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Abstract 

Cognitive impairment in the elderly, and in psychiatric and neurodegenerative diseases 

is a serious health problem worldwide, resulting in reduced quality of life, and a social 

and economic burden on the patients families and caregivers. There is an unmet  

medical need for novel therapeutic drugs that can slow down or restore cognitive 

impairment. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) have been suggested to regulate synaptic neurotransmission 

and plasticity, which are associated with multiple cognitive functions. 

Phosphodiesterase 2A (PDE2A), highly expressed in the forebrain, is one of the key 

phosphodiesterase enzymes that hydrolyses both cAMP and cGMP. Therefore, PDE2A 

inhibition has the potential to ameliorate cognitive impairment in diseases by 

modulating the neural circuit via the up-regulation of cAMP and cGMP levels in the 

brain. In the first chapter, to probe the potential of PDE2A inhibition as a treatment for 

schizophrenia, I investigated the effect of a brain penetrant and selective PDE2A 

inhibitor, TAK-915, in rat models of schizophrenia based on N-methyl-D-aspartate 

(NMDA) receptor hypofunction. Oral administration of TAK-915 ameliorated 

cognitive impairment and social withdrawal induced by NMDA receptor antagonists in 

rats. This selective PDE2A inhibitor has therapeutic potential in cognitive impairment 

and the negative symptoms in schizophrenia. In the second chapter, the effect of 

PDE2A inhibition on the cognitive functions associated with aging were evaluated. 

The selective PDE2A inhibitor TAK-915 ameliorated age-related cognitive deficits in 

rats. Based on these findings, PDE2A inhibition demonstrated a beneficial effect on 

multiple cognitive domains, such as spatial learning, episodic memory, and attention, 

and may provide a new therapeutic option in patients with cognitive impairment.  
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Abbreviations: 

5-CSRTT, 5-choice serial reaction time task  

AMPA, (±)-α-amino-3-hydroxy-5-methylisoxasole-4-proprionic acid 

AD, Alzheimers disease  

cAMP, cyclic adenosine monophosphate 

cGMP, cyclic guanosine monophosphate  

CSF, cerebrospinal fluid 

Enk, enkephalin 

GAPDH, glyceraldehydes-3-phosphate dehydrogenase  

LTP, long-term potentiation 

mHb, medial habenula 

METH, methamphetamine hydrochloride  

MK-801, (+)-MK-801 hydrogen maleate  

MP-10, 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethy]-quinoline 

succinate  

MSNs, medium spiny neurons  

MWMT, Morris water maze task 

NDI, novelty discrimination index 

NMDA, N-methyl-D-aspartate  

NO, nitric oxide  

NORT, novel object recognition test 

NREM, non-rapid eye movement 

PCP, phencyclidine  

PDE, phosphodiesterase  
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PDE2A, phosphodiesterase 2A  

pGluR1, phosphorylation of AMPA receptor subunit at serine 845 

PKA, protein kinase A  

PKG, protein kinase G  

REM, rapid eye movement 

SD, Sprague-Dawley  

SNP, sodium nitroprusside  

SP, substance P  

TAK-915, 

N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl-7-methoxy-2-oxo-2,

3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamid
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General Introduction 

Cognitive impairment in the elderly, psychiatric and neurodegenerative diseases is a 

serious health problem worldwide, reducing the quality of life and creating a social and 

economic burden on patients families and caregivers. In schizophrenia, cognitive 

impairments are present at the onset of illness, persistent through the course of the 

disease, and have been associated with long-term functional disability (Shamsi et al., 

2011; Torgalsboen et al., 2015). Current antipsychotic medications are effective in 

managing positive symptoms, but are limited in their ability to alleviate cognitive 

impairment and negative symptoms such as social withdrawal. Impairments in the 

cognitive domains are also observed in the elderly, patients with mild cognitive 

impairment, and Alzheimers disease  (AD). Acetylcholinesterase inhibitors, such as 

donepezil, are commonly used as the standard of care for symptomatic AD. However, 

the efficacy of acetylcholinesterase inhibitors is limited in patients with mild to 

moderate AD (Thompson et al., 2004; Deardorff et al., 2015; Anand et al., 2017). 

Additionally, the long-term use of these medications is problematic owing to the 

adverse effects, including nausea, diarrhea, and insomnia (Raina et al., 2008; Tan et al., 

2014). Therefore, there is still an unmet medical need for new therapeutic drugs that 

slow down or restore cognitive impairment in the elderly and in patients with 

psychiatric and neurodegenerative diseases.  

 

Second messengers propagate and amplify signals at receptors on the cell surface, and 

are important components in signal transmission cascades. Cyclic adenosine 

monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are 

intracellular second messengers produced by adenylate cyclase or guanylate cyclase, 
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respectively. Adenylate cyclase is activated by receptors that are coupled to Gs proteins. 

The activity of guanylate cyclase is regulated by N-methyl-D-aspartate receptor 

(NMDA) receptor, and nitric oxide (NO). Cyclic AMP and cGMP activate cAMP and 

cGMP-dependent protein kinases, thus playing critical roles in various cellular 

functions including synaptic neurotransmission, plasticity, and neuroprotection. 

 

Phosphodiesterase (PDE) is an enzyme that hydrolyzes cyclic nucleotides. The PDEs 

are classified into 11 families from PDE1 to PDE11 on the basis of their tissue 

distributions, amino acid sequence homology, and regulatory properties (Beavo, 1995; 

Lugnier, 2006). Additionally, based on substrate specificity, the PDE family is mainly 

divided into three categories: the cAMP-specific PDEs (PDE4, PDE7 an PDE8); the 

cGMP specific PDEs (PDE5, PDE6 and PDE9), the dual substrate PDEs (PDE1, PDE2, 

PDE3, PDE10 and PDE11) degrading both cAMP and cGMP with different affinities. 

Clinically, several PDE inhibitors have been used for treatments of acute heart failure, 

chronic obstructive pulmonary disease, and pulmonary arterial hypertension (Maurice 

et al., 2014). Since some PDE families are selectively expressed in specific brain 

regions, selective PDE inhibitors are attracting attention as promising drug targets for 

brain disorders. 

 

Phosphodiesterase 2A (PDE2A) is a dual-substrate enzyme that hydrolyzes both cAMP 

and cGMP. It is also termed as cGMP-stimulated cAMP PDE as the binding of cGMP 

to the GAF domain of PDE2A allosterically stimulates its cAMP hydrolyzing activity. 

This suggests that PDE2A plays a key role in regulating the cross-talk between cAMP 

and cGMP signaling. PDE2A is highly expressed in the brain regions such as frontal 
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cortex, hippocampus, striatum, and amygdala, which regulate memory and emotion, 

whereas its expression in peripheral tissues is relatively low (Stephenson et al., 2009; 

Stephenson et al., 2012). Therefore, PDE2A inhibition can be expected to exert 

brain-specific actions without side effects on the periphery. As cyclic nucleotides have 

been suggested to regulate synaptic neurotransmission and plasticity associated with 

cognitive functions, a selective PDE2A inhibitor may demonstrate the potential to 

ameliorate cognitive impairments associated with psychiatric and neurodegenerative 

diseases by modulating the neural circuit via up-regulation of cAMP and cGMP levels 

in the brain. Pharmaceutical companies have investigated PDE2A inhibitors for brain 

disorders, however their candidate agents displayed problems including the potency of 

PDE2A inhibitory activity, selectivity against other PDE families, and 

pharmacokinetics profiles including brain penetration. Although ND-7001, developed 

by Neruo3D, advanced to the phase I study, its clinical development has been 

discontinued. In fact, ND-7001 was found to have an insufficient profile for both 

PDE2A inhibitory activity and PDE selectivity. Similarly, PF-999, developed by Pfizer, 

was not successful, and the reasons for discontinuation and the pre-clinical profiles 

have not yet been disclosed (Gomez and Breitenbucher, 2013). In preclinical studies, 

BAY-60-7550 is often used as a commercially available PDE2A inhibitor. However, 

this compound does not demonstrate sufficient brain-penetrant properties in rodents 

after oral administration (Reneerkens et al., 2013). Additionally, PDE2A constitutive 

knockout mice are not available for behavioral assays to investigate the role of PDE2A 

in cognitive functions due to their embryonic lethality (Assenza et al., 2018). Therefore, 

a PDE2A inhibitor with better PDEs selectivity and pharmacokinetic profile is 

necessary to elucidate the precise role of PDE2A inhibition in the brain. 
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The aim of this research was to characterize the effects of PDE2A inhibition on 

cognitive impairment in preclinical models using a selective and brain penetrant 

PDE2A inhibitor. In the first chapter, the effect of PDE2A inhibition on cognitive 

impairment have been demonstrated in rat models of schizophrenia. The second 

chapter illustrates the effect of PDE2A inhibition on cognitive decline associated with 

aging in rodent models. 
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Chapter I: The Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive 

Impairments and Social Withdrawal in N-methyl-D-aspartate Receptor 

Antagonist-Induced Rat Models of Schizophrenia 

 

Abstract 

The pathophysiology of schizophrenia has been associated with glutamatergic 

dysfunction. Modulation of the glutamatergic signaling pathway, including 

N-methyl-D-aspartate (NMDA) receptors, can provide a new therapeutic target for 

schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, 

and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play 

pivotal roles as intracellular second messengers downstream of NMDA receptors. Here 

I characterized the in vivo pharmacological profile of a selective and brain penetrant 

PDE2A inhibitor, 

(N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-

2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel 

treatment for schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg 

significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of 

rats. TAK-915 at 10 mg/kg significantly up-regulated the phosphorylation of 

a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the 

rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated the episodic 

memory deficits induced by the NMDA receptor antagonist, MK-801, in the rat passive 

avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits 

induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg 

prevented the subchronic phencyclidine-induced social withdrawal in rats. In contrast, 
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TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on 

MK-801- or methamphetamine-induced hyperlocomotion in rats. These results indicate 

the potential of TAK-915 to ameliorate cognitive impairment and social withdrawal in 

schizophrenia. 
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Introduction 

Schizophrenia is a severe psychiatric disorder characterized by three domains: positive 

symptoms, negative symptoms, and cognitive impairments. Current antipsychotic 

medications are effective in managing positive symptoms, but are limited in their 

ability to alleviate cognitive impairment and negative symptoms. Cognitive 

impairment is present at the onset of illness, and persistent through the course of the 

disease, and appears to be strong predictor of functional outcome (Shamsi et al., 2011; 

Torgalsboen et al., 2015). Negative symptoms range from diminished expression such 

as blunted affect and poverty of speech, to motivational deficits characterized by 

avolition, anhedonia, and social withdrawal (Messinger et al., 2011; Foussias et al., 

2014). Collectively, cognitive impairments and negative symptoms lead to a reduced 

quality of life and increased functional disability. Therefore, there remains an unmet 

clinical need and new therapeutic agents are required for patients with cognitive 

impairment and negative symptoms in schizophrenia. 

 

The pathophysiology of schizophrenia has been associated with dysfunction of 

glutamatergic neurotransmission (Goff and Coyle, 2001; Lin et al., 2012). Postmortem 

brain studies have shown changes in pre- and postsynaptic markers for glutamatergic 

neurons in patients with schizophrenia (Meador-Woodruff and Healy, 2000). Inhibition 

of glutamatergic transmission by NMDA receptor antagonists such as ketamine and 

phencyclidine (PCP) causes schizophrenia-like symptoms in humans (Javitt and Zukin, 

1991; Olney and Farber, 1995; Coyle, 1996). In line with these clinical observations, 

reduction of nitric oxide (NO) and cGMP levels acting downstream of the NMDA 

receptor has been observed in schizophrenia (Lee and Kim, 2008; Nakano et al., 2010). 
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Interestingly, administration of the NO donor, sodium nitroprusside (SNP), has shown 

a rapid improvement in multiple symptoms in schizophrenia (Hallak et al., 2013). 

These findings suggest that the modulation of glutamatergic transmission, which 

includes NMDA receptor/NO/cGMP pathway, can provide a new therapeutic strategy 

in schizophrenia. 

 

PDE2A is a dual substrate enzyme that hydrolyzes both cAMP and cGMP. PDE2A is 

abundant in the brain relative to peripheral tissues, and highly expressed in the 

forebrain, including the frontal cortex, hippocampus, and striatum, which are relevant 

to cognition (Stephenson et al., 2009; Stephenson et al., 2012). PDE2A is localized in 

axons and nerve terminals of principal neurons, suggesting that PDE2A plays an 

important role in the modulation of cyclic nucleotide-mediated signal transduction, 

synaptic neurotransmission, and plasticity in the forebrain. Thus, the role of PDE2A on 

cognition under physiological and pathological conditions has been investigated. Some 

PDE2A inhibitors, such as BAY 60-7550, have enhanced recognition memory in the 

novel object recognition task in rodents (Boess et al., 2004; Rutten et al., 2007; 

Reneerkens et al., 2013; Bollen et al., 2014; Redrobe et al., 2014; Bollen et al., 2015; 

Lueptow et al., 2016). However, these findings have not fully demonstrated the 

relationship between brain PDE2A inhibition and pro-cognitive activities in rodents. 

Most studies using PDE2A inhibitors lack adequate evidence in terms of 

pharmacokinetics and pharmacodynamics. For example, there are no reports available 

investigating brain cyclic nucleotide levels after BAY-60-7550 administration. This 

compound does not show sufficient brain penetrating properties in rodents after oral 

administration (Reneerkens et al., 2013). Therefore, a PDE2A inhibitor with better 
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pharmacokinetic profiles is required to elucidate the role of PDE2A inhibition in the 

brain and to clarify the relationship between brain cyclic nucleotide levels and 

behavioral outcomes. 

 

A potent and selective PDE2A inhibitor, TAK-915 was recently discovered (Mikami et 

al., 2017). TAK-915 inhibited human PDE2A enzyme activities with a 50% inhibitory 

concentration of 0.61 nmol/L, which exhibited more than a 4100-fold selectivity 

against other PDE family members. In rodents, in vitro autoradiography studies 

revealed that [3H]TAK-915 accumulated in the frontal cortex, hippocampus, and 

striatum (Ito et al., manuscript in preparation), where PDE2A expression levels are 

high (Stephenson et al., 2009; Stephenson et al., 2012). This selective accumulation of 

[3H]TAK-915 was not observed in brain slices from Pde2a conditional knockout mice 

(Ito et al., manuscript in preparation). These findings indicate that TAK-915 selectively 

binds to a native PDE2A under physiological conditions. 

 

In this thesis, the in vivo pharmacological profile of a selective and brain penetrant 

PDE2A inhibitor, TAK-915, has been demonstrated as a potential treatment for 

schizophrenia. Firstly, to examine whether TAK-915 acts as a PDE2A inhibitor in vivo, 

the cyclic nucleotide contents and their downstream signaling in the brain were 

evaluated. Secondly, the pro-cognitive properties of TAK-915 were characterized in the 

NMDA receptor antagonist-induced deficit models. Thirdly, to investigate the potential 

of TAK-915 in social withdrawal, social interaction was evaluated in a subchronic PCP 

model. Finally, psychostimulant-induced hyperlocomotion tests were performed to 

predict the effect of TAK-915 on antipsychotic-like activity.  
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Materials and Methods 

 

Animals. The care and use of the animals and the experimental procedures performed 

at Takeda Pharmaceutical Company Limited (Fujisawa, Japan) were approved by the 

Experimental Animal Care and Use Committee of Takeda Pharmaceutical Company 

Limited. Experiments performed at Biotrial (Rennes, France) were approved by the 

Biotrial Ethical Committee. Specific details of strain and species are given within each 

section. The animals were housed in groups of 2-4 per cage under a 12-h light-dark 

cycle (lights on at 7:00 AM) with ad libitum food and water. After at least a 1-week 

habituation period, the animals were used for the experiment. 

 

Drugs. TAK-915 

(N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-

2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) and MP-10 succinate (MP-10, 

2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethy]-quinoline succinate) 

were synthesized at Takeda Pharmaceutical Company Limited (Grauer et al., 2009; 

Verhoest et al., 2009; Mikami et al., 2017). TAK-915 and MP-10 were suspended in 

0.5% (w/v) methylcellulose in distilled water and administered orally (p.o.). 

Methamphetamine hydrochloride (METH, Dainippon Sumitomo Pharma Co. Ltd., 

Osaka, Japan) and (+)-MK-801 hydrogen maleate (MK-801, Sigma Aldrich, Inc., St. 

Louis, MO) were dissolved in saline, and were administered subcutaneously (s.c.). 

Phencyclidine hydrochloride (PCP, Sigma Chemical Co., Saint Quentin Fallavier, 

France) was dissolved in saline, and was administered intraperitoneally (i.p.). 

Olanzapine was extracted from Zyprexa® (Eli Lilly and Company, Indianapolis, IN) at 



16 
 

KNC Laboratories Co. Ltd. (Kobe, Japan). Olanzapine was dissolved in 1.5% (v/v) 

lactic acid. The pH of this solution was then adjusted to neutral using 1 M NaOH and 

administered p.o. The dosages of compounds were expressed as salt forms. The 

volume of administration was 2 mL/kg for p.o. and s.c., 5 mL/kg for i.p. 

 

Pharmacokinetics Study. Eight-week-old male Long-Evans rats (Japan SLC Inc., 

Hamamatsu, Japan) and male Sprague-Dawley (SD) rats (Charles River Laboratories 

Japan, Inc., Yokohama, Japan) were used for sample collection. Blood and brain tissues 

were collected at 0.5, 1, or 2 h after administration of TAK-915. The plasma or brain 

homogenate samples were deproteinized with acetonitrile containing an internal 

standard and then centrifuged. The supernatant was diluted with solvents consisting of 

10 mM ammonium acetate-acetonitrile-formic acid and centrifuged again. An 

LC-MS/MS system (API5000 or QTRAP5500, AB Sciex, Foster City, CA) was used to 

measure TAK-915 concentrations in the supernatant. 

 

In Vivo Measurement of Cyclic Nucleotide Contents. This assay was performed as 

previously described (Suzuki et al., 2015; Suzuki et al., 2016) with some modifications. 

Nine-week-old male Long-Evans rats were euthanized using a microwave irradiation 

system MMW-05 (Muromachi Kikai Co. Ltd., Tokyo, Japan) 2 h following oral 

administration of vehicle or TAK-915 (1, 3, or 10 mg/kg). Brain tissues were sampled, 

immediately frozen on dry ice, and stored at -80 °C until use. To measure cyclic 

nucleotide contents, microwaved brain tissues were isolated and then homogenized in 

0.5 N HCl followed by centrifugation. Cyclic nucleotide concentrations in supernatant 

were measured using enzyme immunoassay kits (Cayman Chemical Company, Ann 
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Arbor, MI) in accordance with the manufacturer’s protocol. Values were expressed as 

pmol per mg tissue weight.  

 

Measurement of CSF. Six-week-old male Long-Evans rats (Japan SLC Inc., 

Hamamatsu, Japan) were used for determination of cGMP levels in the CSF and 

hippocampus. Under pentobarbital anesthesia, CSF was collected from the cisterna 

magna 2, 4, 8, 16 or 24 h after the administration of vehicle or TAK-915 (30 mg/kg, 

p.o.). CSF samples were snap-frozen and maintained at -80 °C until use. After 

collecting CSF samples, the animals were euthanized by a focused microwave 

irradiation system MMW-05 (Muromachi Kikai Co. Ltd., Tokyo, Japan). Brain tissues 

were sampled and immediately frozen on dry ice. Samples were stored at -80 °C until 

use. To measure cyclic nucleotide contents, microwaved brain tissues were isolated and 

then homogenized in 0.5 N HCl followed by centrifugation. Concentrations of cyclic 

nucleotides in samples were measured using enzyme immunoassay kits (Cayman 

Chemical Company, Ann Arbor, MI) in accordance with the manufacturer’s 

instructions. Values were expressed as pmol per μL for CSF or pmol per mg tissue 

weight for the brain tissue. 

 

In Vivo Measurement of Protein Phosphorylation. Seven-week-old male 

Long-Evans rats were used for collecting the brain tissues. The hippocampus was 

immediately sampled 2 h after oral administration of vehicle or TAK-915 (1, 3, or 10 

mg/kg) and put into 1.5-mL tubes. Samples were rapidly frozen in liquid nitrogen, and 

stored at -80 °C until use. Whole hippocampus tissues were homogenized in ice-cold 

cell extraction buffer (Invitrogen, Carlsbad, CA) with protease inhibitor cocktail 
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(Sigma-Aldrich) and phosphatase inhibitor cocktail (Thermo Fisher Scientific, 

Waltham, MA). After clarification by centrifugation, the supernatant fraction was 

collected and boiled in sample buffer solution with 3-mercapto-1,2-propanediol (Wako, 

Osaka, Japan). The protein content (0.5 μg) of each sample was loaded onto 7.5 to 15% 

SDS-PAGE gels (DRC, Tokyo, Japan). After electrophoresis, the proteins were 

transferred to PVDF membranes. Total protein levels and phosphorylation of 

(±)-α-amino-3-hydroxy-5-methylisoxasole-4-proprionic acid (AMPA) receptor subunit 

at serine 845 (pGluR1) proteins were probed by immunoblotting with anti-total 

glutamate receptor subunit 1 (GluR1) antibody (diluted 1:5000, Millipore, Temecula, 

CA) and anti-pGluR1 (diluted 1:2000, Phosphosolutions, Aurora, CO), and were 

visualized with horseradish peroxidase-conjugated second antibodies (diluted 1:5000, 

GE Healthcare UK Ltd., Buckinghamshire, UK) followed by ECL prime western 

blotting detection reagents (GE Healthcare UK Ltd.). The membranes were scanned on 

a lumino-image analyzer, ImageQuant LAS4000 (Fujifilm, Tokyo, Japan). The 

amounts of total and pGluR1 proteins were quantified by measuring the density of 

blots using ImageQuant TL software (Fujifilm, Tokyo, Japan). The band densities of 

pGluR1 were normalized by those of total GluR1. 

 

Step-Through Passive Avoidance Task. This task was conducted using 7-8-week-old 

male Long-Evans rats as previously described (Mikami et al., 2017). The task was 

carried out in an apparatus consisting of an illuminated ("light") compartment (25 × 10 

× 25 cm) connected to a non-illuminated ("dark") compartment (30 × 30 × 30 cm) by a 

guillotine door (8 × 8 cm) (Brain Science idea, Osaka, Japan). In a habituation trial, 

each animal was gently placed in the light compartment. After 30 s, the guillotine door 
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was opened and the rat was allowed to enter the dark compartment. Once the animal 

entered the dark compartment with all four paws, the door was closed. The animal was 

allowed to remain in the dark compartment for 30s before being taken to its home cage. 

An acquisition trial was conducted 4-6 h after the habituation trial. The rat was put into 

the light compartment, and the guillotine door was opened. Once the rat crossed into 

the dark compartment with all four paws, the door was closed and an electric shock 

(0.5 mA, 3 s) was delivered from the grid floor. After 30 s, the rat was removed from 

the dark compartment, and then returned to its home cage. One day after the 

acquisition trial, a retention test was performed to evaluate memory. After each rat was 

again put into the light compartment for 30 s, the door was opened. The retention test 

was terminated when the rat entered the dark compartment or remained in the light 

compartment for 300 s. During the retention trials, no electric shock was delivered 

from the grid floor. The time between the door being opened and the rat entering the 

dark compartment was defined as latency time. The maximum latency time for which 

the rat did not enter the dark compartment was 300 s. Vehicle or TAK-915 (1, 3, or 10 

mg/kg, p.o.) was administered 2 h prior, and saline or MK-801 (0.1 mg/kg, s.c.) was 

administered 30 min prior to the acquisition trial. 

 

Radial Arm Maze Task. This task was assessed using 9-week-old male Long-Evans 

rats as previously described (Shiraishi et al., 2016; Nishiyama et al., 2017). An 8-arm 

radial maze with arms (50 × 10 × 40 cm) was mounted on platform, which was 

elevated 50 cm above the floor. Animals were fasted for 1 day before habituation of the 

maze. During the experimental period after the first day of habituation, animals were 

food-restricted to 85-90% of free-feeding body weight for training. Reinforcement 
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consisted of 3 food pellets (Dustless Precision Pellets, 45 mg, Bioserv Inc., 

Frenchtown, NJ), which were placed in a food cup at the end of each arm. Habituation: 

On the first day, three rats were placed in the maze and allowed to freely explore and 

retrieve the food pellets, which were placed near the entrance and at the mid-point of 

each arm for 8 min. On the second day, a single rat was allowed to explore and retrieve 

the pellets, which were then placed at the mid-point and in the food cup at the end of 

each arm for 5 min. From the third day, reinforcement was placed in the food cup at 

the end of each arm. Each rat was allowed to explore until 5 min had elapsed, or the rat 

completed one entry in each arm. Entry into an arm previously chosen, and failure to 

get the pellets were counted as errors. Rats were trained until they achieved a criterion 

of ≤ 2 errors for 2 consecutive days. Vehicle or TAK-915 (1 or 10 mg/kg, p.o.) was 

administered 2 h, and saline or MK-801 (0.08 mg/kg, s.c.) was administered 30 min 

prior to the test. 

 

Social Interaction Test. This experiment was carried out at Biotrial (Rennes, France) 

using male Long-Evans rats (JANVIER, Saint Berthevin, France) as previously 

described (Cayre et al., 2016). The experimental arena was a square wooden box (90 × 

90 × 40 cm) painted dark blue, with black painted squares (15 × 15 cm). The arena was 

cleaned using water between each trial to avoid odor trails left by rats. The arena was 

placed in a dark room illuminated only by halogen lamps oriented towards the ceiling, 

which provided uniform dim light in the box. The day before the test, rats were placed 

in the box and allowed to habituate for 10 min. On experimental day, treated animals 

were placed with an unfamiliar animal in the experimental arena for a 10-min 

experimental session to allow them to interact freely. The experimenter then scored the 
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time spent in social interaction for the treated rat. For each treated-rat, the total amount 

of time spent in active social behavior was recorded during the 10-min session. Active 

social behaviors were defined as sniffing, grooming, kicking, following, mounting, 

jumping on, boxing, wrestling, and crawling. The experimenter scoring the behavior 

was not aware of the animal treatment. Saline or PCP (5 mg/kg, i.p.) was administered 

twice daily (morning and afternoon) from day 1 to day 7. During the wash-out period 

from day 8 to day 15, animals were housed in their home cages without any treatment. 

On day 15, habituation was conducted. On day 16, vehicle or TAK-915 (3 or 10 mg/kg, 

p.o.) was administered 2 h before testing.  

 

Hyperlocomotion Test. This test was assessed using 8-week-old male SD rats as 

previously described (Suzuki et al., 2015; Suzuki et al., 2016). A SUPERMEX 

spontaneous motor analyzer (Muromachi Kikai Co., Ltd., Tokyo, Japan) was used to 

measure locomotion. Rats were placed in locomotor chambers (24 × 37 × 30 cm) for 

more than 60 min for habituation. Thereafter, rats were injected with either vehicle or 

TAK-915 (1, 3, or 10 mg/kg, p.o.) and then quickly returned to the chamber. After 2 h, 

rats were again taken out of the chambers and injected with either saline, MK-801 (0.3 

mg/kg, s.c.), or METH (0.5 mg/kg, s.c.) and then quickly returned to the chamber. 

Activity counts were recorded every 1 min during 2 h after administration of 

psychostimulant. 

 

Gene Expression Assay. This assay was conducted as previously described (Suzuki et 

al., 2015; Suzuki et al., 2016). Seven-week-old male SD rats were euthanized 3 h after 

oral treatment of vehicle, TAK-915 (10 or 100 mg/kg), or MP-10 (30 mg/kg). Striatum 
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was collected and frozen on dry ice immediately and then stored -80 °C until use. Total 

RNA from the striatum was extracted using Isogen (Nippon Gene Co., Ltd., Toyama, 

Japan) and an RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturers protocol. The RNA was reverse -transcribed to cDNA using 

High-capacity cDNA Reverse Transcription Kit (Life Technologies). Real-time 

quantitative polymerase chain reaction expression analysis was conducted using 

TaqMan reagents (Eurogentec, Seraing, Belgium) and ABI PRISM 7900HT sequence 

detection system (Life Technologies). In accordance with the manufacturers 

instruction, quantities of RNA were normalized using glyceraldehydes-3-phosphate 

dehydrogenase (GAPDH) TaqMan probes. The rat enkephalin (Enk) analysis was 

conducted using the following primers: forward primer,

 5′-GGACTGCGCTAAATGCAGCTA-3′; reverse primer, 

5′-GTGTGCATGCCAGGAAGTTG-3′; TaqMan probe (MGB probe), 

5′-CGCCTGGTACGTCCCGGCG-3′. The rat substance P (SP) was conducted using 

the following primers: forward primer, 5′-CGCAAAATCCAACATGAAAATC-3′; 

reverse primer, 5′-GCAAACAGTTGAGTGGAAACGA-3′; TaqMan probe (MGB 

probe), 5′-CGTGGCGGTGGCGGTCTTTTT-3′. The rat GAPDH analysis was 

conducted using the following primers: forward primer, 

5′-TGCCAAGTATGATGACATCAAGAAG-3′; reverse primer, 

5′-AGCCCAGGATGCCCTTTAGT-3′; TaqMan probe (MGB probe), 

5′-TGGTGAAGCAGGCGGCCGAG-3′.  

 

Measurement of Plasma Prolactin Levels. Eight-week-old male SD rats (Charles 

River Laboratories Japan, Inc., Yokohama, Japan) were administered either vehicle or 
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TAK-915 (10, 30, or 100 mg/kg, p.o.) after a habituation period of >30 min. Two hours 

after administration, blood was collected from tail vein into a 1.5-ml Eppendorf tube 

containing 25 μL of EDTA. Blood was immediately mixed with EDTA, placed on ice, 

and then centrifuged at 12,000 rpm for 15 min at 4 °C. The supernatants were collected 

in another tube as plasma, and were stored in a deep-freezer until use. The prolactin 

concentrations in the plasma samples were measured using an ELISA kit (Bertin 

Pharma, Montigny le Bretonneux, France). 

 

Measurement of Plasma Glucose Levels. Seven-week-old male SD rats were fasted 

overnight and were euthanized 2 h after the administration of vehicle or TAK-915 (10, 

30, or 100 mg/kg, p.o.). Trunk blood was collected into 50-ml centrifuge tubes. Plasma 

glucose levels were measured using a model 7180 Clinical Analyzer (Hitachi 

High-Technologies Inc., Tokyo, Japan).  

 

Bar Test. The catalepsy-like behavior of 7-week-old male SD rats was measured 2 h 

after the administration of vehicle, olanzapine (10 mg/kg, p.o.), or TAK-915 (10 or 100 

mg/kg, p.o.) in a blind manner. Forelimbs were placed on a horizontal metal bar at a 

13-cm height and the length of time during which both forelimbs remained on the bar 

(cataleptic response) was measured with a maximum limit of 90 s. The procedure was 

repeated 3 times and the cataleptic response time was averaged for each rat. 

 

Cell Culture. Primary cortical neurons were prepared from fetuses of rats, which were 

extracted from a mother animal at 17-18 days of gestation. Cells were isolated using 

nerve-cell dispersion solutions (Sumitomo Bakelite, Tokyo, Japan) containing papain, 
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following the manufacturer’s instructions. Isolated primary cells were suspended in 

neurobasal medium (Life technologies, CA) with B-27 supplement, 

Penicillin-Streptomycin and L-Glutamine (Life technologies), and plated onto 

poly-L-lysine-coated 96-well culture plates (Sumitomo Bakelite) at a density of 5 × 104 

cells/ 100 μL/well. The plates were incubated at 37 °C under 5% CO2. Medium (100 

μL) was added to each well on day in vitro (DIV) 3 or 4 and half of the medium was 

renewed on DIV 6. For expression analysis of PDE1C, 2A, 4B, 4D, 8B, and 10A, rat 

cortical primary neurons were isolated on DIV 11. Tissues were homogenized in 

QIAzol Lysis Reagent (QIAGEN, UK), followed by total RNA extraction using 

RNeasy 96 Kit (QIAGEN). Complementary DNA was synthesized from 1000 ng of the 

total RNA using High Capacity cDNA Reverse Transcription Kit (Life technologies). 

Quantitative real-time PCR was performed with an ABI PRISM 7900HT sequence 

detection system (Life technologies) and qPCR MasterMix Plus without UNG 

(Eurogentec, Belgium). Primers, probes and standards for PDE1C, 2A, 4B, 4D, 8B, 

and 10A were purchased from Sigma-Aldrich. All procedures were performed in 

accordance with the manufacturers instructions.  

 

Measurement of Intracellular Cyclic Nucleotides in Primary Cortical Neurons. 

TAK-915 and 3-isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich) were dissolved in 

dimethyl sulfoxide (DMSO), and were then diluted in neurobasal medium. All the 

solutions of TAK-915 and its vehicle contained 0.1% DMSO. All the solutions and 

vehicle were dispensed in a polypropylene 96-well plate and incubated at 37 °C until 

just before use. For evaluating the effects of TAK-915, rat neurons on DIV 11 were 

rinsed with Hanks balanced salt solution (Life technologies), and were incubated with 
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TAK-915 for 30 min at 37 °C. To inhibit the activity of other endogenous PDEs, 10 

μM of IBMX was also added with TAK-915. Finally, all the solutions were decanted, 

and the cells were dissolved in 200 μL/well of lysis buffer. After being shaken on a 

plate shaker for 30 min, the cell lysates were transferred to a new polypropylene plate. 

Intracellular cyclic nucleotide concentration in the lysates was measured using the 

cAMP/cGMP enzyme immunoassay system (GE healthcare, UK), in accordance with 

the manufacturer’s instructions. 

 

Statistical Analysis. The Aspin-Welch test (for nonhomogeneous data) or Students 

t-test (for homogeneous data) was used for pairwise group comparison. In 

dose-response experiments, homogeneity of variances was using Bartletts test, and 

then two-tailed Williams test (for parametric data) or two -tailed Shirley-Williams test 

(for non-parametric data) was conducted. In the step-through passive avoidance test, 

two-tailed Wilcoxon’s test was conducted. Value of P ≤ 0.05 was considered 

significant. 
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Results 

Effects of TAK-915 on cAMP and cGMP Levels in the Frontal Cortex, 

Hippocampus, and Striatum in Rats.  

Two hours after the oral administration of TAK-915, the concentration of TAK-915 in 

the brain of Long-Evans rats was 0.030 ± 0.021 μg/g at 1 mg/kg, 0.160 ± 0.016 μg/g at 

3 mg/kg, and 0.331 ± 0.095 μg/g at 10 mg/kg (Table 1). The brain concentration of 

TAK-915 dose-dependently increased, and the exposure was sustained for at least up to 

2 h after dosing in rats. To assess the effect of PDE2A inhibition by TAK-915 in the 

brain, the cyclic nucleotide contents were measured in the frontal cortex, hippocampus, 

and striatum in rats 2 h after oral administration. Oral administration of TAK-915 

dose-dependently increased cGMP levels in these brain regions. Significant increase in 

cGMP level was observed at 10 mg/kg of TAK-915 in the frontal cortex (0.063 ± 0.004 

pmol/mg, P ≤ 0.01; Fig. 1A), at 3 and 10 mg/kg in the hippocampus (0.037 ± 0.002, P 

≤ 0.05, at 3 mg/kg; 0.042 ± 0.002 pmol/mg, P ≤ 0.01, at 10 mg/kg; Fig. 1B), and at 10 

mg/kg in the striatum (0.047 ± 0.003 pmol/mg, P ≤ 0.01; Fig. 1C). However, TAK-915 

did not affect cAMP levels in the rat brain even at 10 mg/kg, p.o. In addition, TAK-915 

at 30 mg/kg increased cGMP levels not only in the brain parenchyma, but also in the 

cerebrospinal fluid (CSF), and the time-dependent changes in cGMP levels in brain 

and CSF were well correlated with the changes in pharmacokinetics of TAK-915 (Fig. 

2) 

 

Effects of TAK-915 on pGluR1 Levels in the Rat Hippocampus. 

An increase in the intracellular cyclic nucleotide levels induces the activation of 

protein kinase A (PKA) and protein kinase G (PKG) and results in upregulation of 
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pGluR1 level (Wang et al., 2005; Serulle et al., 2007; Serulle et al., 2008). To assess 

the effect of TAK-915 on the downstream pathway of cyclic nucleotide signaling, the 

phosphorylation levels of GluR1 in the hippocampus were investigated following oral 

administration of TAK-915 at 1, 3, and 10 mg/kg. As shown in Figure 3, TAK-915 

dose-dependently increased pGluR1 in the rat hippocampus, in the same dose range of 

TAK-915 that increased hippocampal cGMP levels; the relative phosphorylation levels 

at 1, 3, and 10 mg/kg of TAK-915 were 96 ± 14%, 130 ± 17%, and 148 ± 10%, 

respectively. A significant increase in the pGluR1 level was observed at 10 mg/kg, p.o. 

(P ≤ 0.05; Fig. 3B). 

 

Effects of TAK-915 on MK-801-Induced Episodic Memory Deficits in the 

Step-Through Passive Avoidance Task in Rats. 

Among several cognitive domains, patients with schizophrenia have shown larger 

impairments in episodic memory (Schaefer et al., 2013). The NMDA receptor 

antagonist MK-801 has produced schizophrenia-like symptoms including episodic 

memory deficits in rodents (Neill et al., 2010; van der Staay et al., 2011). To assess the 

effects of TAK-915 on the episodic memory deficits induced by the NMDA receptor 

antagonist, the passive avoidance task in MK-801-treated rats was performed. As 

shown in Figure 4, the subcutaneous treatment with MK-801 at 0.1 mg/kg significantly 

decreased the avoidance time in the retention test compared with saline (P ≤ 0.01). 

TAK-915 at 3 and 10 mg/kg significantly attenuated the MK-801-induced deficits in 

the avoidance time (P ≤ 0.01 at 3 mg/kg; Fig. 4B, P ≤ 0.05 at 10 mg/kg; Fig. 4C).  

 

Effects of TAK-915 on MK-801-Induced Spatial Working Memory Deficits in 



28 
 

Radial Arm Maze Task in Rats. 

To evaluate the effect of TAK-915 on spatial working memory deficits, which are 

observed in patients with schizophrenia (Piskulic et al., 2007), the radial arm maze task 

was performed in rats with an MK-801-induced deficit. In the control group, all pellets 

in the 8 arms were effectively consumed within 2 errors (Fig. 5). Treatment with 

MK-801 at 0.08 mg/kg, s.c. significantly increased the number of errors (5.6 ± 0.8, P ≤ 

0.01; Fig. 5). Pretreatment with TAK-915 at 10 mg/kg, p.o. significantly reduced the 

number of errors induced by MK-801 (3.4 ± 0.5, P ≤ 0.05; Fig. 5).  

 

Effects of TAK-915 on Subchronic Phencyclidine-Induced Social Withdrawal in 

the Social Interaction Test in Rats. 

Rodents treated subchronically with PCP have been used for investigating social 

withdrawal, a key sub-domain of negative symptoms (Wilson and Koenig, 2014). The 

potential of TAK-915 in the treatment of negative symptoms was evaluated on 

subchronic PCP-induced social withdrawal by using the social interaction test in rats. 

Time spent in social interactions was significantly decreased in subchronic PCP-treated 

rats (30 ± 10 s) compared to the control group rats (83 ± 10 s) (P ≤ 0.01, Fig. 6). 

TAK-915 (3 or 10 mg/kg, p.o.) dose-dependently attenuated subchronic PCP-induced 

deficits in the social interaction test (49 ± 6 s at 3 mg/kg, 72 ± 9 s at 10 mg/kg; Fig. 6). 

A significant effect in this test was observed at 10 mg/kg, p.o. (P ≤ 0.05; Fig. 6).  

 

Effects of TAK-915 on MK-801 or METH-Induced Hyperlocomotion, and on 

Activation of Direct and Indirect Pathway Medium Spiny Neurons in Rats. 

MK-801- or METH-induced hyperlocomotion test has commonly been used as an 
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animal model for positive symptoms in schizophrenia (Andine et al., 1999; Jones et al., 

2011). Current antipsychotics such as aripiprazole, olanzapine, and haloperidol, have 

attenuated the psychostimulant-induced hyperlocomotion (Suzuki et al., 2015). As 

shown in Figure 7A, TAK-915 did not affect the MK-801-induced hyperlocomotion in 

rats even at 10 mg/kg. Likewise, TAK-915 did not suppress the METH-induced 

hyperlocomotion in rats (Fig. 7B). Activation of the indirect pathway MSNs by the 

blockade of dopamine D2 receptors is thought to be a common mechanism of action of 

the current antipsychotics (Kapur and Mamo, 2003; Agid et al., 2008; Kehler and 

Nielsen, 2011; Suzuki et al., 2015). To evaluate the effect of TAK-915 on the activation 

of direct and indirect pathway MSNs, the striatal mRNA expression levels of SP (a 

direct pathway marker) and Enk (an indirect pathway marker) were measured. MP-10, 

developed by Pfizer Inc., is a potent and selective PDE10A inhibitor (Grauer et al., 

2009; Verhoest et al., 2009). MP-10 was used as a positive control, which has been 

reported to activate both direct and indirect pathway MSNs (Suzuki et al., 2016). As 

previously reported, MP-10 at 30 mg/kg significantly increased the expression of both 

SP and Enk mRNA (P ≤ 0.01 for SP and P ≤ 0.01 for Enk; Fig. 7C). In contrast, 

TAK-915 did not affect the expression of either SP or Enk mRNA even at 100 mg/kg 

(Fig. 7C). Additionally, TAK-915 was evaluated for any possible side effects of 

antipsychotic medications such as hyperprolactinemia, hyperglycemia, or cataleptic 

response. TAK-915 did not increase prolactin (Fig. 8A) or glucose levels (Fig. 8B) in 

the rat plasma even at 100 mg/kg. Cataleptic response was assessed by the bar test 2 h 

following the administration of TAK-915. TAK-915 at 10 and 100 mg/kg did not 

significantly increase the cataleptic response in this test (Fig. 9).  
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Discussion 

In the present study, I demonstrated that TAK-915 works as a brain penetrant PDE2A 

inhibitor in vivo. As shown in Figure 1B, a significant increase in cGMP levels in the 

hippocampus were observed at 3 mg/kg and 10 mg/kg of TAK-915. The PDE2A 

occupancy levels of TAK-915 in the hippocampus at 3 mg/kg and 10 mg/kg were 

46.6% and 63.0%, respectively (Ito et al., manuscript in preparation). These results 

suggested that more than ~45% occupancy of PDE2A by TAK-915 would be sufficient 

to produce a significant increase in cGMP levels in the hippocampus. In contrast, 

TAK-915 did not affect cAMP levels in the brain under the experimental conditions 

(Fig. 1). There is a possibility that I failed to detect a significant effect of cAMP levels 

by TAK-915 owing to the high baseline for cAMP contents in brain tissues (Fig. 1). 

However, these observations are in accordance with previous reports that PDE2A 

inhibition in the brain mainly influences cGMP levels rather than cAMP levels 

(Suvarna and ODonnell, 2002; Boess et al., 2004) . Additionally, TAK-915 

dose-dependently increased cGMP levels in rat primary neurons whereas a significant 

change in cAMP level was not observed (Fig. 10). These findings suggest that PDE2A 

plays an important role in degrading cGMP levels in the brain, although PDE2A can 

hydrolyze both cAMP and cGMP. Other PDE family members with higher affinities 

for cAMP, such as PDE4 and PDE10, might be primarily responsible for degrading 

cAMP in the brain, and play a greater role in regulating cAMP hydrolysis in the brain 

compared to PDE2A. 

 

Cyclic AMP and cGMP are differentially involved in distinct phases of memory 

processing such as acquisition, and consolidation (Bernabeu et al., 1996; Rutten et al., 
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2007; Bollen et al., 2014; Akkerman et al., 2016; Lueptow et al., 2016). Cyclic 

GMP-PKG signaling mediates acquisition and early consolidation, whereas 

cAMP-PKA signaling mediates acquisition and late consolidation. In the passive 

avoidance task, oral TAK-915 administered 2 h prior to the acquisition trial attenuated 

MK-801-induced episodic memory deficits (Fig. 4). As TAK-915 increased cGMP 

levels in the rat brain 2 h after administration (Fig. 1), the enhancement of memory 

acquisition mediated through cGMP could contribute to the improvement in episodic 

memory observed in the retention trial. Additionally, it has been reported that 

cGMP-PKG signaling mediates early consolidation, and late consolidation requires 

cAMP-PKA signaling (Bollen et al., 2014). Considering the PK profile of TAK-915, it 

is possible that TAK-915 affects not only early consolidation mediated by cGMP-PKG 

signaling, but also late consolidation mediated by cAMP-PKA signaling. Further 

experiments are required to investigate the effects of TAK-915 on cyclic nucleotides 

during behavior tasks and to clarify the temporal contribution of cyclic nucleotides on 

memory formation. 

 

Cyclic nucleotides play important roles in regulating various signal cascades including 

the NMDA receptor pathway, which is involved in synaptic plasticity such as 

long-term potentiation (LTP) (Kleppisch and Feil, 2009). The hippocampal synaptic 

plasticity is known to be a key element of the neurobiological bases of cognitive 

function (Akhondzadeh, 1999). Elevated cAMP and/or cGMP leads to an activation of 

several sequential cascades which phosphorylate target proteins (Lucas et al., 2000; 

Esteban et al., 2003; Kleppisch and Feil, 2009). Phosphorylation of GluR1 at serine 

845 has been linked to AMPA receptor trafficking to the plasma membrane, thought to 
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influence synaptic plasticity and cognition (Derkach et al., 2007; Serulle et al., 2007; 

Shepherd and Huganir, 2007; Citri and Malenka, 2008). Synaptic GluR1 delivery in 

the hippocampus is reportedly required for hippocampus-dependent learning in the 

passive avoidance task (Mitsushima et al., 2011). The effect of TAK-915 on the 

hippocampal pGluR1 levels, associated with activation of downstream pathways of 

cyclic nucleotide signaling, was investigated. TAK-915 at 10 mg/kg significantly 

increased hippocampal pGluR1 in rats (Fig. 3), indicating that TAK-915 activates the 

downstream pathway of cyclic nucleotide signaling in the hippocampus. The increased 

levels of pGluR1 by TAK-915 could enhance cognitive function via modulation of 

synaptic plasticity. 

 

Among the several cognitive domains that are commonly disrupted in schizophrenia, 

deficits in episodic memory have shown some of the largest effect size (Schaefer et al., 

2013). Deficits in spatial working memory have also been consistently reported in 

schizophrenia patients (Piskulic et al., 2007) and are emphasized as one of the key 

impairments in schizophrenia by the Measurement and Treatment Research to Improve 

Cognition in Schizophrenia (MATRICS) initiative (Marder and Fenton, 2004). To 

explore the potential of TAK-915 on episodic memory and spatial working memory, 

the effects of TAK-915 were assessed in the passive avoidance task and radial arm 

maze task in MK-801-treated rats. In both tasks, TAK-915 attenuated memory deficits 

induced by MK-801 (Fig. 4 and 5). Based on in vitro autoradiography studies using rat 

brain slices, [3H]TAK-915 accumulated to high levels in the CA3 mossy fibers and 

subiculum, a structure located between the hippocampus proper and entorhinal cortex 

(Ito et al., manuscript in preparation). These brain regions play pivotal roles in spatial 
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and episodic information processing (OMara et al., 2009; Cerasti and Treves, 2010). In 

addition, TAK-915 significantly induced c-Fos protein expression, a marker of 

neuronal activity, in the subiculum and entorhinal cortex (Ito et al., manuscript in 

preparation). These results suggest that the pro-cognitive activities of TAK-915 in the 

passive avoidance task and radial arm maze task might be associated with neuronal 

activation in these brain regions. 

 

Social withdrawal is one of the key components of the negative symptoms in 

schizophrenia, generally persisting through the course of the illness and contributing to 

poor psychosocial functioning (Pogue-Geile and Harrow, 1985; Morrison and Bellack, 

1987; Puig et al., 2008). To investigate the potential efficacy of TAK-915 in social 

withdrawal, the subchronic PCP model was used. PCP is known to produce 

schizophrenia-like symptoms in humans (Allen and Young, 1978; Morris et al., 2005) 

and social interaction deficits produced by subchronic treatment with PCP in rodents 

resembles the negative symptoms, particularly social withdrawal (Jenkins et al., 2008; 

Neill et al., 2014). As shown in Figure 6, subchronic PCP treatment (5 mg/kg, i.p., 

twice daily for 7 days) in rats significantly reduced the social interaction time followed 

by at least 8-day washout, indicating that this treatment may cause abnormalities in the 

neural system and/or structures associated with social behaviors. TAK-915 at 10 mg/kg 

significantly attenuated this reduction in time spent in social interaction (Fig. 6). These 

results suggest that TAK-915 prevents social withdrawal in the subchronic PCP model 

relevant to schizophrenia. 

 

Currently, the antipsychotic drugs used in clinical practice demonstrate dopamine D2 
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blockade, such as haloperidol, and lead to an activation of the indirect pathway in the 

striatal MSNs, which is thought to be the mechanism of the observed antipsychotic 

effects (Kapur and Mamo, 2003; Agid et al., 2008; Kehler and Nielsen, 2011; Suzuki et 

al., 2015). TAK-915 did not affect MK-801- or METH-induced hyperlocomotion, even 

at doses that produced a significant increase in cGMP levels in the striatum (Fig. 7A 

and 7B), and did not activate either direct or indirect pathway MSNs in the striatum 

(Fig. 7C). Similarly, a PDE2A inhibitor, Lu AF64280, did not produce 

antipsychotic-like effects in PCP-induced hyperlocomotion in mice, or in the 

conditioned avoidance response in rats (Redrobe et al., 2014). In contrast to PDE2A 

inhibitors, a PDE10A inhibitor, MP-10, which showed antipsychotic-like effects in 

rodents (Grauer et al., 2009), activated both direct and indirect pathway MSNs in the 

striatum (Fig. 7C). Behavioral outcomes of PDE2A inhibition are different from those 

of PDE10A inhibition, although PDE2A and PDE10A are both highly expressed in 

striatal MSNs, and their inhibition increases cGMP levels in the striatum. As the cyclic 

nucleotides and their appropriate PDEs are confined to distinct cellular compartments 

(Francis et al., 2011), the specific PDEs may be regulating the distinct pools of cyclic 

nucleotides and different roles in the striatal MSNs.  

 

Although the mechanism by which TAK-915 attenuates cognitive impairment and 

social withdrawal induced by NMDA receptor antagonists remains unclear, our 

findings suggest that TAK-915 provides a strategy for ameliorating these behavioral 

deficits through the up-regulation of cyclic nucleotides, mainly cGMP. Previous studies 

suggest that PDE2A inhibition can enhance the NMDA receptor/NO/cGMP pathway 

(Suvarna and ODonnell, 2002; Boess et al., 2004) . TAK-915 attenuated cognitive 
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deficits and social withdrawal in rats at a similar dosage that up-regulated cGMP and 

pGluR1 levels in the rat brain. In line with this, Lu AF64280 also increased cGMP 

levels in the hippocampus, and attenuated cognitive deficits in animal models of 

schizophrenia (Redrobe et al., 2014). These findings support the potential impact of 

PDE2A inhibitors on cognitive function and social behavior through modulation of the 

NMDA receptor/NO/cGMP pathway in the forebrain. A single infusion of SNP which 

augments the levels of NO, a key molecule downstream of the NMDA receptor, 

significantly improved multiple symptoms of schizophrenia, the effects of which lasted 

for up to 4 weeks (Hallak et al., 2013). These findings support the hypothesis that the 

modulation of the cGMP signaling pathway by TAK-915 may provide beneficial 

clinical effects in schizophrenia. 

 

Conclusion 

TAK-915 ameliorates cognitive impairment and social withdrawal induced by NMDA 

receptor antagonists in rodents. This selective PDE2A inhibitor demonstrates 

therapeutic potential for cognitive impairment and the negative symptoms in 

schizophrenia. 
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Table and Figures 

 

Table 1. Plasma and brain concentrations of TAK-915 in rats 0.5, 1 and 2 h following 

the administration of TAK-915 (1, 3, or 10 mg/kg, p.o.). Data are expressed as mean ± 

S.D., n = 3 each group. 

 

Rat Strain 

Dose  

(mg/kg, 

p.o.) 

Time 

(h) 

Plasma concentration 

(μg/mL) 

Brain concentration 

(μg/g) 

Long-Evans 

1 

0.5 0.033 ± 0.002 0.028 ± 0.003 

1 0.038 ± 0.025 0.037 ± 0.019 

2 0.023 ± 0.013 0.030 ± 0.021 

3 

0.5 0.065 ± 0.022 0.063 ± 0.017 

1 0.098 ± 0.053 0.114 ± 0.055 

2 0.121 ± 0.013 0.160 ± 0.016 

10 

0.5 0.227 ± 0.067 0.192 ± 0.042 

1 0.282 ± 0.152 0.267 ± 0.120 

2 0.326 ± 0.093 0.331 ± 0.095 

Sprague-Dawley 10 

0.5 0.119 ± 0.040 0.090 ± 0.051 

1 0.141 ± 0.025 0.134 ± 0.038 

2 0.272 ± 0.099 0.280 ± 0.114 
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Figure 1. Effects of TAK-915 on cAMP and cGMP levels in the frontal cortex, 

hippocampus and striatum in rats. Vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) was 

administered 2 h before sampling. Cyclic nucleotide contents in the frontal cortex (A), 

hippocampus (B), and striatum (C) were measured using enzyme immunoassay kits. 

Data are expressed as mean + S.E.M., n = 9 per each group. *P ≤ 0.05, **P ≤ 0.01 

(versus vehicle by two-tailed Williams’ test), ††P ≤ 0.01 (versus vehicle by two-tailed 

Shirley-Williams’ test).  
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Figure 2. Time course of pharmacokinetics profiles and cGMP levels in brain 

following administration of TAK-915 in rats. The concentration of TAK-915 in plasma 

(A) and hippocampus (B), and cGMP levels in the hippocampus (C) and in the CSF 

(D) are shown. Samples were collected 2, 4, 8, 16, and 24 h following the 

administration of TAK-915 (30 mg/kg, p.o.). cGMP level was measured using enzyme 

immunoassay kits. Data are expressed as mean + S.E.M., n = 7 per each group.  
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Figure 3. Effects of TAK-915 on pGluR1 levels in the rat hippocampus. Vehicle or 

TAK-915 (1, 3, or 10 mg/kg, p.o.) was administered 2 h before collecting the rat 

hippocampus. (A) Representative blots were probed with primary antibodies for 

pGluR1, GAPDH, and total GluR1. (B) The intensity of the pGluR1 band for each 

sample was normalized to the corresponding GluR1 band density. Data are expressed 

as mean + S.E.M., n = 6 per each group. *P ≤ 0.05 (versus vehicle by two-tailed 

Williams’ test).  
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Figure 4. Effects of TAK-915 on MK-801-induced episodic memory deficits in the 

step-through passive avoidance task in rats. Vehicle or TAK-915 (A: 1 mg/kg, p.o., B: 

3 mg/kg, p.o., C: 10 mg/kg, p.o.) was administered 2 h prior, and saline or MK-801 

(0.1 mg/kg, s.c.) was administered 30 min prior to the acquisition trial. The latency to 

dark compartment was measured until the rat entered the dark compartment with all 

four paws or remained in the illuminated compartment for 300 s. One day after 

acquisition trial, retention trial was conducted. Data are expressed as mean + S.E.M., n 

= 19 for control group in the experiment of 3 mg/kg, n = 20 for other groups. **P ≤ 

0.01 (versus control by two-tailed Wilcoxons test), †P ≤ 0.05, ††P ≤ 0.01, (versus 

vehicle-MK-801 by two-tailed Wilcoxon’s test).  
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Figure 5. Effects of TAK-915 on MK-801-induced working memory deficits in the 

radial arm maze task in rats. Vehicle or TAK-915 (1 or 10 mg/kg, p.o.) was 

administered 2 h prior to testing and saline or MK-801 (0.08 mg/kg, s.c.) was 

administered 0.5 h prior to testing. The numbers of errors are expressed as mean + 

S.E.M., n = 6 for control group, n = 17 for other groups. **P ≤ 0.01 (versus control by 

Aspin-Welch test). †P ≤ 0.05 (versus vehicle-MK-801 by two-tailed Williams’ test).  
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Figure 6. Effects of TAK-915 on subchronic phencyclidine-induced social withdrawal 

in the social interaction test in rats. Saline or phencyclidine (PCP, 5 mg/kg, i.p.) was 

administered twice daily (b.i.d.) from day 1 to day 7. After an 8-day wash-out period, 

vehicle or TAK-915 (3 or 10 mg/kg, p.o.) was administered 2 h before testing. Time 

spent in active non-aggressive social behavior during the 10-min session of the test 

was recorded. Data are expressed as means + S.E.M., n = 12 per each group. **P ≤ 0.01 

(versus control group by Student’s t-test). †P ≤ 0.05 (versus vehicle-PCP by two-tailed 

Williams’ test).  
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Figure 7. Effects of TAK-915 on MK-801- or METH-induced hyperlocomotion, and 

on activation of direct and indirect pathway medium spiny neurons in rats. (A and B) 

Effects of TAK-915 on MK-801 (A) or methamphetamine (METH) (B) induced 

hyperlocomotion in rats. Vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) was 

administered 2 h before the administration of MK-801 (0.3 mg/kg, s.c.) or METH (0.5 

mg/kg, s.c.). Activity counts during the 2 h following the administration of MK-801 or 

METH were calculated. Data are expressed as mean + S.E.M., n = 3 for control, n = 6 

for 1 mg/kg, n = 7 for other groups. **P ≤ 0.01 (versus control by Student’s t-test). (C) 

Vehicle, TAK-915 (10 or 100 mg/kg, p.o.), or MP-10 (30 mg/kg, p.o.) was 

administered 3 h prior before sampling. The rat striatal mRNA expression levels of SP 

(a direct pathway marker) and Enk (an indirect pathway marker) were analyzed using 

gene expression assays. Data are expressed as mean + S.E.M., n = 4 for MP-10 treated 

group, n = 6 for other groups, **P ≤ 0.01 (versus vehicle by Student’s t-test). 
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Figure 8. Effects of TAK-915 on plasma prolactin and glucose levels in rats. Blood 

samples were collected from the tail vein 2 h after the administration of TAK-915 (10, 

30, or 100 mg/kg, p.o.). (A) The plasma prolactin concentration was determined by 

enzyme immunoassay kits. (B) The plasma glucose concentration was determined by 

colorimetric detection using a chemical analyzer. Data are expressed as mean + S.E.M., 

n = 5 per each group. 
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Figure 9. Effects of TAK-915 on cataleptic response in rats. Duration of cataleptic 

response was measured using the bar test 2 h after the administration of TAK-915 (10 

or 100 mg/kg, p.o.) and olanzapine (10 mg/kg, p.o.). Data are expressed as mean + 

S.E.M., n = 8 for each group, **P ≤ 0.01 (versus vehicle by Student’s t-test). 

†Occurrence of animals in a cataleptic position for more than 90 s.  



46 
 

 

P D E 2 A P D E 1 C P D E 4 B P D E 4 D P D E 8 B P D E 1 0 A

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

P D E s

m
R

N
A

 e
x

p
re

s
s

io
n

(c
o

p
ie

s
/ 

n
g

 R
N

A
)

A

0 0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 1
0

2

4

6

8

T A K -9 1 5  (µ  M )

c
A

M
P

 l
e

v
e

ls
 (

p
m

o
l/

m
L

)

B

0 0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 1
0

2

4

6

8

T A K -9 1 5  (µ  M )

c
G

M
P

 l
e

v
e

ls
 (

p
m

o
l/

m
L

)

*

*

*

C

 
 

Figure 10. Effects of TAK-915 on cAMP and cGMP levels in the rat primary cortical 

neurons. (A) Expression of mRNA for PDE2A, PDE1C, PDE4B, PDE4D, PDE8B, and 

PDE10A in the rat cortical neurons on day in vitro (DIV) 11 were measured using 

quantitative real-time PCR. (B and C) cAMP (B) and cGMP (C) levels in TAK-915 

(0.0001-1 μM)-treated neurons were measured using enzyme immunoassay kits. Data 

are expressed as mean + S.E.M., n = 3. **P ≤ 0.01 (versus vehicle by two-tailed 

Williams’ test).  
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Chapter II: TAK-915, a Phosphodiesterase 2A Inhibitor, Ameliorates the 

Cognitive Impairment Associated with Aging in Rodent Models 

 

Abstract 

Changes in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) signaling are implicated in older people with dementia. Drugs 

that modulate the cAMP/cGMP levels in the brain might therefore provide new 

therapeutic options for the treatment of cognitive impairment in aging and elderly with 

dementia. Phosphodiesterase 2A (PDE2A), which is highly expressed in the forebrain, 

is one of the key phosphodiesterase enzymes that hydrolyze cAMP and cGMP. In this 

study, the effects of PDE2A inhibition on the cognitive functions associated with aging, 

such as spatial learning, episodic memory, and attention, in rats with a selective, brain 

penetrant PDE2A inhibitor, 

N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl-7-methoxy-2-oxo-2,

3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915) were investigated. 

Repeated treatment with TAK-915 (3 mg/kg/day, p.o. for 4 days) significantly reduced 

the escape latency in aged rats in the Morris water maze task compared to the vehicle 

treatment. In the novel object recognition task, TAK-915 (1, 3, and 10 mg/kg, p.o.) 

dose-dependently attenuated the non-selective muscarinic antagonist 

scopolamine-induced memory deficits in rats. In addition, oral administration of 

TAK-915 at 10 mg/kg significantly improved the attention in middle-aged, poorly 

performing rats in the 5-choice serial reaction time task. These findings suggest that 

PDE2A inhibition in the brain has the potential to ameliorate the age-related cognitive 

decline.  
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Introduction 

Aging is a major risk factor in dementia, often accompanied by a cognitive decline. 

Impairments in the cognitive domains, such as spatial learning, episodic memory, and 

attention, are observed in the elderly, patients with mild cognitive impairments, and the 

early stages of AD, although individual differences have been reported (Reid et al., 

1996; Perry et al., 2000; Lithfous et al., 2013; Huntley et al., 2017; Mortamais et al., 

2017). The cognitive decline in the elderly contributes to gradual loss of daily 

functioning and decrease in quality of life, resulting in considerable costs to society and 

family caregivers. Therefore, cognition-enhancing drugs are needed as an approach to 

prevent age-related cognitive impairments and reduce the incidence of dementia. 

 

Changes in the cAMP and cGMP signaling in the brain are associated with aging and 

AD. This is supported by findings including, a reduced adenylyl cyclase activity in the 

brain of patients with AD (Cowburn et al., 1992), reduced NO-soluble guanylyl 

cyclase in the brains of older people aged 60-90 years old (Ibarra et al., 2001), as well 

as the correlation between changes in the cyclic nucleotide levels in the CSF and the 

cognitive performance in patients with AD (Ugarte et al., 2015). Multiple cognitive 

domains such as spatial learning, episodic memory, and attention are to be regulated by 

cAMP/cGMP and their downstream signaling cascades, which are mediated by PKG 

and PKA (Taylor et al., 1999; Paine et al., 2009; Bollen et al., 2014; Heckman et al., 

2015). The increase in the cAMP/cGMP levels plays an important role in 

neurotransmitter release (Schoffelmeer et al., 1985; Arancio et al., 1995; Neitz et al., 

2011) and in neural plasticity changes, such as enhancement of LTP (Kleppisch and 

Feil, 2009). Therefore, enhancing cAMP/cGMP signaling may be a promising strategy 
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to ameliorate impairments in multiple cognitive domains in age-related diseases. 

 

PDEs are enzymes that degrade the intracellular cyclic nucleotides. They are currently 

classified into 11 types. PDE2A is a dual substrate enzyme that hydrolyzes both cAMP 

and cGMP. PDE2A is highly expressed in the forebrain, which is associated with 

cognitive function, whereas its expression in the peripheral tissues is relatively low 

(Stephenson et al., 2009; Stephenson et al., 2012). The cognition-enhancing effects of 

PDE2A inhibition, under physiological and pathological conditions, have previously 

been investigated. The PDE2A inhibitor BAY 60-7550 demonstrated enhanced 

cognitive effects in aged rats (Domek-Lopacinska and Strosznajder, 2008), in a 

APPsw/PS1dE9 mouse model of AD (Sierksma et al., 2013). These effects are also 

supported by the finding that PDE2A inhibition has been shown to modulate the short 

and/or long terms of synaptic plasticity in rodents, including LTP and paired-pulse 

facilitation, linked to memory formation (Boess et al., 2004; Fernandez-Fernandez et 

al., 2015). Taken together, PDE2A inhibition is expected to ameliorate the cognitive 

impairments associated with aging. Several PDE2A inhibitors, such as ND-7001 and 

PF-999, have been tested in clinical trials. These PDE2A inhibitors, however, were not 

successful and the reasons for their discontinuation have not yet been disclosed 

(Gomez and Breitenbucher, 2013). TAK-915 is a selective PDE2A inhibitor that 

exhibits more than 4100-fold higher selectivity for PDE2A than for other PDEs, has 

good brain penetration, and an attractive overall pharmacokinetic profiles (Mikami et 

al., 2017; Nakashima et al., 2018). In a previous study, I demonstrated that oral 

administration of TAK-915 increased the cGMP levels and up-regulated the 

phosphorylation of a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) 
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receptor subunit GluR1, which is one of the downstream targets of cyclic nucleotides 

in the rat hippocampus (Nakashima et al., 2018). TAK-915 ameliorated deficits in 

several cognitive domains, including episodic memory and working memory in rat 

models of schizophrenia. 

 

In this study, I investigated the effect of PDE2A inhibition on the cognitive functions 

associated with aging using TAK-915. First, I assessed the effect of TAK-915 on 

spatial learning in aged rats using the Morris water maze task (MWMT). Second, the 

effect of TAK-915 on episodic memory deficits induced by scopolamine was evaluated 

using the novel object recognition test (NORT). Finally, I conducted the 5-choice serial 

reaction time task (5-CSRTT) to investigate the effect of TAK-915 on attention in 

middle-aged rats. 

 

 

Materials and Methods  

All studies were performed in accordance with the guidelines of the Experimental 

Animal Care and Use Committee of Takeda Pharmaceutical Company Limited, Shonan 

Health Innovation Park, Fujisawa, Japan, accredited by the Association for Assessment 

and Accreditation of Laboratory Animal Care (AAALAC). 

 

Animals. Specific details of the strain and species are given within each section. The 

animals were housed in groups of 2-4 per cage under a 12-h light-dark cycle (lights on 

at 7:00 AM) with ad libitum food and water. Animals were allowed a habituation 

period of one-week or greater before initiation of experiments. 
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Drugs. TAK-915 was synthesized at Takeda Pharmaceutical Company Limited, 

Fujisawa, Japan (Mikami et al., 2017). Donepezil hydrochloride (Megafine Pharma (P) 

Ltd., Mumbai, India) and scopolamine hydrobromide (Tocris Bioscience, Minneapolis, 

MN, USA) were used in this study. TAK-915 and donepezil were suspended in 0.5% 

(w/v) methylcellulose in distilled water and administered orally (p.o.). Scopolamine 

was dissolved in saline and administered subcutaneously (s.c.). The dosage of the 

compounds corresponds to molecular weight of salt. The volume of administration was 

2 mL/kg body weight. 

 

Morris Water Maze Task. This task was assessed in 10-week-old and 26-month-old 

male F344 rats (Charles River Laboratories Japan Inc., Tokyo, Japan) as previously 

described (Takahashi et al., 2010), with some modifications. In order to reduce the 

individual difference in the swimming abilities, the visible platform test was conducted 

before the hidden platform test. Each rat was trained in a circulator tank (120 cm in 

diameter and 45 cm in depth), which was then filled with water (24 ± 1 °C) to a depth 

of 35 cm. A platform (10 × 10 cm) covered with green-painted wire mesh was located 

in the center of the circulator tank, and its surface was exposed 2 cm above the water 

surface. Each trial was started when the rat was placed in the water facing the wall of 

the water tank. The sequence of starting points was selected randomly in one of four 

equally spaced start locations. In the visible platform test, each rat was given four trials 

in a day, and the latency which each rat required to escape onto the visible platform 

was recorded. Based on the averaged escape latency, the aged rats were allocated into 

two groups for the hidden platform test. In the hidden platform test, a transparent 
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platform (10 × 10 cm) was located in the middle of one quadrant, equidistant from the 

center and edge of the tank, 1 cm below the surface of the water. The tank was placed 

in an experimental room with many visible cues, which were all kept constant during 

the test period. Each rat underwent two trials daily with a 1-h inter-trial interval (ITI) 

for 4 consecutive days. After reaching the hidden platform, the rat was allowed to 

remain on it for about 10 s. Rats that failed to find the platform within 120 s were 

guided to it by hand. The escape latency and the swimming speed of the rats to find the 

hidden platform were automatically recorded by a computer analyzing system 

(CompACT VAS Ver.3.0, Muromachi Kikai Co., Ltd., Tokyo, Japan). The value of the 

data was the mean of two trials. During the hidden platform test (days 1- 4), a vehicle 

or TAK-915 (3 mg/kg) was administered p.o. 1 h before the testing. The probe test was 

conducted 24 h after the hidden platform test. During the probe test, the platform was 

not present, and each rat was allowed to swim for 60 s. The percent of time spent in the 

target quadrant was recorded and analyzed.  

 

Novel Object Recognition Test. This test was assessed in 7-week-old male 

Long-Evans rats (CLEA Japan Inc., Tokyo, Japan) as described previously (Bevins and 

Besheer, 2006; Shiraishi et al., 2016), with minor modifications. On day 1, the rats 

were habituated to the experimental room for over 1 h, and then each animal was 

allowed to habituate to the empty test box (a gray-colored polyvinyl chloride box of 40 

× 40 × 50 cm) for 10 min. This test consists of both acquisition and retention trials. 

These trials were separated by a 4-h ITI. In the acquisition trial on day 2, the rats were 

allowed to freely explore two identical objects (A1 and A2) for 3 min. In the retention 

trial, rats were again allowed to explore a familiar object (A3) and a novel object (B) 



53 
 

for 3 min. The object exploration was defined with the rats’ licking, sniffing, or 

touching the object with the fore-limbs while sniffing. Leaning against the object to 

look upward and standing or sitting on the object was excluded. The exploration time 

was scored manually for each subject (A1, A2, A3, and B). The data of the rats with an 

object exploration totaling less than 10 s were excluded. Novelty discrimination index 

(NDI) was calculated as follows: novel object interaction time/total interaction time × 

100 (%). Vehicle or TAK-915 (1, 3 or 10 mg/kg) was administered p.o. 2 h before the 

acquisition trial. Saline or scopolamine (0.1 mg/kg) was administered s.c. 30 min 

before the acquisition trial. 

 

Measurements of Acetylcholine Release in the Hippocampus of Rats. The 

microdialysis studies were conducted using 7-week-old male SD rats (Charles River 

Laboratories Japan). The rats were anesthetized with pentobarbital (50 mg/kg, i.p.) and 

fixed on a stereotaxic frame (Narishige, Tokyo, Japan). A dummy cannula was 

implanted through the hippocampus (coordinates: 3.8 mm posterior to the bregma, 1.8 

mm lateral to the midline, and 2.2 mm ventral to the bregma). Brain dialysis was 

performed 48 h after the implantation of the dummy cannula in the animals following 

replacement of the cannula with a microdialysis probe (A-I-4-02, depth; 4.0 mm, 

membrane length; 2.0 mm, Eicom, Kyoto, Japan). Ringer solution (147 mM NaCl, 4 

mM KCl, and 2.3 mM CaCl2) was pumped through the dialysis probe at a constant rate 

of 1 μL/min. The baseline for acetylcholine release (average of 3 consecutive 20-min 

samples immediately before treatment) was obtained. The dialysates were collected for 

4 h following oral administration of a vehicle, TAK-915 (10 mg/kg), or donepezil (1 

mg/kg). These samples (20 μL) collected every 20 min were subjected to 
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high-performance liquid chromatography using an electrochemical detector for 

determination of the acetylcholine levels. The column (Eicompak AC-GEL [2.0 × 150 

mm], Eicom AC-ENZYMPAK [3.0 × 4 mm], Kyoto, Japan) was used with a mobile 

phase (50 mM KHCO3, 300 mg/L sodium 1-decanesulfonate, and 50 mg/L 

EDTA-2Na). The flow rate of the mobile phase was set at 150 μL/min using a pump 

and Ringer solution was injected using a microsyringe pump (Eicom, Kyoto, Japan). 

The detector was set at +450 mV versus Ag/AgCl. After the measurements, the animals 

were sacrificed, and the brains were removed. Trypan blue stain solution (Wako, Tokyo, 

Japan) was injected from the end of the guide cannula, and the placement of the tip of 

the probe guide cannula was confirmed. 

 

5-choice Serial Reaction Time Task. This task was assessed in 10-month-old 

Long-Evans rats (CLEA Japan Inc., Tokyo, Japan) as previously described (Mohler et 

al., 2010; Shiraishi et al., 2016), with some modifications. During the experimental 

period, animals were food-restricted to a limit of 85-90% of their free-feeding body 

weight. Training and testing were conducted using eight operant chambers in 

sound-attenuating boxes (Med Associates Inc., St Albans, VT). Each chamber had a 

concave curved wall with five adjacent apertures. The light above each aperture was 

used as the discriminative stimulus. Food pellets (Bioserve, Dustless precision 45-mg 

pellets) were delivered into a food magazine. Each session started with illumination of 

the house light and delivery of an initial food pellet into the food magazine. Each trial 

was started by a nose poke into the food magazine by the rat. After a 5-s ITI, a light 

stimulus was presented in one of the five apertures. Correct responses (responses in the 

illuminated aperture) resulted in the delivery of a food pellet into the food tray. 
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Incorrect responses (responses in the non-illuminated apertures), omissions (failure to 

respond during the limited hold), and premature responses (responses occurring before 

stimulus presentation) were punished by a 5-s timeout, turning off of the house light, 

and no delivery of pellets. Each session lasted 35 min or until 100 trials had been 

completed. The duration of the light stimulus was initially set at 30 s and gradually 

decreased throughout training to 2 s. The duration of the limited hold was set at 5 s 

during the experiments. The rats received one training session per day until they 

achieved criterion performance (>75% accuracy and <20 omissions) over 3 

consecutive days. On the testing day, the stimulus duration was 0.5 s. On other days, 

the rats received a daily maintenance training with the standard version (stimulus 

duration, 2 s). Vehicle and TAK-915 (3 and 10 mg/kg) were administered p.o. 2 h 

before the testing in a crossover design with a week washout period. In order to 

investigate the sensitivity of the “poor” performing group to TAK-915, the rats were 

separated into “poor” (n = 8) and “good” (n = 8) performing groups of equal size, with 

a split at the median performance. Parameters of this task were as follows; accuracy 

(percentages of correct responses) [correct responses/ (correct + incorrect responses)]; 

omission errors (the number of omissions); premature responses (the number of nose 

pokes into any stimulus aperture during an ITI); and magazine latency (the mean time 

between a correct response and a nose poke into the food magazine).  

 

Measurement of Sleep-Wake State. Eight-week-old male SD rats were used for the 

recording of electroencephalography (EEG) and electromyography (EMG). The 

animals were anesthetized using pentobarbital (50 mg/kg i.p.) and were fixed on a 

stereotaxic frame (Narishige, Tokyo, Japan). The transmitter (F40-EET, Data Sciences 
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International, St. Paul, MN, USA) was placed in the subcutaneous cavity along the 

dorsal flank, between the forelimb and hind limb, and the leads were routed along a 

head/neck incision. For the detection of EEG signals, one pair of leads (negative lead 

placed +2.2 mm anterior and -3 mm lateral to bregma, positive lead placed +1 mm 

anterior and -4 mm lateral to lambda) was fixed to the skull using a dental cement. 

Additionally, another set of pair of leads was sutured into the nuchal muscles to 

monitor the EMG activity. After the surgery, the rats were singly housed under a 12-h 

light-dark cycle (lights on at 7:00 AM) with food and water ad libitum and were 

allowed to recover from the implantation surgery for at least one week. Vehicle and 

TAK-915 (3 and 10 mg/kg) were administered p.o. at around 11:30 AM in a crossover 

design, with a two- or three-day washout period. The EEG/EMG signals were 

continuously recorded using the Dataquest ART system (Data Sciences International, 

St. Paul, MN, USA). The recorded data were automatically scored in 4 s epochs as 

wakefulness, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) 

sleep using a sleep scoring software (Sleepsign ver.3, Kissei Comtec, Nagano, Japan). 

Data were expressed as the time spent in each state during 3 h following the oral 

administration. 

 

Measurement of Intracellular Cyclic Nucleotides in the Primary Cortical Neurons. 

Primary cortical neurons were prepared from fetuses of SD rats, which were extracted 

from a mother animal at 17-18 days of gestation. Cells were isolated using nerve-cell 

dispersion solutions (Sumitomo Bakelite, Tokyo, Japan) containing papain, following 

the manufacturer’s instructions. The isolated primary cells were suspended in a 

neurobasal medium (Life technologies, CA) with a B-27 supplement, 
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Penicillin-Streptomycin and L-Glutamine (Life technologies), and were plated onto 

poly-L-lysine-coated 96-well culture plates (Sumitomo Bakelite) at a density of 5 × 

104 cells/100 μL/well. The plates were incubated at 37 °C under 5% CO2. Medium 

(100 μL) was added to each well on day in vitro (DIV) 3 or 4. TAK-915 and 

3-isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich) were dissolved in dimethyl 

sulfoxide (DMSO), and were then diluted in a neurobasal medium. All the solutions of 

TAK-915 and its vehicle contained 0.1% DMSO. All the solutions and the vehicle were 

dispensed in a polypropylene 96-well plate and incubated at 37 °C until just before use. 

For evaluating the effects of TAK-915 in the presence of NMDA or SNP, on DIV 7, the 

cells were rinsed with a Hanks balanced salt solution and incubated with 1 μM of TTX 

for 50 min at 37 °C. After addition of 10 μM IBMX and TAK-915, cells were 

incubated for 10 min at 37 °C. Then, NMDA or SNP was added, and the cells were 

incubated for 15 min at 37 °C. Finally, all the solutions were decanted, and the cells 

were dissolved in 100 μl/well of lysis buffer. After shaken on a plate shaker for 30 min, 

the cell lysates were transferred to a new polypropylene plate. Intracellular cyclic 

nucleotide concentration in the lysates was measured using cAMP/cGMP EIA system 

(GE healthcare, UK), in accordance with the manufacturer’s instructions. 

 

Statistical Analysis. The Aspin-Welch test (for nonhomogeneous data) or Students 

t-test (for homogeneous data) was used for pairwise group comparison. In the 

dose-response experiments, homogeneity of the variances was evaluated using the 

Bartlett’s test, followed by the two-tailed Williams’ test (for parametric data) or 

two-tailed Shirley-Williams test (for non-parametric data). A value of P ≤ 0.05 was 

considered significant. In the MWMT study, a pairwise group comparison was 
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performed using two-way analysis of variance (ANOVA) for repeated measures 

followed by Bonferronis t -test with significance set at P ≤ 0.0125 or one-way ANOVA 

followed by Bonferronis t -test with significance set at P ≤ 0.05. In the 5-CSRTT and 

sleep studies, the statistical differences between the vehicle-treated group and 

TAK-915-treated group were analyzed using a crossover analysis of variance followed 

by a contrast test with significant set at P ≤ 0.05.  

 

 

Results 

In the previous study, an increase in the hippocampal cGMP levels was observed after 

the oral administration of 3 and 10 mg/kg of TAK-915 (Nakashima et al., 2018). 

Therefore, TAK-915 doses of 3 and 10 mg/kg were primarily used to induce PDE2A 

inhibition in the following behavioral tasks. 

 

Effects of Repeated Administration of TAK-915 on the Performance of Aged Rats 

in the Morris Water Maze Task. 

To investigate the effects of PDE2A inhibition on the spatial memory deficits 

associated with aging, I orally administered TAK-915 to aged rats during the learning 

session for 4 days and tested their performance to find the hidden platform in the 

MWMT. Initially, the visible platform test was conducted to investigate whether there 

were any differences in the swimming ability and motivation to escape from the water 

between the young and aged rats. The mean latencies to escape onto the visible 

platform in the young and aged groups were 13.2 ± 1.6 s (n =15) and 54.0 ± 5.5 s (n = 

30), respectively. The latency of the aged rats to reach the visible platform in the water 
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tank was significantly longer than the latency in the young rats (P ≤ 0.01). Based on 

the results of the visible test, the aged rats were randomly allocated into two groups 

before the treatments, a control group (54.1 ± 8.1 s, n = 15) and TAK-915-treated 

group (53.8 ± 7.6 s, n = 15). In the hidden platform test, significant differences were 

observed between the young and aged-control rats in the escape latency from day 2 to 

day 4 (P ≤ 0.0125, Fig. 11A). The aged group receiving 3 mg/kg of TAK-915 showed a 

significantly reduced latency to find the platform compared to the vehicle-treated 

group on day 3 (P ≤ 0.0125, Fig. 11A). There was no significant difference in the mean 

velocity of swimming during the MWMT between the vehicle-treated aged rats and 

TAK-915-treated aged rats on each day (P > 0.0125, Fig. 11B), suggesting that 

TAK-915 did not affect the motor functions. In the probe test, significant differences 

were observed between the young and aged-control rats in the percent of time spent in 

the target quadrant (P ≤ 0.05, Fig. 12). The aged group receiving 3 mg/kg of TAK-915 

did not show a significant effect on the percent of time spent in the target quadrant 

compared with the vehicle-treated aged group (P > 0.05, Fig. 12). 

 

Effects of TAK-915 on the Scopolamine-Induced Deficit in the Novel Object 

Recognition Task in Rats. 

To evaluate the effect of PDE2A inhibition on the cholinergic deficits, I used the 

NORT with a scopolamine-induced deficit. A one-way analysis of variance revealed 

that there were no differences among the groups in the total exploration time of the two 

identical objects in the acquisition trials (P > 0.05, Fig. 13A). After a 4-h ITI, the 

vehicle-pretreated rats spent more time exploring the novel object in the retention trial 

than the familiar object (P ≤ 0.01, Fig. 13B). This effect was disrupted by the 
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administration of 0.1 mg/kg of scopolamine treatment. The scopolamine-treated groups 

orally administered TAK-915 (1, 3, and 10 mg/kg) explored the novel object 

significantly longer than groups treated with a vehicle (P ≤ 0.05 for 1 mg/kg, P ≤ 0.01 

for 3 and 10 mg/kg, Fig. 13B). TAK-915 at a dose of 3 and 10 mg/kg significantly 

increased the NDI (P ≤ 0.05, Fig. 13C). Based on these results, I investigated the 

possibility that TAK-915 enhanced the cognitive function by increasing the 

acetylcholine release in the hippocampus. As shown in Figure 14, the oral 

administration of donepezil at a dose of 1 mg/kg significantly increased the 

acetylcholine release in the hippocampus compared to that of a vehicle (P ≤ 0.05, Fig. 

14B). In contrast, TAK-915 at a dose of 10 mg/kg did not affect the acetylcholine 

release under these experimental conditions (P > 0.05, Fig. 14B). 

 

Effects of TAK-915 on the Performance of the 5-choice Serial Reaction Time Task 

in Middle-aged, Poorly Performing Rats. 

Attention deficits are observed in middle-aged rats, indicating that the attention deficit 

is an early marker of cognitive decline (Guidi et al., 2015). In this study using the 

5-CSRTT, the effects of PDE2A inhibition on attention and impulsivity in middle-aged, 

poorly performing rats were assessed. TAK-915 at a dose of 10 mg/kg, p.o., 

significantly enhanced the performance accuracy in poorly performing subjects 

compared to the vehicle (P ≤ 0.05, Fig. 15A). TAK-915 at a dose of 10 mg/kg showed 

a tendency to reduce the number of omissions (P = 0.066, Fig. 15B) and premature 

responses (P = 0.059, Fig. 15C). There were no significant differences among the three 

groups with respect to the latency to collect rewards from the food magazine following 

a correct response (magazine latency) (P > 0.05, Fig. 15D). These results suggest that 
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TAK-915 can improve attention and attenuate impulsivity without affecting the motor 

function in poorly performing rats. In good performers, TAK-915 did not show any 

significant effects on the accuracy, number of omissions, premature responding, and 

magazine latency (Fig. 16). To investigate whether this pro-cognitive effect by PDE2A 

inhibition is associated with sedation or arousal, the amount of sleep and wakefulness 

following the administration of TAK-915 in the rats was measured. Figure 17 shows 

the mean time spent in wakefulness, NREM sleep, and REM sleep during 3 h after 

treatment. TAK-915 at all tested doses did not affect the duration of wakefulness, 

NREM sleep, and REM sleep (P > 0.05, Fig. 17).  

 

 

Discussion 

Age-related cognitive decline influences the ability of daily functioning and increases 

the risk of developing dementia. PDE2A has been proposed as one of the attractive 

targets for cognitive enhancement in aging. In the present study, I demonstrated that 

PDE2A inhibition can ameliorate the age-related cognitive deficits in rats. 

 

Deficits in spatial memory, which are associated with hippocampal function, have been 

observed in aging (Moffat, 2009; Lithfous et al., 2013). Similar to the clinical findings, 

aged rats show deficits in spatial memory that depend on the integrity of the 

hippocampus and related brain regions, such as the subiculum (Lindner, 1997; Leutgeb 

et al., 2005; Witter and Moser, 2006). Accordingly, PDE2A immunostaining in the 

hippocampus was especially strong in the CA3 mossy fibers and subiculum 

(Stephenson et al., 2012), and TAK-915 at 3 and 10 mg/kg, p.o., significantly increased 
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the cGMP levels in the hippocampus of rats (Nakashima et al., 2018). Cyclic 

GMP/PKG signaling has been reported to be required for the improvement of 

hippocampus-dependent spatial memory by PDE inhibitors (Hosseini-Sharifabad et al., 

2012), and phosphorylation of GluR1 plays critical roles in synaptic plasticity, 

including LTP and spatial memory (Lee et al., 2003; Serulle et al., 2007). Interestingly, 

in addition to the cGMP levels, TAK-915 also up-regulated the pGluR1 levels in the rat 

hippocampus (Nakashima et al., 2018). Considering these findings, the increases in 

cGMP and pGluR1 levels in the hippocampus induced by PDE2A inhibition may result 

in the amelioration of cognitive deficits in aged rats through the modulation of synaptic 

plasticity. In aged rats, repeated administration of TAK-915 significantly reduced 

escape latency, measured as an animal’s ability to learn the spatial location of a hidden 

platform across multiple sessions without intervening confounding factors such as 

differences in swim speed (Fig. 11). In the hidden platform test, rodents usually use a 

combination of hippocampus-dependent (spatial learning) and -independent systems 

although the mechanism of switching between the two systems and their relative 

contributions are not well understood (Moghaddam and Bures, 1996; McGauran et al., 

2005). Based on these findings, I believe that TAK-915 has the potential to accelerate 

spatial learning in rodents. In the probe test, I could not detect any significant effect 

induced by TAK-915 (Fig. 12). To detect a significant effect by TAK-915 in the probe 

test, I may need to perform TAK-915 treatment immediately prior to the probe test 

since cAMP/cGMP levels play important roles in memory recall (Lueptow et al., 2016). 

In addition, spatial memory consolidation in aged rats may require a much higher 

increase in cyclic nucleotides by high dose treatment with TAK-915. To finely 

characterize the effect of PDE2A inhibition on spatial learning, further investigations 
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using different protocols in the MWMT, such as a cue-based platform test, will be 

required. 

 

Cholinergic dysfunction in the forebrain and hippocampus is observed in older people 

with dementia (Mesulam, 2004). Blockade of the cholinergic transmission using 

scopolamine, across multiple species, has been shown to induce cognitive impairments 

similar to those seen in aging (Tariot et al., 1996; Buccafusco et al., 2008). The oral 

administration of TAK-915 dose-dependently ameliorated the acquisition memory 

deficits induced by scopolamine in rats in the NORT (Fig. 13). As PDE2A is highly 

expressed at the synapse terminal of neurons, it may be involved in the regulation of 

neurotransmitters, including acetylcholine (Stephenson et al., 2009; Hu et al., 2012; 

Stephenson et al., 2012). However, under the present experimental conditions, 

TAK-915 at 10 mg/kg did not induce any changes in the acetylcholine release in the 

hippocampus in contrast to the increased acetylcholine release induced by donepezil 

(Fig. 14). Thus, this dose-dependent amelioration in scopolamine-induced cognitive 

deficits could not be explained by an increase in acetylcholine release. However, 

further investigations to measure acetylcholine release under the scopolamine-treated 

condition or during the performance of NORT will be required. A possible explanation 

is that PDE2A inhibition may ameliorate scopolamine-induced acquisition memory 

deficits by affecting postsynaptic cholinergic function. Interestingly, the ability of 

cholinergic neurons to produce cGMP levels is decreased during aging 

(Domek-Lopacinska et al., 2005), implying that cholinergic dysregulation underlying 

age-related cognitive dysfunction is associated with cGMP levels. Cyclic AMP and 

cGMP are known to be differentially involved in the memory processes, including 
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acquisition, consolidation, and retention (Bollen et al., 2014; Akkerman et al., 2016; 

Lueptow et al., 2016), and both cAMP and cGMP mediate the acquisition processes 

(Akkerman et al., 2016). Pretreatment with TAK-915 may facilitate acquisition 

memory at the same doses that increase the cGMP levels in the hippocampus (Fig. 

12C). In addition, cGMP signaling is also important for the regulation of synaptic 

plasticity (Kleppisch and Feil, 2009), as demonstrated by reports that PDE2A 

inhibition was able to enhance the induction of LTP in the rat hippocampus (Boess et 

al., 2004). These findings suggest that the increased cGMP levels mediated by PDE2A 

inhibition play a crucial role in ameliorating the acquisition memory deficits by 

cholinergic dysfunction. 

 

Attention deficits, which occur in aging and early AD, can precede impairments in 

other cognitive domains and lead to difficulties in day-to-day living, including safe 

driving (Parasuraman and Nestor, 1991; Perry et al., 2000; Huntley et al., 2017). In the 

5-CSRTT, TAK-915 improved the accuracy in middle-aged, poorly performing rats 

(Fig. 15A). In contrast, TAK-915 had no impact on the accuracy in good performers 

(Fig. 16A), which is likely due to ceiling effects on cognitive enhancement in these 

models. Similar ceiling effects are also observed in attentional improvement following 

nicotine administration in the 5-CSRTT, where the enhancement was detected in poor 

performers, but not in good performers (Mohler et al., 2010). Additionally, an infusion 

of cAMP analog or dopamine D1 receptor agonist into the medial prefrontal cortex, 

which increases the cAMP levels, improved the attention only in poor performers in 

the 5-CSRTT (Granon et al., 2000; Paine et al., 2009). These findings support the 

enhancing effects of PDE2A inhibition on attention in poor performers. 
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Agents that enhance the attentional functions, such as nicotine and amphetamine, 

possess the risk of increasing impulsivity and inducing psychotic symptoms. 

Interestingly, TAK-915 demonstrated the tendency to reduce premature responses in 

poorly performing rats (P = 0.059, Fig. 15C). This can be interpreted as a non-specific 

effect associated with sedation or decreased activity. However, this possibility could be 

ruled out as there were no differences in the magazine latencies (to collect food reward 

from the magazine following a correct response) between the vehicle-treated and 

TAK-915-treated groups. Additionally, TAK-915 did not affect the time spent in 

wakefulness, NREM sleep, and REM sleep at doses that showed the pro-cognitive 

activity in rats (Fig. 17). TAK-915 may therefore have a very low risk of inducing 

non-specific effects such as sedation and decreased activity. These results also suggest 

that the attentional enhancing activity of TAK-915 is different from that induced by 

wake-promoting drugs, such as amphetamines, which is linked to psychosis and 

hyperactivity. It has been reported that genetically modified mice with selective 

ablations in the medial habenula (mHb)-interpeduncular nucleus pathway, exhibited 

impulsive behaviors (Kobayashi et al., 2013). PDE2A is highly expressed in the mHb, 

which plays a pivotal role in regulating learning, memory, and attention (Lecourtier 

and Kelly, 2007; Stephenson et al., 2009; Stephenson et al., 2012). Although the role of 

PDE2A in the mHb is not well characterized, it is possible that this enzyme may 

regulate impulsive behaviors by modulating the mHb function. 

 

The mechanism of PDE2A inhibition-induced amelioration of the age-related cognitive 

impairment is still unknown. One possible explanation could be the possible 
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modulation of the glutamatergic pathways in the brain. Changes in the glutamatergic 

signaling are seen in aging. For example, patients with dementia showed reduced 

glutamate levels in the CSF (Martinez et al., 1993) and in post-mortem brain (Lowe et 

al., 1990). Preclinical studies also suggest that NMDA receptor hypofunction is 

associated with cognitive impairment in aging. Aged rats showed a reduction in NR2B 

expression, which correlated with their cognitive performance in the MWMT (Clayton 

et al., 2002). Moreover, the increase in cGMP levels mediated by NMDA receptor 

activation was attenuated in the hippocampus of aged rats (Vallebuona and Raiteri, 

1995; Chalimoniuk and Strosznajder, 1998), suggesting that the impaired downstream 

signaling of the NMDA receptor is associated with aging. In terms of the enhanced 

NMDA receptor signaling in age-related cognitive decline, D-cycloserine reportedly 

ameliorated social memory and spatial reversal learning in aged rats (Portero-Tresserra 

et al., 2018). The previous studies have demonstrated that TAK-915 can ameliorate the 

cognitive impairment and social withdrawal in NMDA receptor antagonist-induced rat 

models (Nakashima et al., 2018). Consistent with the reports that PDE2A inhibition 

can enhance the NMDA receptor/NO/cGMP pathway in the primary neuronal cultures 

(Suvarna and ODonnell, 2002; Boess et al. , 2004), TAK-915 also enhanced the cGMP 

production in the presence of NMDA or NO donor (Fig. 18). Collectively, these 

findings support the possibility that modulation of the NMDA receptor/NO/cGMP 

pathways by PDE2A inhibition could contribute to the amelioration of cognitive 

impairments associated with aging.  

 

Conclusions 

TAK-915, the selective PDE2A inhibitor, ameliorated age-related cognitive deficits in 
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rats. PDE2A inhibition showed a beneficial effect on multiple cognitive domains, such 

as spatial learning, episodic memory, and attention, and may provide a new therapeutic 

option in patients with cognitive impairments associated with aging. 

  



68 
 

Figures 

1 2 3 4
0

2 0

4 0

6 0

8 0

Y o u n g  -  V e h ic le

A g e d  -  V e h ic le

A g e d  -  T A K -9 1 5  (3  m g /k g ,  p .o . )

*

*

*

A

#

D a y

E
s

c
a

p
e

 l
a

te
n

c
y

 (
s

)

1 2 3 4
0

1 0

2 0

3 0

4 0

5 0

Y o u n g  -  V e h ic le

A g e d  -  V e h ic le

A g e d  -  T A K -9 1 5  (3  m g /k g ,  p .o . )

B

D a y

V
e

lo
c

it
y

 (
c

m
/s

)

 

Figure 11. Effects of Repeated Administration of TAK-915 on the Performance of 

Aged Rats in the Morris Water Maze Task. 

Vehicle or TAK-915 (3 mg/kg) was administered p.o. 2 h prior to the hidden platform 

test. The mean the escape latency to the hidden platform (A) and swimming velocity 

(B) on each day of testing is plotted as day 1 to day 4. Data are expressed as mean ± 

S.E.M., n = 15 per each group. *P ≤ 0.0125 (vs. vehicle-treated young group by 

Student’s t-test after Bonferroni correction), #P ≤ 0.0125 (vs. vehicle-treated aged 

group by Student’s t-test after Bonferroni correction).  
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Figure 12. Effects of Repeated Administration of TAK-915 on the Performance of 

Aged Rats in the Probe Test in the Morris Water Maze Task. 

Vehicle or TAK-915 (3 mg/kg) was administered p.o. 1 h prior to the hidden platform 

test for 4 days. The probe test was conducted 24 h after the hidden platform test. 

During the probe test, each rat was allowed to swim for 60 s. The percent of time spent 

in the target quadrant is expressed as mean + S.E.M.; n = 14-15 per each group. *P ≤ 

0.05 (vs. vehicle-treated young group by Bonferronis t -test).  
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Figure 13. Effects of TAK-915 on the Scopolamine-Induced Deficit in the Novel 

Object Recognition Task in Rats. 

Vehicle or TAK-915 (1, 3 or 10 mg/kg) was administered p.o. 2 h prior to the 

acquisition trials. Saline or scopolamine (0.1 mg/kg) was administered s.c. 0.5 h prior 

to the acquisition trials. The exploration time in the acquisition trial (A) and the 

retention trial (B) was scored manually. Novelty discrimination index (C) in the 

retention trial was calculated as follows: novel object interaction time/total interaction 

time × 100 (%). Data are expressed as mean + S.E.M., n = 11 for vehicle-treated group, 

n = 12 for other groups. *P ≤ 0.05, **P ≤ 0.01 (by paired t-test), #P ≤ 0.05 (vs. 

vehicle-scopolamine by two-tailed Williams’ test). 
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Figure 14. Effects of TAK-915 on the Hippocampal Acetylcholine Release in Rats.  

Vehicle, TAK-915 (10 mg/kg), or donepezil (1 mg/kg) was administered p.o. after 

obtaining baseline acetylcholine. The time-course of the percentage of baseline 

acetylcholine levels (A), and the area under the curve for 4 h following treatments (B) 

are expressed as mean ±S.E.M., n = 11 for vehicle, n = 12 for TAK-915, n = 6 for 

donepezil. **P ≤ 0.01 (vs. vehicle by Aspin-Welch t-test). 
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Figure 15. Effects of TAK-915 on the Performance of the 5-choice Serial Reaction 

Time Task in Middle-aged, Poorly Performing Rats. 

Vehicle and TAK-915 (3 and 10 mg/kg) were administered p.o. 2 h prior to testing. The 

percent of accuracy (A), number of omissions (B), number of premature responses (C), 

and magazine latency (D) are expressed as mean + S.E.M., n = 8 per each group. *P ≤ 

0.05 (vs. vehicle by crossover analysis of variance followed by a contrast test).  
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Figure 16. Effects of TAK-915 on the Performance in the 5-choice Serial Reaction 

Time Task in Good Performing Rats.  

Vehicle and TAK-915 (3 and 10 mg/kg) were administered p.o. 2 h prior to the testing. 

The percent of accuracy (A), number of omissions (B), number of premature responses 

(C), and magazine latency (D) are expressed as mean + S.E.M.; n = 8 per each group.  
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Figure 17. Effects of TAK-915 on Wakefulness, NREM sleep, and REM sleep 

During the Light Phase in Freely Moving Rats. 

Vehicle and TAK-915 (3 and 10 mg/kg) were administered p.o. during the light phase. 

EEG data was assessed for 3 h following oral administration. Data show the average of 

time spent in each stage of wakefulness, NREM sleep, and REM sleep with S.E.M.; n 

= 8 per each group.  
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Figure 18. Effects of TAK-915 on the cAMP and cGMP Levels in the Rat Primary 

Cortical Neurons in the Presence of NMDA or NO Donor.  

The rat primary cortical neuron on 7 days in vitro was treated with TAK-915 (1 μM) 

before NMDA (300 μM) or sodium nitroprusside (SNP) (3μM). Cyclic AMP (A and C) 

and cGMP (B and D) levels were measured using ELISA. Data are expressed as mean 

+ S.E.M.; n = 3 per each group. 
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General Discussion 

PDE inhibitors are currently considered attractive therapeutic targets for the treatment 

of cognitive dysfunctions in psychiatric and neurodegenerative diseases. In order to 

select suitable CNS drug targets among all PDE subfamilies, the impact of selective 

PDE2A inhibition in the brain, particularly, cognitive function must be considered. 

Initial studies have demonstrated that PDE2A is highly expressed in the forebrain 

regions such as the frontal cortex, hippocampus, and striatum (Stephenson et al., 2009; 

Stephenson et al., 2012). PDE2A is also reported to be localized in axons and nerve 

terminals of neurons (Stephenson et al., 2009; Stephenson et al., 2012), and is detected 

in membrane rafts and synaptosomal membranes (Russwurm et al., 2009). These 

findings suggest that PDE2A plays an important role in the modulation of cyclic 

nucleotides directly related to synaptic neurotransmission and plasticity. In fact, 

PDE2A inhibition has shown to facilitate the short and/or long term of synaptic 

plasticity such as paired-pulse facilitation and LTP (Boess et al., 2004; 

Fernandez-Fernandez et al., 2015). Immunoreactivity studies also revealed that a few 

brain regions such as mHb or raphe nuclei show somatic staining (Stephenson et al., 

2009; Stephenson et al., 2012). The unique distribution pattern indicates the various 

roles of PDE2A in brain, which suggests that neuronal-circuit modulation by PDE2A 

inhibition might affect multiple cognitive domains. 

 

In this study, I have demonstrated that PDE2A inhibition can ameliorate cognitive 

impairment in preclinical models. In the first chapter, I investigated the effects of 

selective PDE2A inhibition on the positive symptoms, negative symptoms, and 

cognitive impairment in a rat model of schizophrenia. The pathophysiology of 
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schizophrenia has been associated with the dysfunction of glutamatergic 

neurotransmission, suggesting that glutamatergic modulation including the NMDA 

receptor pathway can provide a new therapeutic treatment in schizophrenia. PDE2A 

inhibition has the potential to suppress the degradation of cAMP/cGMP, which plays 

an important role in the downstream signaling of NMDA receptors, and results in 

enhancement of NMDA receptor-mediated signaling. In order to probe the possibility 

of a PDE2A inhibitor as a therapeutic target in schizophrenia, the selective and brain 

penetrant PDE2A inhibitor TAK-915 was used to investigate the effect of PDE2A 

inhibition in rat models of schizophrenia associated with NMDA receptor hypofunction. 

Oral administration of TAK-915 attenuated episodic and working memory deficits 

induced by MK-801 (Fig. 4 and 5). TAK-915 prevented social withdrawal in the 

subchronic PCP models relevant to schizophrenia (Fig. 6). In contrast, TAK-915 did 

not produce an antipsychotic-like activity; TAK-915 had little effect on MK-801- or 

methamphetamine-induced hyperlocomotion in rats (Fig. 7). Side effects such as 

extrapyramidal symptoms, hyperprolactinemia, and impaired glucose tolerance 

observed with olanzapine were not detected (Fig 8 and 9). These findings suggest that 

TAK-915 has the potential to ameliorate cognitive impairments and social withdrawal 

in schizophrenia without producing side effects. 

 

In the second chapter, I investigated the effects of PDE2A inhibitors in cognitive 

decline associated with aging. Aging is a major risk factor in dementia, often 

accompanied with cognitive decline. Impairment in the cognitive domains, such as 

spatial learning, episodic memory, and attention, are observed in the elderly, patients 

with mild cognitive impairments, and the early stages of AD (Reid et al., 1996; Perry et 
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al., 2000; Lithfous et al., 2013; Huntley et al., 2017; Mortamais et al., 2017). Changes 

in cAMP/cGMP signaling have been observed in the elderly and Alzheimers patients, 

implying that drugs that modulate cAMP and cGMP levels in the brain may present 

new therapies for aging associated cognitive impairment. In this study, I investigated 

the effects of TAK-915 on cognitive functions associated with aging, such as spatial 

learning, episodic memory, and attention, in rats. Repeated treatment with TAK-915 

significantly reduced escape latency in aged rats in the MWMT compared to vehicle 

treatment (Fig. 11). In the NORT, TAK-915 dose-dependently attenuated 

scopolamine-induced memory deficits in rats (Fig. 13). In addition, the oral 

administration of TAK-915 significantly improved the attentional performance in 

middle-aged, poorly performing rats in the 5-CSRTT (Fig. 15). These findings suggest 

that PDE2A inhibition in the brain has the potential to ameliorate the age-related 

cognitive decline. 

 

Although PDE2A inhibition clearly plays a critical role in cognitive impairment 

associated with diseases, the relationship between PDE2A and cognitive disorders has 

not been fully elucidated. As for the genetic links with human cognitive performance, 

several PDEs including PDE2A has implicated plausible links to cognitive function 

although further investigation of the genetic link to diseases is imperative (Gurney, 

2019). Limited evidence is available regarding the change in PDEs expression levels 

related to pathological states. In aged rats, the PDE2A mRNA expression levels were 

not altered in the hippocampus and cortex (Kelly, 2018). In a study using human brains, 

the expression of PDE2A mRNA was not significantly different in AD patients 

compared with normal elderly subjects (Reyes-Irisarri et al., 2007). Moreover, no 
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changes in PDE2A mRNA expression were observed in the brain of patients with aging 

and/or AD. However, it may be difficult to simplify or predict the changes associated 

with diseases owing to the compensatory mechanisms by other PDEs, and/or the 

complexity of subtype and splice variants. As PDEs and their isoforms are localized in 

specific cellular compartments, they may regulate distinct pools of cAMP/cGMP and 

their signaling (Francis et al., 2011). Recent reports indicate that the subcellular 

compartmentalization of the PDE9 isoform changes across the lifespan in mice (Patel 

et al., 2018), although PDE9 mRNA expression in the total brain homogenates was not 

altered (Kelly, 2018; Patel et al., 2018). The changes in the PDE2A isoforms, in 

subcellular compartments, may play an important role in regulating the distinct pool of 

cyclic nucleotides in psychiatric and neurodegenerative diseases although further 

characterization will be needed. 

 

The mechanism by which TAK-915 ameliorates cognitive impairment in schizophrenia 

and aging is still unknown. One possible explanation implicates the modulation of the 

glutamatergic pathways in the brain. Changes in glutamatergic signaling are seen in 

schizophrenia and aging. For example, the postmortem brain of patients with 

schizophrenia have shown changes in pre- and postsynaptic markers for glutamatergic 

neurons (Meador-Woodruff and Healy, 2000). In line with these clinical findings, NO 

and cGMP levels, acting downstream of the NMDA receptor, have been reduced in 

schizophrenia (Lee and Kim, 2008; Nakano et al., 2010). Interestingly, NO donors, 

which increase cGMP levels, rapidly improved multiple symptoms in schizophrenia 

(Hallak et al., 2013). Patients with dementia showed reduced glutamate levels in the 

CSF (Martinez et al., 1993) and in the post-mortem brain (Lowe et al., 1990). 
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Additionally, preclinical studies have indicated age-related cognitive impairments 

associated with NMDA hypofunction. Aged rats demonstrated a reduction in NR2B 

expression, which correlated with their cognitive performance in the MWMT (Clayton 

et al., 2002). Moreover, the increase in cGMP levels mediated by NMDA receptor 

activation was attenuated in the hippocampus of aged rats (Vallebuona and Raiteri, 

1995; Chalimoniuk and Strosznajder, 1998), suggesting that the impaired downstream 

signaling of the NMDA receptor is associated with aging. As for the enhancement of 

NMDA receptor signaling in age-related cognitive decline, D-cycloserine reportedly 

ameliorated social memory and spatial reversal learning in aged rats (Portero-Tresserra 

et al., 2018). In the present study, TAK-915 ameliorated the cognitive impairment and 

social withdrawal in NMDA receptor antagonist-induced rat models (Fig. 4-6). 

Consistent with the reports that PDE2A inhibition can enhance the NMDA 

receptor/NO/cGMP pathway in the primary neuronal cultures (Suvarna and ODonnell, 

2002; Boess et al., 2004), TAK-915 also enhanced the cGMP production in the 

presence of NMDA or NO donor (Fig. 18). Therefore, the evidence supports that the 

possibility that modulation of the NMDA receptor/NO/cGMP pathways by PDE2A 

inhibition may contribute to the amelioration of the cognitive impairment associated 

with schizophrenia and aging. 

 

Translational research for the development of CNS drugs is critical to determine the 

appropriate dose in clinical studies. Positron emission tomography (PET) analysis can 

measure brain PDE2A enzyme occupancy levels of drugs, which allows us to confirm 

the relationship between plasma concentration and target engagement. In fact, a 

PDE2A PET ligand PF-05270430 has been characterized in clinical studies (Naganawa 
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et al., 2016). In preclinical studies using the same ligand, PDE2A occupancy of 

TAK-915 was demonstrated in a dose-dependent inhibition and saturated at doses 

higher than 10 mg/kg. In a phase I study, TAK-915 has been used to investigate the 

brain PDE2A enzyme occupancy levels as assessed by using the PDE2A ligand to 

determine the appropriate dosing schedule (ClinicalTrials.gov Identifiers: 

NCT02584569). The present studies will contribute to understanding the relationship 

between cognition-enhancing effects by PDE2A inhibition and PDE2A enzyme 

occupancy in future clinical trials. 

 

In conclusion, PDE2A inhibition can ameliorate cognitive impairment associated with 

schizophrenia and aging. These findings contribute to the understating of the role of 

PDE2A in the brain under pathological conditions and provide the possibility of 

TAK-915 as new therapeutic option in cognitive disorders. 
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