; Wang and Shi, 2007; 

Guanter et al., 2007; Doerffer and Schiller, 2008; Bailey et al., 2010; Jaelani et al., 2015), it is still 

not clear which is the most appropriate algorithm for atmospheric correction. Further studies 

should be carried out in the future to address the problem of atmospheric correction. 
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3.5. Conclusions  

The original Lee15 algorithm showed overestimations of ZSD values in turbid waters and 

underestimations of ZSD values in clear waters. In the present study, the use of QAA_hybrid instead 

of QAA_v6 mainly overcame the former shortcoming through blending QAA_T and QAA_v5 for 

estimating more accurate absorption and backscattering coefficients in both turbid (QAA_T) and 

clear waters (QAA_v5); and the use of the dynamic KT/Kd ratios instead of using the fixed KT/Kd 

ratio (i.e., 1.5) mainly overcame the latter shortcoming in the original Lee15 algorithm. The results 

of this study show that the improved ZSD algorithm gave more accurate ZSD estimations, with 

RMSE reduced from 2 m to 1.7 m and MAPE reduced from 54% to 35% for using the in situ Rrs 

values from 21 Japanese waters (ZSD values ranged from 0.3 m to 16.4 m, N=305) and SeaBASS 

dataset (ZSD values ranged from 0.2 m to 45 m, N=167). The improved ZSD algorithm is expected 

to estimate more accurate ZSD values in various types of waters.  
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Chapter IV Long-term Change of Water 

Transparency from Time-                     

series Satellite Images in Six Japanese 

Lakes 

 

4.1. Introduction  

The problems of estimating ZSD from remote sensing have been addressed in chapter II and 

chapter III, and an improved ZSD algorithm has been proposed. The accuracy of the improved ZSD 

algorithm has been validated using 472 in situ Rrs and corresponding ZSD values collected from a 

wide range of water qualities (ZSD ranges from 0.2 to 45 m). As water quality of lakes is tightly 

related to public health and ecosystem services (Keeler et al., 2012; Ho et al., 2019), routinely 

monitoring the water quality of lakes is critical in environment management. Therefore, the 

objective of this chapter is to apply the improved ZSD algorithm to MERIS satellite images over 

six Japanese lakes to obtain the time-series ZSD and analyze their changing trends. 

 

4.2. Methods  

4.2.1. Study area 

The study areas include six lakes with different water qualities (ZSD from 0.7 m to 22 m) in 

Japan. They are Lake Mashu, Lake Kussharo, Lake Inawashiro, Lake Kasumigaura, Lake Suwa 

and Lake Biwa (Figure 4.1). Lake Mashu is the clearest lake in Japan, with a surface area of 19 
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km2. The maximum ZSD was observed as 41.6 m in 1931 (Tsunogai et al., 2011), but decreased to 

22 m in 2017. Lake Kussharo is a volcanic lake with a surface area of 79.5 km2, the ZSD is around 

10 m in 2002 (Ban and Suzuki, 2003). Lake Inawashiro is a clear lake located in the Fukushima 

Prefecture, its surface area is 104.8 km2, and the ZSD was observed around 13 m in 2019. Lake 

Kasushimigaura is the second biggest lake in Japan (167.6 km2, west part), it is a shallow turbid 

lake with the ZSD of 0.7 m in 2018. Lake Suwa is a small shallow lake in Nagano Prefecture, its 

surface area is 13.3 km2, and the ZSD was observed around 1.5 m in 2018. Lake Biwa is the biggest 

lake in Japan, with a surface area of 670.3 km2. It is compromised by the deep northern part and 

the shallow southern part, with the ZSD of 5.2 m and 2.5 m respectively in 2016. 

 

Figure 4.1. Study areas. Red points represent the sampling sites. 
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4.2.2. In situ data collection 

In situ ZSD data were collected from Lake Biwa, Lake Kasumigaura, Lake Suwa and Lake 

Mashu. For Lake Biwa, the in situ ZSD data at 14 sites (Figure 4.1) during 2008 and 2012 were 

collected from Lake Biwa Environmental Research Institute, Shiga prefecture, Japan. The ZSD 

values ranged from 0.9 m to 11 m. For Lake Kasumigaura, the in situ ZSD data at 10 monitoring 

sites (Figure 4.1) between 2003 and 2012 were obtained from the Lake Kasumigaura Database, 

which was published by the National Institute for Environmental Studies, Japan (NIES, 2016). The 

ZSD values ranged from 0.2 m to 1.3 m. For Lake Suwa, the in situ ZSD at the center (Figure 4.1) 

of the lake were obtained from Shinshu University, Japan, this data covers from 2003 to 2012 with 

a ZSD values of 0.4 - 3.6 m. For Lake Mashu, the in situ ZSD data at the deepest point of the lake 

(Figure 4.1) were obtained from the National Institute for Environmental Studies, Japan (NIES, 

2016), this data covers from 2003 to 2012 with a ZSD values of 14 - 28 m. The above collected in 

situ ZSD data will be used for validation of the satellite-estimated ZSD by comparing the matchups 

(data acquired at the same day) in each lake, and also comparing the long-term changing trends 

with the satellite-estimated results. 

 

4.2.3. Satellite image processing 

The MEdium Resolution Imaging Spectrometer (MERIS) data was used in this study because 

of its higher spatial (300 m) and temporal (3 days') resolutions. All available MERIS images 

covering the six studied lakes from 2003 to 2012 were downloaded from the European Space 
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Agency (ESA, https://www.esa.int/ESA). There are totally 3448 MERIS images were downloaded 

for all the six lakes (Table 4.1), the downloaded images were first clipped to the lake area, and 

then radiometric correction was performed to remove the smile-effect. 

The Case-2 Regional Processor in the BEAM 5.0 Earth Observation Toolbox and 

Development Platform (Brockmann Consult, Geesthacht, Germany) was used to perform 

atmospheric correction. Clouds, cloud shadows, cloud buffers and coastal lines were then detected 

using the Idepix algorithm in the Sentinel Application Platform 6.0 (SNAP). Finally, the pixels 

with failed atmospheric correction, clouds, cloud shadows, cloud buffers, or land and coastal lines 

were masked out. A total of 781 images were remained for the ZSD estimation (Table 4.1), and the 

improved ZSD algorithm in chapter III was applied to the remained MERIS images to retrieve ZSD 

for the six studied lakes. 

 

Table 4.1. Number of satellite images used for the six lakes in this study 

Lake Downloaded image (scene) Used image (scene) 

Mashu 698 135 

Kussharo 698 142 

Inawashiro 538 79 

Kasumigaura 507 138 

Suwa 495 173 

Biwa 512 114 

In total 3448 781 

 

Matchups were generated to compare MERIS-derived ZSD values and the in situ-measured 

ZSD values (acquired on the same day). A 3×3 window was used to extract the estimated ZSD values 

from the MERIS images, and the averaged ZSD estimations of the 3×3 pixels were used for the 
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comparison to mitigate effects due to imperfect geometric corrections. In addition, a temporal trend 

analysis was carried out for both measured and estimated ZSD values during the study period using 

a linear regression method, which has been widely used in previous studies (e.g., Shang et al., 

2016). 

 

4.2.4. Accuracy assessment  

The root mean square error (RMSE), the mean absolute percentage error (MAPE), and bias 

were used to evaluate the accuracy of satellite-estimated ZSD values. The equations are as follows: 

RMSE = k∑ 2mn-�opq�n�,r�mpnq-s,n�,r6turvw x     (4.1) 

MAPE = "x∑ {mn-�opq�n�,r�mpnq-s,n�,rmpnq-s,n�,r { ∙ 100%x}~"    (4.2) 

Bias = "x∑ 2����'�����,} 4 ���������,}6x}~" ,   (4.3) 

where ����'����� is the estimated ZSD, ���������  is the corresponding in situ measurement, and 

N is the number of data. The determination coefficient (R2) was also calculated for reference. 

 

4.3. Results  

4.3.1. Validation using ZSD matchups 

Figure 4.2 shows the comparisons of the estimated ZSD values from actual MERIS data and 

the in situ-measured ZSD values in Lake Mashu, Lake Kasumigaura, Lake Suwa and Lake Biwa 

(ZSD values are acquired at the same day). Good performance in Lake Mashu and Lake 

Kasumigaura were obtained, with MAPE=11% in Lake Mashu from 6 matchups (Figure 4.2a) and 
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MAPE=15% in Lake Kasumigaura from 19 matchups (Figure 4.2b), respectively. Except for 

several overestimated ZSD, most of the ZSD were properly estimated in Lake Suwa, with the 

RMSE=0.9 m and MAPE=52% from 27 matchups (Figure 4.2c). However, in Lake Biwa, the ZSD 

were overestimated with RMSE=3.4 m and MAPE=53% from 14 matchups, although the R2 is as 

high as 0.7 (Figure 4.2d).  

 

Figure 4.2. Comparisons of the in situ ZSD and estimated ZSD values from MERIS data using the 

improved ZSD algorithm in Chapter III. (a) Lake Mashu. (b) Lake Kasumigaura. (c) Lake Suwa. 

(d) Lake Biwa. 
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4.3.2. Long-term ZSD variation 

Figure 4.3-Figure 4.6 show the comparison of the in situ and estimated ZSD values in Lake 

Mashu, Lake Suwa, Lake Kasumigaura and Lake Biwa during the study period of 2003-2012. 

After excluding the images with clouds, there are 135 images remained to estimate ZSD for Lake 

Mashu, and there are 173 images remained for estimating ZSD for Lake Suwa. For Lake 

Kasumigaura, there are 138 MERIS images were remained. However, because a few sites were 

covered by clouds, cloud shadows, or not covered by MERIS images (Lake Kasumigaura was 

partly covered by one MERIS image), there were the following numbers of available MERIS 

images for the sites: 122 images for site 3; 72 images for site 4; 114 images for site 7; 135 images 

for site 8; 138 images for site 9; 133 images for site 11; and 124 images for site 12. Sites 1, 2 and 

6 of Lake Kasumigaura were excluded from the comparison because they are too close to the 

shoreline and strongly influenced by the land (i.e. no any available estimated ZSD values within the 

3×3 windows after one pixel buffer from shoreline was removed). For Lake Biwa, there are the 

following available data for each site: 87 images for site 18B, 93 images for site17B, 109 images 

for site 16B, 114 images for site 15B, 102 images for site 14B, 100 images for site 13B, 93 images 

for site 12B,101 images for site 11B, 96 images for site 10B, 101 images for site 8B, 99 images 

for site 7B, 93 images for site 6B,98 images for site 5B, and 92 images for site 4B. 

As it can be seen from Figure 4.3-Figure 4.5, the estimated ZSD values from satellite images 

(red dashed line with solid circles) matched well with the in situ measured ZSD values (blue dashed 

line with solid circles) in Lake Mashu (Figure 4.3), Lake Suwa (Figure 4.4), and Lake 
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Kasumigaura (Figure 4.5). The temporal trends of ZSD values obtained from satellite images (red 

solid line) agreed well with those obtained from in situ data (blue solid line) in Lake Suwa and 

Lake Kasumigaura, both of them showed a significant increase trend with slope>0 and p<0.05 

(Figure 4.4 and 4.5), even though several outliers were still observed in Lake Suwa. However, the 

satellite-estimated ZSD shows a significant increase trend during 2003-2012 (red solid line, slope>0, 

p<0.05) in Lake Mashu, the in situ ZSD shows that there is no significant change of the ZSD during 

the study period (blue solid line, p=0.3). 

For Lake Biwa, from site 17B to site 11B (Figure 4.6b-h), the satellite-estimated ZSD value 

(red dashed line with solid circles) match the in situ ZSD value (blue dashed line with solid circles). 

For other sites (Figure 4.6a, i-n), the satellite-estimated ZSD value is apparently higher than in situ 

ZSD value. Except for site 5B and site 7B, both the satellite-estimated ZSD and in situ ZSD show 

there is no significant change of the ZSD trend during 2003 and 2012, with p values >0.05. 

Figure 4.7 illustrates the ZSD trends in Lake Kussharo and Lake Inawashiro during 2003-2012. 

Because there is no in situ data for comparison, the lake averaged ZSD were plot for both lakes. 

From the figure, it can be seen that there is no significant change of the ZSD for Lake Kussharo 

during 2003-2012, and the ZSD is keep at around 15 m (Figure 4.7a). The ZSD in Lake Inawashiro 

shows a significant increased trend from 2003 to 2012 with slope>0 and p value<0.05 (Figure 

4.7b). 
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Figure 4.3. Long-term ZSD trend from 2003 to 2012 in Lake Mashu. Red dashed line with solid 

circles represents MERIS-derived ZSD values using the improved ZSD algorithm developed in 

Chapter III, and red solid line represents temporal trend obtained from the MERIS-derived ZSD 

values (y1); blue dashed line with solid circles represents in situ-measured ZSD values, and blue 

solid line represents temporal trend obtained from the in situ-measured ZSD values (y2). 

 

 

Figure 4.4. ZSD changes from 2003 to 2012 at the center of Lake Suwa. Red dashed line with solid 

circles represents MERIS-derived ZSD values using the improved ZSD algorithm developed in 

Chapter III, and red solid line represents temporal trend obtained from the MERIS-derived ZSD 

values (y1); blue dashed line with solid circles represents in situ-measured ZSD values, and blue 

solid line represents temporal trend obtained from the in situ-measured ZSD values (y2).  
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Figure 4.5. ZSD changes from 2003 to 2012 at seven sites in Lake Kasumigaura. Red dashed line 

with solid circles represents MERIS-derived ZSD values using the improved ZSD algorithm 

developed in Chapter III, and red solid line represents temporal trend obtained from the MERIS-
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derived ZSD values (y1); blue dashed line with solid circles represents in situ-measured ZSD values, 

and blue solid line represents temporal trend obtained from the in situ-measured ZSD values (y2).  
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Figure 4.6. ZSD changes from 2003 to 2012 at the 14 sites in Lake Biwa. Red dashed line with 

solid circles represents MERIS-derived ZSD values using the improved ZSD algorithm developed 

in Chapter III, and red solid line represents temporal trend obtained from the MERIS-derived ZSD 
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values (y1); blue dashed line with solid circles represents in situ-measured ZSD values, and blue 

solid line represents temporal trend obtained from the in situ-measured ZSD values (y2). 

 

Figure 4.7. Changes of lake averaged ZSD from 2003 to 2012 for Lake Kussharo and Lake 

Inawashiro. Black dashed line with solid circles represents lake averaged ZSD values from MERIS 

images using the improved ZSD algorithm developed in Chapter III, blue solid line represents the 

temporal trend obtained from MERIS-derived ZSD.  

 

4.3.3. Spatial distribution of ZSD 

Figure 4.8-Figure 4.13 illustrate the spatial distribution of annual averaged ZSD estimated 

from satellite images during 2003-2011 in the six studied lakes. Overall, the ZSD in 2003 is lower 

than that in other years for all the six lakes.  

There is no apparent spatial difference of ZSD within the Lake Mashu (Figure 4.8) and Lake 

Suwa (Figure 4.12). For the rest of the studied lakes, some spatial differences were observed. For 
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example, the ZSD in the northeast part of Lake Kussharo is lower than that in other parts (Figure 

4.9). The ZSD in the northern part of Lake Inawashiro is lower than that in the southern part (Figure 

4.10). For Lake Kasumigaura, the ZSD in the western part of the lake is lower than that in the central 

and eastern parts (Figure 4.11). It can also be clearly seen that the ZSD in the southern and eastern 

parts of Lake Biwa is lower than that in the western and northern parts (Figure 4.13). 

 

Figure 4.8. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Mashu. 

 

 

Figure 4.9. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Kussharo. 
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Figure 4.10. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Inawashiro. 

 

 

Figure 4.11. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Kasumigaura. 

 



73 

 

Figure 4.12. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Suwa. 

 

 

Figure 4.13. Spatial distribution of annual averaged ZSD from 2003 to 2011 in Lake Biwa. 

 

4.4. Discussion  

4.4.1. Influence of atmospheric correction on ZSD estimation 

Different from the ZSD values estimated from in situ measured Rrs, the accuracy of ZSD values 
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estimated from the satellite images were also strongly influenced by the atmospheric correction 

procedure. In this chapter, the Case2 processor in BEAM 5.0 was used to do atmospheric 

correction for MERIS images. The ZSD were accurately estimated in Lake Mashu, Kasumigaura 

and most of the points in Lake Suwa (Figure 4.2a-c). However, the ZSD in Lake Biwa and several 

points in Lake Suwa were overestimated (Figure 4.2c-d).  

Estimating ZSD from accurate in situ Rrs using the improved ZSD algorithm has shown good 

results (chapter III). Because there is no available concurrent in situ Rrs to validate the atmospheric 

correction results in Lake Biwa and Suwa in this study, another method called MUMM in SeaDAS 

7.5.3 was applied to do atmospheric correction (Ruddick et al., 2000), to test how different 

atmospheric correction algorithm influence the ZSD estimations. As Figure 4.14 shows, the ZSD 

estimations in Lake Biwa and several points in Lake Suwa become more accurate (MAPE 

decreased from 53% to 26%, and RMSE decreased from 3.4 m to 1.8 m for Lake Biwa) comparing 

to the use of Case2 processor (Figure 4.2c-d). However, the ZSD estimations in Lake Mashu and 

Lake Kasumigaura become worse, for example, there is only one data remained after applying 

MUMM for images in Lake Masu, and the ZSD estimation errors increased from MAPE=15% to 

MAPE=55% in Lake Kasumigaura (compare Figure 4.2b to Figure 4.14b). 
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Figure 4.14. Comparison of in situ ZSD and estimated ZSD from MERIS images. Different from 

Figure 4.2, MUMM algorithm was used for atmospheric correction. 

 

Since the improved ZSD algorithms used only a single band for ZSD retrieval (i.e., the band 

with the minimum Kd), an accurate algorithm for atmospheric correction is crucial when actual 

satellite data are used. For open oceans, the atmospheric correction algorithm proposed by Gordon 

and Wang (1994) will be the best choice, whereas for turbid inland waters, although there are 

several algorithms (e.g., Ruddick et al., 2000; Wang and Shi, 2007; Guanter et al., 2007; Doerffer 
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and Schiller, 2008; Bailey et al., 2010; Jaelani et al., 2015), it is still no any algorithm can work in 

various water types. Therefore, further studies on atmospheric correction is still needed to obtain 

accurate Rrs from satellite images, and then contribute to better water quality monitoring 

applications. 

 

4.4.2. ZSD changing trend from satellite image 

One of the goals in water quality monitoring is to analyze the changing trend of water quality. 

In this chapter, the long-term changes of ZSD in six Japanese lakes were monitored by applying the 

improved ZSD algorithm in chapter III to the MERIS satellite images during 2003-2012. The 

obtained ZSD changing trends in Lake Kasumigaura and Lake Suwa agreed well with the trends of 

in situ data, both of them shows that the ZSD is significant increased from 2003 to 2012 (Figure 4.4 

and Figure 4.5). 

For lake Mashu, the satellite-estimated ZSD shows a significant increased trend, but the in situ 

data shows that there is no significant change of ZSD during the study period (Figure 4.2). This 

different trend is probably because of the distribution of the in situ data, of witch, 23% in situ data 

were collected in 2008, and 60% of these data in 2008 were collected in August. Thus, the unequal 

distribution of in situ data may influenced the trend analysis in Lake Mashu. 

The value of ZSD in Lake Biwa is overestimated, however, the trends obtained from satellite-

estimated ZSD agreed well with these obtained from in situ ZSD for 12 sites out of the 14 sites (i.e., 

except for site 7B and site 5B, Figure 4.6). There is no long-term in situ data in Lake Inawashiro 
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to validate the changing trend of ZSD obtained from satellite images, but it is reported that the ZSD 

in Lake Inawashiro is increased (Fukushima Prefecture, 2013), which shows the same results in 

the present study (Figure 4.7b). 

Therefore, the results in this study indicate that by using the improved ZSD algorithm, the ZSD 

changing trend can be properly monitored from satellite images. It is of great significance for 

environment management, especially for waters without historical in situ data, the long-term 

change of water transparency can be directly derived from historical satellite images.  

 

4.5. Conclusions  

The improved ZSD algorithm was applied to MERIS satellite images to obtain the long-term 

ZSD for six Japanese lakes. Validation results showed that the improved ZSD algorithm has good 

performance in Lake Mashu, Lake Kasumigaura and most points of that in Lake Suwa, but 

overestimated the ZSD values in Lake Biwa and several points in Lake Suwa because of inaccurate 

atmospheric correction. Although the absolute ZSD value is inaccurate in Lake Biwa, the obtained 

ZSD trends agreed well with in situ ZSD trends. Therefore, combing the improved ZSD algorithm 

with satellite images could provide proper ZSD changing trend, which would be helpful for the 

water environment monitoring. To retrieve more accurate ZSD values from satellite images using 

the improved ZSD algorithm, the big challenge of atmospheric correction should be addressed in 

the future study. 
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Chapter V General Conclusions 

 

There are three requirements to use the Lee15 ZSD algorithm: (1) accurate measurements of 

remote sensing reflectance (Rrs); (2) accurate estimations of diffuse attenuation coefficient of 

downwelling irradiance (Kd); and (3) the proper values of KT/Kd ratios. In the present study, the 

above three requirements were all addressed to estimate accurate ZSD in various waters from 

remote sensing data.  

To ensure the accuracy of in situ measured Rrs, I proposed a new method to remove the 

residual reflected skylight effects (∆ effects) remained in above-water measured Rrs. The new 

method is simple, effective, and universally applicable without requiring any recalibration. The 

new proposed method outperformed other existing methods, and can be used for various water 

types. In addition, the new method can correct in situ Rrs spectra measured under various sky 

conditions (clear, scattered clouds, or overcast), and improve the quality of the spectra. The ∆ 

corrections should be carried out for all Rrs spectra measured using the above-water approach 

before they are applied to the development of water quality algorithms or the evaluation of 

atmospheric correction algorithms. 

The accuracy of IOPs (a and bb) determines the accuracy of Kd estimation. In the present 

study, a QAA_hybrid was proposed to retrieve more accurate IOPs from Rrs. Compared to 

QAA_v6, QAA_hybrid can retrieve IOPs more accurately in various waters (MAPE decreased 

from 55% to 24%), and the retrieved IOPs can be then used to estimate more accurate Kd in various 
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waters (MAPE decreased from 52% to 23%).  

A new algorithm was proposed to estimate more realistic value of KT/Kd. The estimated 

KT/Kd ratio was used in the ZSD algorithm instead of using the fixed KT/Kd ratio (i.e., 1.5). The 

values of estimated KT/Kd in the present study range from 0.85 to 1.70 with an average of 1.28, 

which is lower than the 1.5 used in the original Lee15 ZSD algorithm. Compared to using a fixed 

KT/Kd of 1.5, the use of a dynamic KT/Kd can improve ZSD estimation, especially in clear waters.  

By combing the QAA_hybrid and the KT/Kd algorithm, an improved ZSD algorithm was 

proposed. The improved ZSD algorithm was validated using in situ Rrs collected from 21 waters in 

Japan and 4 waters in United States with a wide range of water qualities (ZSD ranges from 0.2 m 

to 45 m), results showed that the improved ZSD algorithm can be universally applied to various 

water types with more accurate ZSD estimations (MAPE decreased from 54% to 35%).  

The improved ZSD algorithm was also applied to MERIS satellite images to obtain the ZSD for 

six Japanese lakes during 2003 and 2012. Validation results using matchups showed that the 

improved ZSD algorithm can retrieve accurate ZSD values in Lake Mashu, Lake Kasumigaura and 

most points of that in Lake Suwa, but overestimate the ZSD values in Lake Biwa and several points 

in Lake Suwa because of inaccurate atmospheric correction. The changing trends of ZSD obtained 

from satellite images in Lake Kasumigaura and Lake Suwa agreed well with the corresponding 

trends obtained from in situ ZSD data during the study period. Although the absolute ZSD value was 

overestimated in Lake Biwa, the obtained ZSD trends agreed well with in situ ZSD trends for 12 out 

of 14 sites during the study period. Therefore, the improved ZSD algorithm can be used to monitor 
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proper ZSD changing trend from satellite images, which would be helpful in water environment 

management. However, to retrieve more accurate ZSD from satellite images using the improved 

ZSD algorithm, the big challenge of atmospheric correction should be addressed in the future study. 
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