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In the central nervous system (CNS) of vertebrates, neurotransmitters such as glutamate, gamma 

aminobutyric acid, and monoamines, mediate signal transmission via synapses. In addition, various 

peptides also transmit cell signaling and are referred to as neuropeptides or hormones. Emotions and 

behaviors are regulated and diversified by the expression patterns or levels of those 

neurotransmitters and their receptors. The regulation of neurotransmission is critical to the 

maintenance of physical and mental health and its abnormality in the CNS is considered as one of 

the main causal factors of neurodegenerative and neuropsychiatric diseases. Therefore, investigation 

of the relationship between neural signals and behavioral outcomes is expected to improve the 

understanding of disease mechanisms. In this study, two kinds of neurotransmission were selected to 

investigate those physiological and functional roles in animal models: corticotropin releasing factor 

(CRF) and α-amino-3-hydroxy-5-methyl-4 -isoxazole-propionic acid (AMPA). 

In the first chapter, two aspects of the function of CRF, which is known not only as a 

hormone but also as a neurotransmitter in the brain, were analyzed: 1) the 

hypothalamus-pituitary-adrenal (HPA) axis by measuring the adrenocorticotropin (ACTH) in plasma, 

and 2) locomotion and anxiety behaviors. In mammals, CRF plays a role as a neurotransmitter in the 

brain. Its signal is mediated by two kinds of receptors, CRF1 and CRF2. CRF1 receptor expresses 

broadly and mainly in the cortico-limbic system in the brain whereas CRF2 receptor expresses in a 

limited brain area, such as the lateral septum. CRF signaling also mediates signaling in the endocrine 

and gastrointestinal system in the peripheral nervous system (PNS). The major function of CRF is in 

the signal start of the HPA axis which is recognized as a key stress signal. CRF is released from the 

paraventricular nucleus of the hypothalamus (PVN) in the brain to the anterior pituitary expressing 

CRF1 receptors. This triggers CRF signaling in the pituitary which stimulates the release of ACTH in 

circulation. ACTH reaches the adrenal cortex to stimulate the release of cortisol (in humans) or 

corticotropin (in rodents). The response of the HPA axis is affected by the feedforward and feedback 

effects of CRF and cortisol, respectively. The overactivation of the HPA axis and CRF signaling 

occurs in depression, anxiety disorder, and posttraumatic stress disorder. It remains to be clarified 

how CRF regulates the function of the HPA axis and behavioral outcomes in the CNS and PNS. To 

clarify the role of peripheral and central CRF signaling on the HPA axis and on behaviors such as 

locomotion and anxiety behaviors, CRF was challenged from the peripheral route (intravenously 

(i.v.)) or the central route (intracerebroventricularly (i.c.v.)) in rats, followed by experiments using 

two small molecules with different brain permeabilities to understand CRF1 antagonism in the 

peripheral and CNS regions. Plasma ACTH concentration increased significantly in both 

administration routes of CRF but hyperlocomotion and anxiety behavior were induced only by the 

i.c.v. route. In the drug discovery of CRF1 receptor antagonists, I identified two types of compounds, 

A and B, which antagonized peripheral CRF-induced HPA axis activation to the same extent but 

showed different effects on the central CRF signal. These compounds had similar in vitro binding 
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affinities to the CRF1 receptor (15 and 10 nM) and functional activities in the reporter gene assay (15 

and 9.5 nM). In the ex vivo binding assay using tissues of the rat pituitary, oral treatment with 

compound A and compound B at 10 mg/kg inhibited [125I]-CRF binding, whereas in the assay using 

tissues of the rat frontal cortex, treatment of compound A but not compound B inhibited [125I]-CRF 

binding, indicating that only compound A inhibited central [125I]-CRF binding. In the peripheral CRF 

challenge via the i.v. route, an increase in plasma ACTH concentration was significantly suppressed 

by both compound A and compound B. In contrast, compound A inhibited the increase in locomotion 

induced by the central CRF challenge whereas compound B did not. Compound A also reduced 

central CRF challenge-induced anxiety behavior and c-fos immunoreactivity in the cortex and the 

hypothalamic paraventricular nucleus. These results indicate that the central CRF signal, rather than 

the peripheral CRF signal, would be related to anxiety and other behavioral changes, and CRF1 

receptor antagonism in the CNS may be critical for identifying drug candidates for anxiety and mood 

disorders. 

In the second chapter, the role of AMPA receptor signaling was investigated to understand 

the relationship with the behavioral outcomes, especially those which are related to schizophrenia. 

Glutamate is the major neurotransmitter for excitatory neurotransmission in the brain and is related 

to neural plasticity, memory, and cognitive functions. Abnormal glutamate neurotransmission is 

related to neuropsychiatric diseases such as schizophrenia, depression, and autism. Especially in 

schizophrenia, the state of hypoglutamate is indicated to cause positive, negative, and cognitive 

symptoms, and the enhancement of glutamate signaling is expected to improve those symptoms; 

however, the direct activation of glutamate neurons through exogenously applied agents causes 

cellular toxicity or seizures via hyperexcitability, which makes it difficult to investigate the function 

of glutamate signals in disease models. The AMPA receptor is the main receptor to conduct fast 

excitatory neurotransmission and to induce the long-term potentiation of neurons, which is the key 

function of memory and cognition. The importance of the AMPA receptor has been reported in 

genetically modified animal models. Mice lacking the GluR1 subunit of the AMPA receptor exhibit 

hyperexcitability of striatal dopaminergic neurons and schizophrenia-like behaviors. In addition, a 

reduction of the expression level of AMPA receptors has been reported in the postmortem brain 

analysis of schizophrenic patients. Therefore, an investigation of the relationships between AMPA 

receptor signaling and behavioral outcomes would help to understand the signal mechanism in 

schizophrenia. In this chapter, a new AMPA receptor potentiator, TAK-137 

(9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide), was used to 

investigate behavioral changes in animal models of schizophrenia for positive, negative, and 

cognitive symptoms. TAK-137 activates AMPA receptors only in the presence of glutamate and 

reduces the risk of seizure compared with other compounds reported so far. In this study, rodents and 

non-human primates were used to assess the efficacy of TAK-137 in the naïve state or in 
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drug-induced disease models with methamphetamine (METH) or N-methyl-D-aspartate (NMDA) 

antagonists, such as MK-801, ketamine, and phencyclidine (PCP). At 10 mg/kg per os (p.o.), 

TAK-137 partially inhibited METH-induced hyperlocomotion in rats, and at 3, 10, and 30 mg/kg p.o., 

TAK-137 partially inhibited MK-801-induced hyperlocomotion in mice, suggesting weak effects on 

the positive symptoms of schizophrenia. At 0.1 and 0.3 mg/kg p.o., TAK-137 significantly 

ameliorated MK-801-induced deficits in the social interaction of rats, demonstrating potential 

improvement of impaired social functioning, which is a negative symptom of schizophrenia. The 

effects of TAK-137 were evaluated on multiple cognitive domains—attention, working memory, and 

cognitive flexibility. TAK-137 enhanced attention in the five-choice serial reaction time task in rats 

at 0.2 mg/kg p.o., and improved working memory both in rats and monkeys: 0.2 and 0.6 mg/kg p.o. 

ameliorated MK-801-induced deficits in the radial arm maze test in rats, and 0.1 mg/kg p.o. 

improved the performance of ketamine-treated monkeys in the delayed matching-to-sample task. At 

0.1 and 1 mg/kg p.o., TAK-137 improved the cognitive flexibility of subchronic PCP-treated rats in 

the reversal learning test. Since current medication with dopamine D2 receptor antagonist effect has 

limited efficacy on negative and cognitive symptoms, TAK-137-type AMPA receptor potentiators 

with low intrinsic activity may offer new therapies for schizophrenia. 

In summary, this study clarified the role of CRF signaling via the CRF1 receptor, 

especially in the CNS, and the role of AMPA receptor signaling in behavioral changes related to 

schizophrenia. Findings related to neurotransmission provide not only insight into the function of 

each type of signaling but also help to understand the mechanism underlying neuropsychiatric 

diseases, which are usually difficult to detect as morphological changes in the living state. 
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ACTH, adrenocorticotropin;  

AD, Alzheimer’s disease; 

ADHD, attention deficit hyperactivity disorder;  

AMPA, (±)-α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid;  

ANOVA, the analysis of variance; 

BBB, blood-brain barrier;  

BDNF, Brain-derived neurotrophic factor; 

Bed nucleus of the stria terminalis (BNST) 

BSA, bovine serum albumin; 

CeA, central nucleus of the amygdala; 

CHAPS, 3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate; 

CHO, Chinese hamster ovary  

CNS, central nervous system;  

CRF, corticotropin-releasing factor;  

DMTS, delayed matching-to-sample;  

D2R, dopamine D2 receptor;  

EDTA, ethylenediaminetetraacetic acid; 

EEG, electroencephalogram; 

EPM, elevated plus maze;  

FBS, fetal bovine serum 

FDG, fluoro-2-deoxy-D-glucose; 

FR1, fixed ratio 1; 

GABA, gamma aminobutyric acid;  

GI, gastrointestinal; 

GlyT1, glycine transporter type 1;  

HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 

HPA, hypothalamic-pituitary-adrenal;  

HTS, high-throughput screening; 

i.c.v., intracerebroventricularly; 

i.m., intramuscularly; 

i.p., intraperitoneally; 

ITI, intertrial interval;  

i.v., intravenously;  

LSD, least significant difference; 

MAM, methylazoxymethanol acetate; 

METH, methamphetamine;  
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MgCl2, magnesium chloride; 

NDI, novelty discrimination index; 

NMDA, N-methyl-D-aspartate;  

NORT, Novel Object Recognition Test; 

NSB, nonspecific binding;  

PCP, phencyclidine;  

PD, Parkinson’s disease; 

PET, positron emission tomography; 

PMSF, phenylmethylsulfonyl fluoride; 

PNS, peripheral nervous system;  

p.o., per os; 

Poly(I:C), polyriboinosinic-polyribocytidylic acid; 

PTSD, posttraumatic stress disorder; 

PV, parvalbumin; 

PVN, paraventricular nucleus;  

RAM, radial arm maze;  

SB, specific binding; 

SI, social interaction;  

SSRI, selective serotonin reuptake inhibitors; 

s.c., subcutaneously; 

TAK-137, 9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide; 

TB, total binding;  

Tris-HCl, tris(hydroxymethyl)aminomethane-hydrochloride (Tris-HCl);  

5-CSRTT, five-choice serial reaction time task;  
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1. The functions of neuronal transmissions 

One of the key mechanisms in the regulation of physiological and psychological functions is 

neuronal transmission. The nervous systems involved in neuronal transmission can be classified into 

two categories: peripheral and central nervous systems. The peripheral nervous system (PNS) 

includes the somatic nervous system to transmit motor perceptions and the autonomic nervous 

system to regulate the homeostasis of internal organs [1]. The central nervous system (CNS) consists 

of neural network systems in the brain to regulate cognition and emotion, and the sensory nerves 

which regulate the movement of the face, eyes, and tongue. The CNS also connects to the peripheral 

internal and sensory organs [2]. Those nervous systems form the network system for signal 

transmission and utilize neuronal transmitters as messengers to surrounding neurons via synapses. 

Neuronal cells regulate the expression and release of those neuronal transmitters based on external 

signals. Generally, in the CNS of vertebrates, various kinds of the neuronal transmitters are used, and 

the choice depends on whether the neuronal cell is excitatory or inhibitory, and/or on the brain 

region. The major neuronal transmitters have been categorized into acetylcholine, monoamines, 

amino acids, and peptides, and those are transmitted from neuron to neuron across synapses [3]. In 

addition, some neurotransmitters, especially neuropeptides and hormones, circulate in body fluids 

such as blood or cerebrospinal fluid to induce cellular and organic responses which are usually 

remote from the original cells [4]. The signaling of neurotransmitters results in the certain output in 

the living body, such as behavioral and emotional responses. The functions of neurotransmitters have 

been diversified by using several subtypes of receptors for each neurotransmitter, or by changing 

their expression patterns or levels according to the species, sexes, or development and aging 

throughout life. Therefore, investigation of the impact of specific neurotransmitters on biological and 

behavioral outputs is important to understand neural functions. Indeed, abnormal functions in 

neurotransmission are related to various CNS diseases, such as in neurodegenerative diseases, 

including Alzheimer’s disease (AD) and Parkinson’s disease (PD), or psychiatric diseases, including 

schizophrenia, depression, anxiety, and attention-deficit hyperactivity disorder [5]. A common 

characteristic of these diseases is abnormality in some specific neurons. For example, in PD, there is 

a significant loss of dopaminergic neurons [6]. In contrast, overactivation of the striatal 

dopaminergic neurons, especially in the dopamine D2 receptor-expressing neurons, have been 

reported in schizophrenia [7]. The loss of cholinergic neurons is regarded as a cholinergic hypothesis 

in AD [8]. These characteristics of neuronal abnormalities result in specific symptoms, such as loss 

of motor functions or cognitive functions. Although some key features in neuronal functions in CNS 

diseases have been determined, detailed analyses of specific neurotransmission to investigate the 

scope of functional outcomes would deepen an understanding of neuronal function and disease 

biology and would extensively lead to the generation of medicines with new mechanisms of action. 

In the first chapter of this study, using rats, I investigated the impact of corticotropin-releasing factor 
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(CRF) on the response of the hypothalamus-pituitary-adrenal (HPA) axis as plasma 

adrenocorticotropic hormone (ACTH) increased and on behavioral outcomes as locomotor and 

anxiety behaviors to classify the key signals in PNS and CNS. In the second chapter, I focused on 

the relationship between glutamate neurons, especially 

α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor signals, and schizophrenia 

in behaviors related to positive, negative, and cognitive symptoms by using rodents and non-human 

primates. 

 

2. CRF signaling 

2.1. Stress response and regulation 

A living body always receives external stimuli, and the physiological responses to those stimuli are 

referred to as stress responses [4]. The factors which induce physiological and psychological 

changes in the body are called stressors, including environmental or physical stressors such as the 

natural environment or infectious viruses, and psychological stressors such as family or working 

environments. Adequate responses in the body induce the transient activation of neuronal or 

immunological responses to cope with, or to resist, stress. Several signaling systems are involved in 

stress responses: rapid activation of the autonomic nervous system to enhance the release of 

noradrenaline and adrenaline for the activation of the sympathetic nerve system. Another system is 

the activation of the HPA axis [9]. This signal is activated by the increased release of CRF from the 

paraventricular nucleus of the hypothalamus (PVN). CRF binds to CRF receptors, especially to 

CRF1 receptors located on the anterior pituitary where this triggers the release of ACTH. ACTH 

reaches the adrenal cortex in peripheral organs and cortisol or corticotropin is released in humans 

and rodents, respectively. Cortisol or corticotropin work as effectors of the stress response to 

modulate immunological responses. CRF stimulates not only the HPA axis but also the limbic brain 

system including amygdala, hippocampus, and cortical neurons where emotional and cognitive 

functions are highly regulated [10]. In addition, the stimulation of peripheral CRF signaling induces 

intestinal contraction and other abdominal neurons. The hyperactivation of CRF signaling is related 

to psychiatric diseases such as depression, anxiety, posttraumatic stress disorder (PTSD), and 

gastrointestinal (GI) diseases such as inflammatory bowel disease [11]. 

 

2.2. CRF peptide family and its receptors 

CRF is a polypeptide consisting of 41 amino acid [12]. There are several other peptides which are 

categorized as being members of the CRF peptide family, such as urocortin 1, 2, and 3. The affinities 

of CRF peptide family members to CRF1 and CRF2 receptors, as well as their expression patterns, 

are diversified in the brain and throughout the entire body [13]. This fact indicates that the CRF 

peptide family involves diversified physiological roles especially in coordinating endocrine, immune, 
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autonomic, and behavioral responses to stress. The binding affinity (Ki) of CRF to CRF1 receptor 

was found to be 3.3 nM, which is about 10-fold higher than that to the CRF2 receptor [14]. CRF is 

the most well-studied peptide regarding its physiological function, and CRF signaling via the CRF1 

receptor is considered as a key function in the stress response. There are distinct but overlapping 

expression patterns in the brain between CRF1 and CRF2 receptors. The CRF1 receptor is widely 

expressed in brain regions that are related to sensory information processing and motor control, such 

as cortex, hippocampus, bed nucleus of the stria terminalis (BNST), basal ganglia, and hypothalamic 

nuclei [4]. It also expresses outside the brain especially in the anterior and intermediate lobes of the 

pituitary, where the binding of CRF to the CRF1 receptor triggers the secretion of ACTH to the 

circulatory system. Expression of the CRF2 receptor is much more restricted to subcortical structures 

in the brain, especially in the lateral septal nucleus and in the skeletal muscle and heart. Coextension 

of the CRF1 and CRF2 receptors seems to be limited. There is a distinct expression pattern of the 

CRF2 receptor among species [15], which indicates that the receptor and signal functions may have 

diversified during evolution. 

 

2.3. Pharmacological and physiological studies on stress response by modulating CRF signaling 

The accumulation of evidence of the function of CRF has indicated that the CRF plays a key role in 

stress responses. The initial experiment exogenously administered CRF [16]. Most of the reported 

studies applied an intracerebroventricular (i.c.v.) injection of CRF, resulting in the detection of the 

response of the HPA axis and changes to locomotion and anxiety behaviors. Recently, the application 

of genetic mouse models and viral applications to modulate the expression level of CRF peptide 

families or CRF receptors have also been reported [17]. These have also resulted in the functional 

classification of CRF peptide families and receptors [18]. Based on those findings, CRF signaling 

via the CRF1 receptor seems to be the major route of neurotransmission in the CNS and the main 

trigger of the activation of the HPA axis at the pituitary. 

 

3. Glutamate signaling 

3.1. Glutamate neuron and its receptors 

The glutamate neuron is the major excitatory neuron throughout the entire brain region [19]. The 

excitation of glutamate neurons is indispensable for brain functions especially in neurocognitive 

domains such as memory, learning, and cognition. Glutamate receptors are classified into two 

categories: ionotropic and metabotropic receptors. Ionotropic receptors including 

N-methyl-D-aspartate (NMDA), AMPA, and kainite receptors conduct fast excitatory signaling [20]. 

Metabotropic receptors, including mGluR1-8, are also involved with presynaptic and postsynaptic 

transmission to regulate learning and memory. Among glutamate receptors, the AMPA receptor plays 

a key role in learning and memory [21]. AMPA receptor subunit GluR1-knockout mice exhibited 



12 

 

cognitive impairment, hyperdopaminergia, and psychosis-like behaviors [22]. The AMPA receptor is 

involved in the regulation of NMDA receptor activation, which induces ion influx into cells  (Na+ 

and Ca2+), triggering the release of channel-blocking magnesium ion from the NMDA receptor [20]. 

This results in the activation of NMDA receptor signaling through an increase in NMDA 

receptor-mediated calcium influx [23]. 

 

3.2. Glutamate neuron and diseases 

Several CNS diseases are reportedly involved with abnormal glutamate signaling such as epilepsy, 

schizophrenia, depression, and autism. Especially in schizophrenia, antagonists of NMDA receptors 

such as ketamine and phencyclidine (PCP) were accidentally discovered to induce symptoms which 

mimic schizophrenia, such as psychosis, abnormal social interaction, or cognitive impairment in 

healthy people [24]. In addition, when people with schizophrenia were treated with those agents, 

their symptoms worsened [25-27]. Schizophrenia consists of a spectrum of symptoms: positive 

symptoms (hallucinations and delusions), negative symptoms (blunted affect and deficits in social 

functioning), and cognitive symptoms (deficits in attention, working memory, and cognitive 

flexibility) [2]. The current hyperdopamine hypothesis postulates that excessive activation of 

dopaminergic neurons in the subcortical regions of the brain is deeply involved in the 

pathophysiology of the positive symptoms of schizophrenia [7]; however, this hypothesis cannot 

fully elaborate the mechanism of negative and cognitive symptoms. On the other hand, based on 

clinical and preclinical findings, NMDA hypofunction supports key hypotheses for various 

symptoms of schizophrenia [28]. The functions of glutamate signaling have also been studied by the 

pharmacological application of agonists, antagonists or genetically-modified animal models [29]. 

Mice with a knocked-out NMDA receptor subunit NR1 showed schizophrenia-like behaviors, 

whereas the overexpression of NR1 enhanced cognitive performance [30]. The enhancement of 

NMDA receptor signaling was investigated as a strategy for novel treatment of schizophrenia by 

using small molecules [31-34]. To avoid excitotoxicity by agonists, the application of a co-agonist 

like D-serine or glycine, or the inhibitor of those degradation enzymes was studied in clinical studies 

which resulted in the improvement of negative symptoms in phase II studies. Therefore, approaches 

to enhance glutamate signaling should be studied further to understand the relationship between 

signaling enhancement and behavioral outcomes. 

 

3.3. AMPA receptor positive allosteric modulator 

In view of the function of the AMPA receptor to trigger AMPA and NMDA signal activation, 

potentiation of the AMPA receptor is expected to offer a new therapeutic strategy for schizophrenia 

by enhancing glutamate signaling. Enhancement of AMPA receptor signaling by small molecules, 

the AMPA receptor potentiators, has been studied for a long time. However, reported AMPA receptor 
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potentiators such as LY451646 ((R)-N-(2-(4-cyanobiphenyl-4-yl)propyl) propane-2-sulfonamide), 

LY451395, and S18986 demonstrated a bell-shaped response in their various pharmacological 

effects [35-37]. Recently, a novel AMPA receptor potentiator—TAK-137 (9-(4-phenoxyphenyl)-3,4- 

dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide) was discovered. TAK-137 presented lower risks 

of a bell-shaped dose response and seizure owing to its low agonistic activity [38, 39]. In the 

molecular characterization of TAK-137 and LY451646, it was found that LY451646 showed an 

agonist-like effect in the absence of glutamate in rat primary neurons, whereas TAK-137 did not. In 

addition, LY451646 induced seizures at a 3.1-fold higher concentration in the brain based on a 

calculation of the area under the curve (AUCbrain), whereas TAK-137 showed a safety margin from 

the induction of seizures with a 116-fold higher AUCbrain. Therefore, it is hypothesized that the 

agonistic effect by this compound is strongly related to the induction of seizures. An 

electrophysiological study by using whole-cell voltage-clamp recordings was performed on cultured 

neurons of the hippocampus [40]. The result also showed that LY451646 induced slowly, developing 

large inward currents in the absence of the AMPA-R agonist, whereas TAK-137 did not impact 

baseline holding currents, which supports the lower agonistic properties of TAK-137 than LY451646. 

Therefore, TAK-137 can be a highly differentiated AMPA receptor potentiator without inducing 

seizures; however, it has never been proven that AMPA receptor potentiators such as TAK-137 still 

exert efficacy on modulation of cognition and other behaviors related to schizophrenia. In this study, 

I used TAK-137 to evaluate the impact of AMPA receptor potentiation on the behaviors related to 

schizophrenia without agonist-like outputs such as seizure.  
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Abstract 

The aim of this study was to investigate peripheral and central roles of corticotropin-releasing factor 

(CRF) in endocrinological and behavioral changes. Plasma adrenocorticotropin (ACTH) 

concentration was measured as an activity of hypothalamic-pituitary-adrenal (HPA) axis. As 

behavioral changes, locomotion and anxiety behavior were measured after CRF challenge 

intravenously (i.v.) for the peripheral administration or intracerebroventricularly (i.c.v.) for the 

central administration. Plasma ACTH concentration was significantly increased by both 

administration routes of CRF; however, hyperlocomotion and anxiety behavior were induced only by 

the i.c.v. administration. In the drug discovery of CRF1 receptor antagonists, I identified two types of 

compounds, Compound A and Compound B, which antagonized peripheral CRF-induced HPA axis 

activation to the same extent but showed different effects on the central CRF signal. These had 

similar in vitro CRF1 receptor binding affinities (15 and 10 nM) and functional activities in reporter 

gene assay (15 and 9.5 nM). In the ex vivo binding assays using tissues of the pituitary, oral 

treatment with Compound A and Compound B at 10 mg/kg inhibited [125I]-CRF binding, whereas in 

the assay using tissues of the frontal cortex, treatment of Compound A but not Compound B 

inhibited [125I]-CRF binding, indicating that only Compound A inhibited central [125I]-CRF binding. 

In the peripheral CRF challenge, increase in plasma ACTH concentration was significantly 

suppressed by both Compound A and Compound B. In contrast, Compound A inhibited the increase 

in locomotion induced by the central CRF challenge while Compound B did not. Compound A also 

reduced central CRF challenge-induced anxiety behavior and c-fos immunoreactivity in the cortex 

and the hypothalamic paraventricular nucleus. These results indicate that the central CRF signal, 

rather than the peripheral CRF signal would be related to anxiety and other behavioral changes, and 

CRF1 receptor antagonism in the central nervous system may be critical for identifying drug 

candidates for anxiety and mood disorders.  
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1. Introduction 

Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that plays a central role in 

coordinating the endocrine, immune, autonomic, and behavioral responses to stress [12, 41], 

especially in physiological regulation of the endocrine system related to the hypothalamic–pituitary–

adrenal (HPA) axis. When physiological or psychological stress occurs, CRF is synthesized and 

secreted from the hypothalamic paraventricular nucleus (PVN) and binds to CRF receptors in the 

pituitary gland. This triggers secretion of adrenocorticotropin (ACTH) from the anterior lobe of the 

pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands into blood, and 

glucocorticoid exerts a negative feedback on the activity of HPA axis [12, 42, 43]. In the disease 

state, hyperactivation of HPA axis and hypersecretion of CRF have been reported to be related to the 

pathogenesis of anxiety and depression [44-46], and modulation of CRF signaling has been 

investigated as a new treatment strategy for those mood disorders. Two CRF receptors have been 

identified, named as CRF1 and CRF2. CRF1 receptors are expressed in the mammalian GI tracts, 

anterior pituitary located outside of the blood-brain barrier (BBB), and the brain regions related to 

emotion and cognitive processes, such as amygdala, hippocampus, and cerebral cortex [47-49], 

whereas the distribution of CRF2 receptors is more restricted [10, 15]. In addition, CRF1 receptor 

knockout mice show less behaviors related to anxiety and depression compared with those in 

wild-type mice [50-52]. Thus, CRF1 receptor antagonists have been recognized as promising 

candidates for new anxiolytics and antidepressants.  

In the preclinical evaluation of CRF1 receptor antagonists, effects were mainly focused on the 

regulation of hyperactivated HPA axis and the modulation of anxiety or depressive-like behaviors in 

CRF challenge [53-55] or stress models [54, 56, 57]. However, it remains to be concluded whether 

the antagonism of CRF1 receptor in the peripheral, central, or both systems, is required to exert 

anxiolytic or antidepressive efficacy. Recently, multiple reports have indicated that central, 

especially limbic, CRF1 receptors modulate anxiety-related behavior independent of 

endocrinological HPA regulation. Conditional knockout mice of limbic CRF1 receptors reduced the 

anxiety behavior, but not the stress-induced increase of ACTH secretion [50]. Transient 

over-expression of CRF in the forebrain induced neuroendocrinological and behavioral changes 

[58]; however, the overexpression of CRF only in the pituitary did not induce anxiety behavior [59]. 

The CRF1 receptor antagonist SSR125543 attenuated long-term cognitive deficit induced by acute 

inescapable stress independent of the regulation of the HPA axis [60].  

In this study, to investigate the roles of peripheral or central CRF signaling in endocrinological 

and behavioral changes, I measured the activity of HPA axis as plasma ACTH concentration, 

locomotion, and anxiety behavior after peripheral or central CRF challenges. Moreover, two CRF1 

receptor antagonists, Compound A and Compound B, were identified from my drug discovery 

research. They were found to have different binding profiles for central CRF1 receptors indicated in 
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the ex vivo binding assay with rat cortex homogenate and were used to study the in vivo effects of 

antagonism of peripheral and central CRF1 receptors.  
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2. Materials and Methods 

2.1 Animals 

All animal protocols were approved by the Institutional Animal Care and Use Committee of the 

Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited. Animal care followed 

the Guide for Care and Use of Laboratory Animals. Male Wistar rats (CLEA Japan, Inc., Tokyo, 

Japan) aged 7–8 weeks weighing from 240 to 280 g at the beginning of the experiments were used. 

Animals were housed in groups of 4 or 5/cage and maintained under a 12:12 light:dark cycle (light 

on from 7:00 am to 7:00 pm), with food (CLEA Rodent Diet CE-2 purchased from CLEA Japan Inc., 

Tokyo, Japan) and water provided ad libitum and habituated for more than 7 days in the laboratory 

before experiments. 

 

2.2 Materials 

CRF1 receptor antagonists Compound A 

[(N-(4-bromo-2-methoxy-6-methylphenyl)-4-chloro-1-methyl-7-(pentan-3-yl)-1H-benzimidazol-2-a

mine)] and Compound B [4-chloro-2-(2-chloro-6-methyl-4-(methylthio)phenoxy) 

-1-methyl-7-(pentan-3-yl)-1H –benzimidazole] were synthesized in the laboratories of Takeda 

Pharmaceutical Company Limited (Kanagawa, Japan). Compounds were suspended in water 

containing 0.5% methyl cellulose (MC, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) and 

administered orally in a volume of 2 mL/kg. Other reagents were purchased from local vendors. 

Human/ rat (h/r) CRF or ovine CRF (Peptide Institute, Inc., Osaka, Japan) was used for CRF 

challenge tests. The h/r CRF was dissolved in phosphate buffered saline (PBS) (Sigma-Aldrich 

Japan, Tokyo, Japan) at 10 μg/μL and diluted with PBS to 0.2 μg/μL for i.c.v. injection or with saline 

to 10 μg/mL for i.v. injection. Further dilution for dose response studies of CRF was conducted using 

PBS for i.c.v. or saline for i.v. Diluted CRF was kept on ice just before injection. PBS for i.c.v. and 

saline for i.v. were administered as vehicle. Ovine CRF was dissolved and diluted with 0.05% 

bovine serum albumin (BSA) (Sigma-Aldrich Japan, Tokyo, Japan) in saline to 0.1 μg/mL. The 

injection volume was 5 μL/rat for i.c.v. and 1 mL/kg for i.v. administration. 

 

2.3 Surgery 

2.3.1. Anesthetics 

The rats were anesthetized with intraperitoneally administered pentobarbital (50 mg/kg) (Sumitomo 

Dainippon Pharma, Osaka, Japan) during the operation. 

 

2.3.2. Intracerebroventricular (i.c.v) cannula implantation and administration 

Anesthetized rats were placed in a stereotaxic frame (David Kopf Instruments, California, U.S.A). A 

guide cannula (AG-4, Eicom, Kyoto, Japan) was implanted in the lateral ventricle and anchored to 
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the skull with 2 stainless steel screws and dental cement. Stereotaxic coordinates were tooth bar +3.3 

mm above interaural zero, −0.8 mm posterior to bregma, +1.6 mm lateral, and −3.5 mm below the 

surface of the dura [61]. A dummy cannula was kept inserted into the guide cannula until vehicle or 

drug injection. Animals were undisturbed during a postsurgical recovery period of at least 7 days. At 

the time of injection, inserted dummy cannula was removed and clean microinjection cannula 

needles jointed with Teflon tube (0.1 mm ID, 50 cm) were inserted. CRF or vehicle was infused at a 

rate of 10 μL/min using auto-injector. After infusion, the microinjection needles were kept in place 

for an additional 1 min to allow for diffusion of the substances into the surrounding tissue, and then 

the injector was removed. 

 

2.3.3. Intravenous (i.v.) cannulation and administration 

The examination for i.v. injection of CRF was performed under the conscious state. Each rat was 

held in the apparatus (ICM Co., Ltd., Ibaraki, Japan) for 30 s to 1 min and vehicle or CRF was 

administered from the tail vein. The animals were immediately backed to the home cage after the 

injection. In the evaluation of efficacy of compounds on peripheral ovine CRF challenge, the 

experiment was performed as per a published method [62]. A heparinized i.v. cannula (TERUMO 

SURFLO I.V. CATHETER 22G, Terumo Corporation, Tokyo, Japan) was acutely inserted into one 

side of the femoral vein of rat under pentobarbital anesthesia which lasted until decapitation. The 

catheter was secured in place with a bonding agent and flushed with saline just after cannulation. 

Local anesthetic (Bupivacaine Hydrochloride Hydrate, AstraZeneca K.K, Osaka, Japan) was 

administered at the incision to reduce pain of noxious stimuli. Rats were placed onto a heat carpet to 

maintain normal body temperature until decapitation.  

 

2.4 Measurement of plasma ACTH levels 

To examine the dose response of CRF on plasma ACTH levels, h/r CRF was i.v. or i.c.v. 

administered to rats (n = 5–7) under the conscious state. Blood was collected 30 min after CRF 

administration. Plasma was separated from whole blood by centrifugation (3,000 rpm for 15 min) 

and stored in 1.5 mL Eppendorf tubes at −20ºC until the measurement of ACTH concentration. 

Compounds were orally administered, followed by i.p. delivery of pentobarbital 65 min later (n = 6–

8). CRF was injected from the cannula 55 min after anesthesia and the cannula was flushed with 

saline. Blood was collected into EDTA tubes 5 min after the CRF injection (60 min after anesthesia) 

by decapitation. Plasma was separated from whole blood by centrifugation (15,000 rpm for 10 min) 

and stored in 1.5 mL Eppendorf tubes at −20ºC until the measurement of ACTH concentration. 

ACTH concentration was measured using an immunoradiometric assay kit (Mitsubishi Chemical 

Medience Corporation, Tokyo, Japan) or EIA Kit EKE-001-21 (Phoenix Pharmaceuticals, Inc, US). 

The assay could detect 5-1000 pg/mL ACTH concentration. The intra-assay variation was less than 
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30%, and the inter-assay variation was less than 10%. To examine the effect of compounds without 

CRF on plasma ACTH levels compounds were administered orally 65 min before anesthesia (n = 8). 

125 min after the CRF injection,  plasma was separated from whole blood by centrifugation 

(15,000 rpm for 10 min) and stored in 1.5 mL Eppendorf tubes at -20ºC until measurement of ACTH 

concentration. ACTH concentration was measured using. 

 

2.5 Behavioral assays 

2.5.1. Measurement of locomotion  

One day before the testing, rats were placed into a transparent Plexiglas®-covered cage (38 x 25 x 

32 cm) at 5:00 pm, and the room was maintained under a 12:12 light:dark cycle (light on from 7:00 

am to 7:00 pm) with food and water provided ad libitum. Locomotion was automatically counted 

using an infrared sensor system (SuperMex, Muromachi Kikai, Tokyo, Japan). The infrared sensor 

was positioned at a hole in the center of the top cover to detect locomotion. Food and water were 

available ad libitum. Locomotion was measured for 3 h after CRF or vehicle administration. 

Compounds or vehicle were orally administered 2 h before i.c.v. injection of CRF (1 μg) or vehicle. 

All data were analyzed and stored in a personal computer using analytical software (Comp ACT 

AMS, Muromachi Kikai, Tokyo, Japan). Results were presented as total locomotion for 3 h after 

administration of CRF. 

 

2.5.2. Elevated plus maze (EPM) test  

Anxiety behavior was evaluated by the EPM test. The EPM apparatus was made of black Plexiglas® 

and consisted of 4 arms (50 cm long, 10 cm width): 2 arms had 40-cm high black walls (closed 

arms) and other 2 arms had 1.5-cm high edges (open arms). The maze was elevated to a height of 40 

cm. Rats were weighed and transferred to a darkened testing room (approximately 5–10 lux at the 

open arms of the maze). The animals were allowed to habituate for at least 1 hour before testing. 

Vehicle or a compound was orally administered 2 h before the administration of CRF. After vehicle 

or CRF injection, animals were returned to the home cages for 30 min (i.v. administration) or 1 hour 

(i.c.v. administration). At the beginning of the EPM test, rats were placed individually at the center 

of the maze, facing one of the closed arms. The time spent on open arms during a 5-minute testing 

session was counted manually by stopwatch, and number of arm entries was counted visually. The 

apparatus was wiped clean after the testing of each subject. The results were expressed as the mean 

time spent on open arms and the number of open, closed, and total arm entries. 

 

2.6. In vitro binding assay 

A receptor binding experiment was carried out using a human CRF receptor expressing Chinese 

hamster ovary (CHO) cellular membrane fraction and ovine CRF, [125I]-Tyr0([125I]-CRF). Various 
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concentrations of a Compound A or Compound B were incubated with 1 g of human CRF receptor 

expressing CHO cellular membrane fraction and 50 pM of [125I]-CRF in a binding assay buffer, 

which included 50 mM tris(hydroxymethyl)aminomethane-hydrochloride (Tris-HCl), 5 mM 

ethylenediaminetetraacetic acid (EDTA), 10 mM magnesium chloride (MgCl2), 0.05% 

3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate (CHAPS), 0.1% BSA, 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF), 0.1 g/ml pepstatin, and 20 μg/ml leupeptin, pH 7.5. In 

addition, for measuring nonspecific binding (NSB), 0.1 M unlabeled human urocortin was 

incubated with 1 g protein of human CRF receptor expressing CHO cellular membrane fraction and 

50 pM of [125I]-CRF in a binding assay buffer. Binding reaction was performed at room temperature 

for 90 min, and the membrane was then entrapped on a glass filter (UniFilter-96 GF/C, PerkinElmer, 

Inc., Massachusetts, U.S.A) by suction filtration using a cell harvester (PerkinElmer, Inc., 

Massachusetts, U.S.A), and washed with ice-cooled 50 mM Tris–HCl (pH 7.5). After drying the 

glass filter, a liquid scintillation cocktail (MicroScint™-O, PerkinElmer, Inc., Massachusetts, U.S.A) 

was added, and the radioactivity of [125I]-CRF remaining on the glass filter was measured using 

TopCount NXT™ (PerkinElmer, Inc., Massachusetts, U.S.A). To obtain the binding inhibition rate 

under the presence of various concentrations of each test substance, (Total binding (TB) − -Specific 

binding (SB))/(TB-NSB)  100 (SB: radioactivity when a compound is added, TB: maximum 

binding radioactivity, NSB: nonspecific binding radioactivity) was calculated. The IC50 values were 

calculated using GraphPad Prism software (GraphPad Software, California, U.S.A.). 

 

2.7. In vitro CRF antagonistic activity 

CRF antagonistic activity was obtained by measuring inhibition of adenylate cyclase by the use of a 

CRE-luciferase reporter gene assay. CHO cells with a CRE-luciferase gene expressing human CRF 

receptor were inoculated on a 96-well plate at 40,000 cells/well and allowed to grow for 24 h. After 

cultivation, the culture medium was removed and the cells were treated with various drug 

concentrations in 100 µL of assay buffer [20 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid) (HEPES), Ham F-12, 0.1% BSA, pH 7.2] containing 1 nM human CRF for 4 h. Following drug 

exposures, the cells were lysed, and luciferase activity was measured using a Steady-Glo® 

Luciferase Assay System (Promega Corporation, Wisconsin, U.S.A.) Light output was detected by 

ARVO-SX (Wallac, PerkinElmer, Inc., Massachusetts, U.S.A). The IC50 values were calculated 

using GraphPad Prism software. 

 

2.8. Ex vivo binding assay 

2.8.1. Preparation of brain membrane homogenates  

Compound A, Compound B, or the corresponding vehicle was administered orally to rats at 10 

mg/kg (n = 3). Rats were decapitated and organs (frontal cortex and pituitary) were removed 1 or 2 h 
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later. Brain sections were homogenized at 4°C using PHYSCOTRON (MICROTEC CO., LTD., 

Chiba, Japan) for 10 s in lysis buffer (50 mM Tris–HCl pH 7.0, 10 mM MgCl2, 2 mM EDTA, and 

100 KU/mL aprotinin). Frontal cortex was diluted with the lysis buffer to a final concentration of 5 

mg wet tissue/mL. Pituitary was homogenized in 2.5 mL of the lysis buffer and diluted with the lysis 

buffer to a final concentration of 5 mg It tissue/mL. 

 

2.8.2. Binding assay 

[125I]-CRF (ovine) binding was performed with rat membrane homogenates in the presence of 100 

pM of [125I]-CRF (ovine) in lysis buffer containing 0.1% BSA, 0.5% DMSO, and 0.05% CHAPS in 

a final volume of 200 mL. After incubation at room temperature for 2 h, the incubation mixture was 

filtered on Whatman® glass microfiber filters, Grade GF/C (Sigma-Aldrich Corporation, Missouri, 

U.S.A.) presoaked in 0.3% polyethyleneimine. The filters were washed 6 times with ice-cold wash 

buffer (PBS containing 0.05% CHAPS, 0.01% Triton X-100) and dried. The radioactivity was 

determined with a gamma scintillation counter. Results were expressed as percentage of [125I]-CRF 

(ovine) binding with the count of vehicle-treated group defined as 100%, with in vitro determination 

of the nonspecific binding using 1 μM of the selective CRF1 receptor antagonist R121919. 

 

2.9. Immunohistochemistry 

2.9.1. Perfusion and tissue processing 

Compound A (10 mg/kg) was orally administered 2 h before i.c.v. administration of CRF (1 μg) or 

vehicle to rats (n = 3). The dose of CRF was selected based on my results of locomotion and anxiety 

behavior and published data [63]. The animals used for immunohistochemistry were prepared 

independently from those used in other experiments (as shown in Fig. 1-6 and 1-7). Rats were deeply 

anesthetized with ether and perfused with 0.1 M PBS followed by 4% formaldehyde prepared from 

20% paraformaldehyde via an intracardiac cannula [64] 2 h after i.c.v. administration. The brain was 

immediately removed and kept in 4% formaldehyde in PBS for 16–18 h, followed by immersion into 

20% sucrose in PBS at 4°C for 3 days. The brain was set to the stage of a cryostat (CM3050S, Leica 

Microsystems GmbH, Wetzlar, Germany) with Tissue-Tek O.C.T. compound (Sakura Finetek, 

Tokyo, Japan). A rat brain atlas was used for selecting coronal brain sections (20 μm thickness) 

containing the PVN (1.5– −2.1 mm posterior from the bregma) and the cortex and amygdala (1.70– 

−2.80 mm posterior from the bregma). 

 

2.9.2. Immunohistochemistry of c-fos 

Immunohistochemistry was performed with an avidin–biotin–peroxidase method using specific 

anti-c-Fos polyclonal antiserum (1:5,000, Ab-5, Oncogene, California, U.S.A or 9F6, #2250 Cell 

Signaling Technology, 1:1000 in blocking solution). Brain sections were washed in 0.1 M PBS and 
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placed into 3% fetal bovine serum (FBS) for 1 h. Sections were washed in PBS and then transferred 

into a vial containing anti-c-fos rabbit polyclonal antibody for 16–18 h at 4°C with shaking. After 

washing with PBS, brain sections were incubated in a solution of biotinylated anti-rabbit IgG of 

VECTASTAIN® (Vector Laboratories, California, U.S.A) (1:1000, in 0.3% Triton X in PBS) for 1 

hour at room temperature, followed by rinsing in PBS. Then brain sections were incubated in an 

avidin–biotin complex solution (0.1% avidin, 0.1% biotinylated enzyme in 0.1 M PBS, 

VECTASTAIN® Elite ABC Kit of rabbit IgG) for 16–18 h (overnight) at 4ºC. Brain sections were 

rinsed with 0.05M Tris–HCl (pH 7.6) (Wako Pure Chemical Industries, Ltd., Osaka, Japan), and 

then transferred to a solution of 0.2 mg/mL diaminobenzidine tetrahydrochloride (DAB, Dojindo 

Laboratories, Kumamoto, Japan) in 0.05 M Tris–HCl (pH 7.6). For reaction, 30% H2O2 (Wako Pure 

Chemical Industries, Ltd., Osaka, Japan) was used, and the reaction was stopped by transferring the 

section to 0.05 M Tris–HCl (pH 7.6). After washing the brain sections with 0.05 M Tris–HCl (pH 

7.6), they were adhered to glass slides. Ethanol (70, 80, 90, 95, and 99.5%) and xylene (Wako Pure 

Chemical Industries, Ltd., Osaka, Japan) were used for dehydration before enclosure. 

C-fos-immunopositive cells were checked with microscope and counted by Image J (NIH). Bilateral 

brain areas of the PVN, cortex, and amygdala were counted from 4–7 (PVN) or 6–12 brain (cortex 

and amygdala) slices in each rat. The numbers of immunopositive cells were calculated as an 

average of 3 rats.  

 

2.10. Statistical analysis 

Data and statistical analysis were performed using Microsoft Excel, Preclinical C Package modified 

from SAS Ver. 8.2 (SAS Institute Japan Ltd., Tokyo, Japan), and EXSUS (CAC EXICARE 

Corporation, Tokyo, Japan) software. All results were presented as means ± standard error of the 

mean (S.E.M.). Statistical analyses of two-group comparisons of independent samples were 

performed using Student’s t-test or Aspin–Welch test and the statistical significance was accepted at 

P ≤ 0.05. Statistical analyses of multiple comparisons of independent samples were performed using 

Dunnett’s or Steel test, and statistical significance was accepted at P ≤ 0.05. To examine the 

dose-responses of CRF or compounds, statistical analyses were performed using one-tailed Williams’ 

test or Shirley–Williams’ test, for which statistical significance was accepted at P ≤ 0.025. Student’s 

t-test or Aspin–Welch test was conducted to compare two groups, vehicle (p.o.) – vehicle (i.v. or 

i.c.v.) and vehicle (p.o.) – CRF (i.v. or i.c.v.) treatment (in Fig. 6, 7, and 8). The compound-treated 

groups with CRF were compared with vehicle (p.o.) – CRF (i.v. or i.c.v.) - treated group by 

one-tailed Williams’ test or Shirley–Williams’ test for dose response analysis of one compound or by 

Dunnett’s or Steel test for multiple comparison with Compound A and Compound B.  
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3. Results 

3.1. The effects of CRF challenges 

3.1.1. Plasma ACTH concentration 

CRF was i.v. or i.c.v. injected as peripheral or central CRF challenge under the conscious state and 

blood was collected 30 min after CRF challenges. Plasma ACTH concentration was increased 

dose-dependently by both administration routes of CRF (Fig. 1-1A and 1-1B). In i.v. administration, 

plasma ACTH concentration was increased by CRF dose-dependently and was significant at 0.4 

μg/kg (187.2 ± 13.0 pg/mL), 1 μg/kg (268.92 ± 21.83 pg/mL), 4 μg/kg (421.29 ± 41.97 pg/mL), and 

8μg/kg (495.81 ± 53.93 pg/mL). The percentage of increase from vehicle-treated group was 

254.36% ± 17.59%, 365.39% ± 29.66%, 572.42% ± 57.03%, and 673.67% ± 73.28% at 0.4, 1, 4, and 

8 μg/kg, respectively (n = 7, P ≤ 0.025, Shirley–Williams’ test, Fig. 1-1A) compared with 

vehicle-treated group (73.6 ± 15.5 pg/mL). Dose-dependent increase in ACTH concentration was 

also observed in i.c.v. administration of CRF and was significant at 0.15 μg (164.5 ± 22.5 pg/mL), 

0.3 μg (247 ± 43.13 pg/mL), 0.5 μg (284.24 ± 42.01 pg/mL), and 1 μg (621 ± 33.37 pg/mL) (n = 5−7, 

P ≤ 0.025, Shirley–Williams’ test, Fig. 1-1B) compared with vehicle-treated group (48.1 ± 5.3 

pg/mL). The percentage of increase from vehicle-treated group was 342.18% ± 54.11%, 514.21% ± 

103.58%, 591.15% ± 100.90%, and 1107.34% ± 193.65% at 0.15, 0.3, 0.5, and 1 μg, respectively. 

 

3.1.2. Locomotion 

Locomotion under habituated environment was measured, and total locomotion for 3 h after CRF 

challenge is presented in Fig. 1-2 (n = 6–8). The i.v. administration of CRF (5 μg/kg) did not show 

significant effect on locomotion (Fig. 1-2A and Table 1-2) throughout the measurement (Fig. 1-2C 

and 1-2D). The i.c.v. administration of CRF (0.03–10 μg) dose-dependently increased locomotion, 

and its effect reached significance at 0.1 μg compared with that of the vehicle-treated group (P ≤ 

0.025, one-tailed Williams’ test, Fig. 1-2B and Table 1-3). The increase in locomotor lasted for more 

than 2 h (Fig. 1-2C and 1-2D).  

 

3.1.3. Anxiety behavior 

Anxiety behavior was evaluated by EPM test after peripheral or central CRF challenges (n = 8–14). 

Time spent on open arms (Fig. 1-3A and 1-3C) and numbers of arm entries (Fig. 1-3B and 1-3D) 

were measured during 5 min-trial for each rat. The shorter time spent on, or the less numbers of 

entries to open arms is regarded as high anxiety. In i.v. administration of CRF (4 and 12 μg/kg), time 

spent on open arms did not change compared with vehicle-treated group (59.9 ± 6.4 s, Fig. 1-3A). 

The time spent on open arms was 69.1 ± 7.1 and 61.6 ± 4.3 s in 4 and 12 μg/kg of CRF-treated group, 

respectively. The numbers of arm entries did not change between groups either (Fig. 1-3B). In 

contrast, i.c.v. administration of CRF (0.3, 0.5, and 1 μg) dose-dependently decreased time spent on 
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open arms and was significant at 0.5 and 1 μg compared with that in the vehicle-treated group. The 

time spent on open arms was 56.2 ± 7.3, 24.9 ± 4.9, and 21.0 ± 7.4 s in vehicle and 0.5 and 1 μg of 

CRF-treated group, respectively (P ≤ 0.025, one-tailed Williams’ test, Fig. 1-3C). The number of 

arm entries was also decreased by i.c.v. treatment of CRF and significant at 0.5 and 1 μg compared 

with vehicle-treated group (4.6 ± 0.6, 7.3 ± 0.3, and 11.9 ± 0.8 for open, closed, and total arm entries, 

respectively) (Fig. 1-3D). Number of open, closed, and total arm entries was 2.0 ± 0.4, 5.5 ± 0.6, and 

7.5 ± 0.8 in 0.5 μg of CRF and 1.5 ± 0.4, 3.4 ± 0.5, and 4.9 ± 0.7 in 1.0 μg of CRF-treated group (P 

≤ 0.025, one-tailed Williams’ test). 

 

3.2. In vitro profiles of CRF1 receptor antagonists 

From my in vitro screening of CRF1 receptor antagonist, I identified Compound A and Compound B 

(Fig. 1-4A and 1-4B), which had similar binding affinities with IC50 values of 15 and 10 nM, 

respectively (Table 1-1). There are no significant differences between the potency of Compound A 

and Compound B. Reporter gene assay with luciferase method using Cre-luc CRF1 protein also 

showed similar inhibition activity, and IC50 values of Compound A and Compound B were 15 and 

9.5 nM, respectively (Table 1-1).  

 

3.3. Ex vivo binding assay of CRF1 receptor antagonists 

Ex vivo binding assay was conducted using brain tissues of the frontal cortex and the pituitary in rats 

after oral administration of 10 mg/kg of Compound A or Compound B (n = 3). Competition between 

[125I]-CRF and compounds was measured in each brain tissue. Both Compound A and Compound B 

inhibited binding of [125I]-CRF in pituitary to 16 ± 7% and 41 ± 6% at 1 hour and to 12 ± 3% and 22 

± 6% at 2 h after oral administration of compounds compared with [125I]-CRF binding in the 

drug-free condition (expressed as time point zero), taken as 100% in calculation (Fig. 1-5A). On the 

other hand, binding of [125I]-CRF in the frontal cortex was inhibited only by Compound A to 51 ± 

13% at 1 hour and 42 ± 10% at 2 h, and not by Compound B (109 ± 9% at 1hour and 110 ±11% at 2 

h, Fig. 1-5B). 

 

3.4. Effects of CRF1 receptor antagonists on endocrinological and behavioral changes by CRF 

challenge 

3.4.1. Effects of compounds on peripheral and central CRF challenges 

The effects of 10 mg/kg of Compound A or Compound B on the increase in plasma ACTH 

concentration induced by i.v. administration of CRF (0.1 μg/kg) were examined (n = 6–8). In the 

evaluation of compounds on i.v.-administrated CRF, i.v. injection was performed under anesthesia to 

eliminate physiological stress on HPA axis through the activation of CRF signal in CNS [19]. When 

compounds were administered 2 h before i.v. injection of CRF, both compounds significantly 
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suppressed increase in plasma ACTH concentration. The plasma ACTH concentration in the 

vehicle–vehicle- and vehicle-CRF-treated group was 59.4 ± 9.3 and 161.5 ± 24.5 pg/mL, 

respectively (P ≤ 0.05, Aspin–Welch test, versus vehicle-vehicle-treated group). Those in Compound 

A and Compound B–CRF-treated groups were 79.1 ± 10.1 pg/mL (P ≤ 0.05, Steel test) and 87.7 ± 

7.7 pg/mL (P ≤ 0.01, Steel test, Fig. 1-6A). The effects of two compounds on increase in locomotion 

by i.c.v. administration of CRF (1 μg) were studied (n = 6-12). Compound A (10 mg/kg) 

significantly suppressed the CRF-induced increase of locomotion (Fig. 1-6B) and the suppression 

was observed throughout the recording period (Fig. 1-6C). Total locomotion for 3 h after CRF 

administration was 18763.7 ± 1259.9 counts in vehicle–CRF-treated group (P ≤ 0.01, Aspin–Welch 

test, versus vehicle–vehicle-treated group, Fig. 1-6B) and that in the Compound A–CRF-treated 

group was significantly reduced to 11185.0 ± 592.6 counts (P ≤ 0.01, Dunnett’ s test, Fig. 1-6B). The 

Compound B–CRF-treated group (17881.7 ± 1385.8 counts) did not show significant suppression of 

locomotion compared with vehicle–CRF-treated group (Fig. 1-6B and 1-6C). Compound A or 

Compound B did not show effect on the plasma ACTH concentration or locomotion in rats without 

CRF challenge (Fig. 1-7). 

 

3.4.2. Effect of Compound A on anxiety behavior  

The effect of Compound A on anxiety behavior induced by i.c.v. administration of CRF (1 μg) was 

studied using the EPM test (n = 17–20). Compound B did not show binding affinity to cortex and did 

not suppress locomotion (Fig. 1-6B). In addition, anxiety behavior was reported to have relationship 

with cortical CRF signaling [16]. Therefore, I did not examine Compound B because cortical 

suppression may be critical for the central-modulated changes by CRF [54]. Compound A at 5 and 

10 mg/kg significantly increased time spent on open arms (51.0 ± 8.5 and 62.1 ± 13.3 s at 5 and 10 

mg/kg, respectively) compared with that in vehicle–CRF-treated group (12.0 ± 3.0 s) (P ≤ 0.025, 

one-tailed Williams’ test, Fig. 1-8A). The numbers of arm entries were also significantly increased 

by Compound A treatment (Fig. 1-8B). The number of open arm entries in groups of vehicle and 

Compound A at 5 and 10 mg/kg- treatment with CRF was 1.1 ± 0.3, 3.5 ± 0.5, and 3.5 ± 0.5, 

respectively. The number of total arm entries of each group was 4.7 ± 0.8, 9.5 ± 0.6, and 8.2 ± 0.9, 

respectively. In contrast, compound A did not show the effect on the behavior in the EPM test in rats 

without CRF challenge (Fig. 1-8C and 1-8D). 

 

3.5. Effect of Compound A on c-fos immunohistochemistry after central CRF challenge  

For further analysis of effects of Compound A on central CRF signals in vivo, I measured the 

number of c-fos-immunopositive cells in the cortex, PVN, and amygdala after i.c.v. administration of 

CRF (1 μg, n = 3). CRF induced a significant increase in the number of c-fos-immunopositive cells 

in these brain areas compared with that in vehicle–vehicle-treated group (Fig. 1-9A-D). The numbers 
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of c-fos-immunopositive cells in vehicle–vehicle-treated group in the cortex, PVN, and amygdala 

were 736.6 ± 59.3, 182.0 ± 14.0, and 16.2 ± 0.5, respectively. Those in vehicle–CRF-treated group 

were 1775.9 ± 49.0 (P ≤ 0.01, Student’s t-test), 410.7 ± 30.9 (P ≤ 0.05, Aspin–Welch test), and 

94.3± 4.3 (P ≤ 0.01, Aspin–Welch test), respectively. Compound A (10 mg/kg), administered orally 2 

h before i.c.v. administration of CRF, significantly decreased the number of CRF-induced 

c-fos-immunopositive cells to 1046.8 ± 145.2 in the cortex (P ≤ 0.01, Student’s t-test, compared with 

vehicle–CRF-treated group, Fig. 1-9A and 1-9B) and to 236.8 ± 14.7 in the PVN (P ≤ 0.05, Aspin–

Welch test, versus vehicle–CRF-treated group, Fig. 1-9A and 1-9C); however, it was not decreased 

in the amygdala (66.4 ± 16.3, Fig. 9A and 9D). Compound A did not show the effect on the number 

of c-fos-immunopositive cells in rats without CRF challenge (Fig. 1-10).  

 

  



29 

 

2. Discussion 

Mood disorders such as depression and anxiety are medicated by selective serotonin reuptake 

inhibitors (SSRI) and benzodiazepine anxiolytics in the current clinical situation [65]. SSRIs 

enhance monoamine neurotransmission by inhibiting its reuptake. Benzodiazepine works by 

activating gamma aminobutyric acid (GABA)A receptors. Various SSRIs and Benzodiazepines have 

been launched so far; however, there are still high unmet needs in the early onset of efficacy and 

safety. CRF1 receptor antagonists have been expected to be one candidate of the new drug for mood 

disorders with new mechanism of action, however, clinical trials conducted so far have not 

succeeded in showing the expected efficacy [66]. Nevertheless, as stress is related to mood disorders 

[67], CRF1 receptor antagonists may still have opportunities to provide efficacy on stress-related 

mental diseases, such as anxiety and PTSD. 

This study confirmed that the central CRF challenge, but not peripheral challenge, induced 

behavioral changes in locomotion and anxious behavior, whereas endocrinological response in the 

HPA axis can be activated by both central and peripheral CRF challenges. These results are in 

agreement with the reported findings in rats [68] and indicate that the regulation of CRF signaling 

related to locomotion and anxiety in the CNS may be independent from HPA axis regulation. The 

other was that a CRF1 receptor antagonist, Compound A, which inhibits binding of [125I]-CRF in the 

frontal cortex and the pituitary, decreased behavioral changes induced by central CRF challenge, 

whereas Compound B, another CRF1 receptor antagonist which inhibits binding of [125I]-CRF only 

at the pituitary located outside the BBB, did not. These results indicate that the central CRF1 receptor 

antagonism would be involved in anxiolytic and other behavioral effects. 

Although the relationship between central and peripheral regulation of CRF signaling is 

yet to be elucidated, an accumulation of findings indicates independent regulation between central 

and peripheral CRF signaling. For example, i.c.v. administration of CRF to hypophysectomized rats 

induced locomotor activation [69] and anxiety behavior [17], but not HPA axis activation. Pryce et al. 

also compared central and peripheral responses of CRF in endocrinological and behavioral changes 

[70]. In this report, i.c.v. CRF induced the activation of HPA axis and locomotor inactivity in mice, 

and the hyper-HPA axis was blocked only by i.p.-injected astressin, and not by i.c.v.-injected 

astressin, although locomotion was blocked only by i.c.v.-injected astressin [70]. This indicates that 

the HPA axis may be regulated by CRF at the pituitary level. Results from conditional knockout 

mice of Crhr1 (CRF1 receptor) only in the anterior forebrain using calcium/calmodulin-dependent 

kinase Iiα promoter suggest that the mice showed reduced anxiety with the normal system of HPA 

axis, although the feedback process of the HPA axis would be impaired by causing the absence of 

cortical CRF1 receptor [50]. In this experiment, peripheral or central challenges of CRF were 

conducted to understand endocrinological and behavioral changes induced by CRF. Although HPA 

activation was induced by both peripheral and central CRF challenges (Fig. 1-1), increase in 
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locomotion (Fig. 1-2) and anxiety behavior (Fig. 1-3) were induced only by central CRF challenge, 

which are consistent with the earlier reported results. Preclinical effects of CRF1 receptor antagonists 

have been reported in behavioral assays with exogenously administered CRF [54, 71]. Central 

challenges of CRF have been known to induce direct peripheral effects on stimulation of the 

pituitary corticotropic cell, located outside the BBB [72, 73]. Therefore, the central administration of 

CRF activates HPA axis via direct activation of CRF1 receptors in the anterior pituitary, which is 

outside the BBB [74]. In contrast, most reported studies do not show evidence of direct central 

effects after peripheral CRF challenge [75]. A report by Kastin et al. regarding blood-to-brain entry 

of [125I]-CRH indicates that the influx of CRF into the brain was low and there would be a saturable 

efflux system out of the brain [76], which indicates that the activation of HPA axis after i.v. 

administration of CRF can be induced only by CRF receptor activation in the anterior pituitary. In 

this aspect, evaluating CRF1 receptor antagonists on behavioral or neurochemical changes by central 

CRF challenges may provide key information for identifying potential drug candidates as novel 

anxiolytics or antidepressants. Further research, especially regarding the regulation of CRF signaling 

under these physiological conditions, may be important because it is reported that permeability of 

the BBB may be changed by peripheral CRF activation under acute stress [77] or according to 

developmental stages [78].  

Compound A and Compound B (Fig. 1-4) were found in the in vitro screening assays and 

have similar CRF1 receptor in vitro profiles (Table 1-1). When binding was investigated using 

[125I]-CRF in ex vivo assay, Compound A inhibited binding of [125I]-CRF both in the frontal cortex 

and the pituitary; however, Compound B antagonized [125I]-CRF only in the pituitary and not in the 

frontal cortex, maybe due to its low brain permeability (Fig. 1-5). The results of Compound A and 

Compound B on the activation of HPA axis by peripheral CRF challenge indicate that HPA axis 

regulation can be accomplished by antagonizing CRF1 receptors in the pituitary (Fig. 1-6A). In the 

comparison of i.v. and i.c.v. injected CRF on HPA axis, CRF was injected under conscious state and 

it was the same condition for behavioral analysis. In the evaluation of compounds on HPA axis, i.v. 

administration of CRF was conducted under anesthesia [62] because the physiological stress, 

holding in the apparatus for i.v. injection under conscious state, may be involved in the activation of 

CRF signaling in the CNS [79] and, with this condition, the effect of compounds on the peripheral 

CRF signaling may not be evaluated. 

From the results of behavioral analysis, antagonizing central CRF1 receptors seems to be 

essential to suppress increase in locomotion and anxiety behaviors because Compound B did not 

reduce locomotion induced by central CRF challenges (Fig. 1-6B). Compound A decreased 

locomotion (Fig. 1-6B) and anxiety behavior (Fig. 1-8) induced by the central CRF challenge. The 

independent regulation of anxiolytic effect and HPA axis by a compound has been reported by 

Philbert et al. using CRF1 antagonist SSR125543A, and it attenuated long-term cognitive deficit 
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induced by acute inescapable stress even under the condition in which HPA axis was blunted using 

dexamethasone [60].  

In addition, Compound A inhibited c-fos expression in the cortex and the PVN induced by 

central CRF challenge (Fig. 1-8). Because c-fos plays an important role in signal transmission [80], 

it is used as a marker of neural activation [81]. Recently, Takahashi et al. reported that CRF1 receptor 

antagonist antalarmin inhibited the c-fos expression induced by central challenge of CRF in the PVN, 

but not in the central nucleus of the amygdala (CeA) [82]. Consistent with their report, Compound A 

inhibited c-fos expression in the PVN but not in the amygdala, although we did not segment the 

amygdala. One cannot exclude the possibility of subtle change in the subregion of amygdala, or the 

possibility of the different time course of c-fos expression changes in the amygdala. In contrast, the 

regulation of c-fos expression may not be the same between the central CRF challenge and acute 

stress, because antalarmin reduced the number of c-fos-immunopositive cells in the CeA under acute 

stress [82]. Therefore, the evaluation of CRF1 receptor antagonists on biochemical changes induced 

by stress is also important to enable an understanding of their roles under these physiological 

conditions.  

Although there are many reports that suggest efficacy of CRF1 receptor selective 

antagonists on HPA axis activity, anxiety, and other behaviors in preclinical studies [53, 83, 84], 

successful results have not been reported in the clinical studies from R121919, the first CRF1 

receptor selective antagonist that entered into a clinical study [85], to Pexacerfont [66]. Further 

investigation will be needed regarding the compensation system in CRF signaling, pathophysiology 

of anxiety disorders, and others, to understand the discrepancy between non-clinical and clinical 

results. One of the key experiments for this point may be translational research to ensure target 

engagement such as receptor occupancy in the brain. In view of the specific distribution patterns of 

CRF1 receptors in the brain areas related to anxiety and stress, such as PVN, cortex, and limbic 

systems, it may be possible to analyze receptor occupancy by positron emission tomography (PET). 

There are a few reports about a radio-labeled ligand for CRF1 receptor [86, 87]. In the PET studies in 

baboons, [11C]SN003 penetrated the BBB; however, regional variation in total binding could not be 

observed due to the rapid metabolism or the small number of CRF1 receptors [86]. Further efforts 

have been continuously made to identify reasonable PET ligands [88, 89] and target occupancy of 

CRF1 receptor antagonists will enable us to predict active doses for clinical studies. So far, because 

ideal radiotracers for clinical use have not been obtained, effects of CRF1 receptor antagonist 

R317573 on regional cerebral glucose metabolism were studied using 

[18F]fluoro-2-deoxy-D-glucose (FDG) PET in healthy subjects [90]. The results showed 

dose-dependent increase in cerebral glucose metabolism by acute dosing in frontal cortical regions 

and decrease in the putamen and right amygdala, indicating the pharmacologically active doses in 

humans. Thus, preclinical studies for receptor occupancy or neural modulation in the brain by a 



32 

 

compound would provide key information for the selection of a clinical candidate in addition to 

efficacy on central CRF-induced and stress-induced biochemical and behavioral changes. 

In conclusion, the current study showed that central CRF signals have crucial roles in 

behavioral changes, such as locomotor activity and anxiety behavior. In contrast, the hormonal 

regulation of CRF through HPA axis can be primarily modulated at the peripheral level. CRF1 

receptor antagonists that block CRF signaling in the CNS, like Compound A, are expected to show 

anxiolytic effects. 
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Table 1-1. 

In vitro binding affinities to CRF1 receptor and functional activity in reporter gene assay.  
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Table 1-2.  

The counts of locomotion for 3 h after CRF i.c.v. administration represented in the Fig. 1-2A. 
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Table 1-3. 

The counts of locomotion for 3 h after CRF i.c.v. administration represented in the Fig. 1-2B. 
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Fig. 1-1. Effects of peripheral and central CRF administration on plasma ACTH concentration in rats. 

CRF was administered (A) i.v. (μg/kg) and (B) i.c.v. (μg). Blood was collected 30 min after 

administration. Bars represent mean ± S.E.M. of plasma ACTH concentration (n = 5–7). #P ≤ 0.025, 

Shirley–Williams’ test.  
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Fig. 1-2. Effects of peripheral and central CRF administration on locomotion under habituated 

environment in rats. Locomotor activity was counted for 3 h after (A) i.v. or (B) i.c.v. injection of 

CRF by infrared sensor. (C) Time-course changes of in locomotion in Fig. 1-2A. (D) Time-course 

changes of in locomotion in Fig. 1-2B. Rats were habituated from 1 day before the experiment in the 

experimental apparatus with food and water ad libitum. Vehicle was orally administrated 120 min 

before CRF administration. A plot and bars represent mean ± S.E.M. of counts of (A) and (B); total 

for 3 h or (C) and (D); 10-bin locomotion (n=6–8). #P ≤ 0.025, one-tailed Williams’ test.  
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Fig. 1-3. Effects of peripheral and central CRF administration on anxiety behavior in rats. Anxiety 

behavior was evaluated by the elevated plus maze (EPM) test. (A, B); CRF (4 and 12 μg/kg) was i.v. 

administered 30 min before the EPM test. (C, D); CRF (0.3, 0.5, and 1 μg) was i.c.v. administered 1 

hour before the EPM test. Bars represent mean ± S.E.M. of time spent on open arms (A and C) or 

mean ± S.E.M. of open, closed or total arm entries (B and D) (n = 8–14). #P ≤ 0.025, one-tailed 

Williams’ test.  
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Fig. 1-4. Chemical structures of Compound A and Compound B. Compound A (A), 

[N-(4-bromo-2-methoxy-6-methylphenyl)-4-chloro-1-methyl-7-(pentan-3-yl)- 

1H-benzimidazol-2-amine] and Compound B (B), 

[4-chloro-2-(2-chloro-6-methyl-4-(methylthio)phenoxy) -1-methyl-7-(pentan-3-yl)-1H –

benzimidazole], were synthesized in-house.  

 

 

  



41 

 

 

 

Fig. 1-5. [125I]-CRF binding in membranes of (A) the pituitary and (B) the frontal cortex 1 and 2 h 

after oral administration of 10 mg/kg of Compound A (black column) or Compound B (gray column). 

Tissues were homogenized and membranes were prepared. Binding of [125I]-CRF in the rat brain 

tissues under drug-free condition was defined as 100% binding. Data at 1 and 2 h were represented 

as mean ± S.E.M. of the percentage of [125I]-CRF binding in the presence of compounds (n = 3). 
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Fig. 1-6. Effects of compounds on HPA-axis activity and locomotion in rats. (A) Plasma ACTH 

concentration after oral administration of 10 mg/kg of compounds and i.v. administration of CRF 

(0.1 μg/kg). Compounds were administered 2 h before CRF injection (n = 6–8). Bars represent mean 

± S.E.M. of plasma ACTH concentration. **P ≤ 0.05 (versus vehicle-treated group, Aspin–Welch 

test); # P ≤ 0.05, ## P ≤ 0.01 (versus vehicle-CRF treated group, Steel test). (B) Locomotor activity 

after oral administration of 10 mg/kg of compounds and i.c.v. administration of CRF (1 μg). 

Compounds were administered 2 h before CRF injection (n = 6–12). Locomotion was counted for 3 

h after CRF injection. (C) Locomotion after oral administration of 10 mg/kg of compounds followed 

by i.c.v. administration of CRF (1 μg) was expressed as time course changes. A plot represents mean 

± S.E.M. of counts of 10-bin locomotion. Bars represent mean ± S.E.M. of locomotion. **P ≤ 0.05 

(versus vehicle–vehicle-treated group, Aspin–Welch test); ##P ≤ 0.01 (versus vehicle–CRF-treated 

group, Dunnett’ s test). 
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A                                               B 

 

Fig. 1-7. Control experiments of Compound A or Compound B without CRF administration in 

plasma ACTH concentration and locomotion in rats. Bars represent mean ± S.E.M. of (A) plasma 

ACTH concentration (n=8) and (B) locomotion (n=10).   
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Fig. 1-8. Effect of Compound A on anxiety behavior induced by central CRF challenge. Anxiety 

behavior was evaluated by elevated plus maze test 1 hour after i.c.v. administration of CRF (1 μg). 

Compound A (5 and 10 mg/kg) was orally administered 2 h before CRF administration (n = 17–20). 

Bars represent mean ± S.E.M. of time spent on open arms (A). Number of arm entries (open, closed, 

and total arm entries) was expressed as mean ± S.E.M. in each treatment group (B). □, vehicle–

vehicle; ■, vehicle–CRF; ■, Compound A (5 mg/kg) –CRF; and ■, Compound A (10 mg/kg) –CRF. 

(C) Time spent open arms and (D) number of arm entries by Compound A or B administration 

without CRF administration in elevated plus maze test in rats (n=10). Bars represent mean ± S.E.M.  

 **P ≤ 0.01, Student’s t-test (versus vehicle–vehicle-treated group). ††P ≤ 0.01, Aspin–Welch test 

(versus vehicle–vehicle treated group). §P ≤ 0.025, Shirley-Williams’ test (versus vehicle–

CRF-treated group). #P ≤ 0.025, one-tailed Williams’ test (versus vehicle–CRF-treated group). 
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Fig. 1-9. Effects of Compound A on c-fos expression induced by central CRF challenge. (A) 

Representative slides of the rat cortex and PVN after oral administration of vehicle or Compound A 

(10 mg/kg) followed by i.c.v. administration of CRF (1 μg). Ctx: cortex, PVN: paraventricular 

nucleus of hypothalamus, Amy: amygdala. Compound A was administered 2 h before i.c.v. 

administration of CRF (n = 3). The scale bars represent 500 μm. Result of quantification of 

immunopositive cells in (B) cortex, (C) PVN, and (D) amygdala. C-fos-immunopositive cells were 

counted by software Image J (NIH). Each brain area was counted bilaterally in 4–7 (PVN) or 6–12 

(cortex and amygdala) brain sections of each rat. The numbers of immunopositive cells were 

calculated as mean ± S. E. M. of those sections. **P ≤ 0.01, Student’s t-test (versus vehicle–vehicle 

group). ##P ≤ 0.01, Student’s t-test (versus vehicle–CRF-treated group). §P ≤ 0.05, §§P ≤ 0.01, 

Aspin–Welch test (versus vehicle–vehicle-treated group). †P ≤ 0.05, Aspin–Welch test (versus 

vehicle–CRF-treated group).  
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Fig. 1-10. Control experiment of Compound A without CRF in immunohistochemistry of c-fos in 

rats. The scale bars represent 200 μm. Result of quantification of immunopositive cells in cortex (B), 

PVN (C), and amygdala (D). C-fos-immunopositive cells were counted by software Image J (NIH). 

Each brain area was counted bilaterally in 4-7 (PVN) or 6-12 (cortex and amygdala) brain sections 

of each rat (n=3). The numbers of immunopositive cells were calculated as mean ± S.E.M. of those 

sections. 
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Preclinical Characterization of AMPA Receptor Potentiator 

TAK-137 as a Therapeutic Drug for Schizophrenia 
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Abstract  

The downregulation of the glutamate system may be involved in positive, negative, and cognitive 

symptoms of schizophrenia. Through enhanced glutamate signaling, the activation of the 

α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, an ionotropic glutamate 

receptor, could be a new therapeutic strategy for schizophrenia. TAK-137 is a novel AMPA receptor 

potentiator with minimal agonistic activity; in this study, I used rodents and non-human primates to 

assess its potential as a drug for schizophrenia. At 10 mg/kg p.o., TAK-137 partially inhibited 

methamphetamine-induced hyperlocomotion in rats, and at 3, 10, and 30 mg/kg p.o., TAK-137 

partially inhibited MK-801-induced hyperlocomotion in mice, suggesting weak effects on the 

positive symptoms of schizophrenia. At 0.1 and 0.3 mg/kg p.o., TAK-137 significantly ameliorated 

MK-801-induced deficits in the social interaction of rats, demonstrating potential improvement of 

impaired social functioning, which is a negative symptom of schizophrenia. The effects of TAK-137 

were evaluated on multiple cognitive domains—attention, working memory, and cognitive flexibility. 

TAK-137 enhanced attention in the five-choice serial reaction time task in rats at 0.2 mg/kg p.o., and 

improved working memory both in rats and monkeys: 0.2 and 0.6 mg/kg p.o. ameliorated 

MK-801-induced deficits in the radial arm maze test in rats, and 0.1 mg/kg p.o. improved the 

performance of ketamine-treated monkeys in the delayed matching-to-sample task. At 0.1 and 1 

mg/kg p.o., TAK-137 improved the cognitive flexibility of subchronic phencyclidine-treated rats in 

the reversal learning test. Thus, TAK-137-type AMPA receptor potentiators with low intrinsic 

activity may offer new therapies for schizophrenia. 
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1. Introduction  

Schizophrenia consists of a spectrum of symptoms: positive symptoms (hallucinations and 

delusions), negative symptoms (blunted affect and deficits in social functioning), and cognitive 

symptoms (deficits in attention, working memory, and cognitive flexibility) [2, 91]. The 

hyperdopamine hypothesis postulates that excessive activation of dopaminergic neurons in the 

subcortical regions of the brain is deeply involved in the pathophysiology of the positive symptoms 

of schizophrenia [7]. Current antipsychotics, based on dopamine D2 receptor (D2R) antagonism, are 

effective against the positive symptoms of schizophrenia; however, the efficacy against the negative 

and cognitive symptoms is limited [7, 92] . In addition, their side effects such as extrapyramidal 

symptoms and metabolic changes, limit their clinical application [93]. Owing to the limitations of 

the efficacy and safety of the current medications, there is a large unmet need for novel therapeutic 

strategies for schizophrenia.  

As postulated by the hypoglutamate hypothesis, the downregulation of glutamate signaling, 

especially the dysfunction of the N-methyl-D-aspartate (NMDA) receptor in the medial prefrontal 

cortex plays an important role in schizophrenia [30, 94, 95]. NMDA receptor antagonists, such as 

phencyclidine (PCP) and ketamine, induce not only psychotic symptoms, but also negative and 

cognitive symptoms in healthy subjects [24, 96, 97]. Thus, the activation of the NMDA receptor may 

offer a potential therapeutic approach against schizophrenia. Bitopertin (RG1678), a glycine 

transporter type 1 (GlyT1) inhibitor, which can activate the NMDA receptor by increasing the level 

of the NMDA receptor co-agonist (glycine) [33], improved the negative symptoms of schizophrenia 

[34]. Moreover, glycine or D-serine—agonists at the glycine site of the NMDA receptor, 

significantly improved the negative symptoms of schizophrenia [31, 32]. However, strategies that 

directly activate NMDA function have not been successful, possibly owing to the excitotoxic side 

effects [98, 99] or the desensitization of the NMDA receptors [100]. 

The α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is an 

ionotropic glutamate receptor that plays a key role in learning and memory [21]. Glutamate receptor 

subunit 1-knockout mice exhibited cognitive impairment, hyperdopaminergia, and psychosis-like 

behaviors [22]. The AMPA receptor is involved in the regulation of NMDA receptor activation, 

which induces ion influx into cells, triggering the release of channel-blocking magnesium ion from 

the NMDA receptor. This results in the activation of NMDA receptor signaling through an increase 

in NMDA receptor-mediated calcium influx [23]. Therefore, the potentiation of the AMPA receptor 

is expected to offer a new therapeutic strategy for schizophrenia through the enhancement of 

glutamate signaling.  

Recently a novel AMPA receptor potentiator—TAK-137 

(9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide) has been discovered. 

TAK-137 presented lower risks of a bell-shaped dose response and seizure owing to its low agonistic 
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activity [38, 39]. TAK-137 enhanced cognitive function in I rats and non-human primates. In this 

study, I characterized TAK-137 as a therapeutic drug for schizophrenia by using behavioral test 

batteries for the positive, negative, and cognitive symptoms of schizophrenia in rodents and 

non-human primates.  

Methamphetamine (METH) enhances dopamine release and activates dopaminergic 

neurons in the subcortical regions of the brain, which causes psychotic symptoms that resemble the 

positive symptoms of schizophrenia [101]. Based on hyperdopamine and hypoglutamate hypotheses 

for psychosis, METH and MK-801 (an NMDA receptor antagonist) were used, respectively. As for 

cognitive functions, I evaluated the effects of TAK-137 on multiple cognitive domains associated 

with schizophrenia, such as attention, working memory, and cognitive flexibility, using behavioral 

test batteries in rats and monkeys [2, 102]. The data suggest that TAK-137-type AMPA receptor 

potentiators with low intrinsic activity may be a promising treatment for the multiple symptoms of 

schizophrenia, especially for negative and cognitive symptoms.   
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2. Materials and Methods 

2.1. Drug administration 

TAK-137 was synthesized by Takeda Pharmaceutical Company Limited (Fujisawa, Japan) and 

suspended in 0.5 % (w/v) methylcellulose in distilled water; oral administration (p.o.) was conducted 

at a volume of 2 mg/kg in rats, 20 mg/kg in mice, and 5 mg/kg in monkeys. A solution of 0.5 % 

methylcellulose was administered as the vehicle control. Methamphetamine hydrochloride (METH, 

Sumitomo Dainippon Pharma, Osaka, Japan) at 0.5 mg/kg and (+)-MK-801 hydrogen maleate 

(MK-801, Sigma-Aldrich St Louis, MO) at 0.08 or 0.1 mg/kg were dissolved in 0.9 % saline and 

subcutaneously administered (s.c.) to rats at a volume of 2 mg/kg. Phencyclidine hydrochloride (PCP, 

Sigma-Aldrich, Poole, UK) (2 mg/kg) was dissolved in 0.9 % saline and administered 

intraperitoneally (i.p.) to rats at a volume of 1 mg/kg twice per day for 7 days. Ketamine 

hydrochloride (KETALARⓇ, Daiichi Sankyo Propharma Co. Ltd, Tokyo, Japan) was dissolved in 

0.9 % saline and administered intramuscularly (i.m.) to monkeys at a volume of 5 mg/kg.  

   

2.2 Animals  

Animal species and strains were selected based on the previous publications for each experiment. 

Male Sprague-Dawley (SD) rats were purchased from Charles River Laboratories, Japan (Yokohama, 

Japan) for the measurements of locomotion (7-week-old rats) [103]. Male ICR mice and Wistar rats 

were purchased from CLEA Japan Inc. (Tokyo, Japan) for the measurement of locomotion 

(6-week-old mice) [103] and the social interaction (SI) test (6-week-old rats), respectively. Male 

Long-Evans rats were purchased from Japan SLC, Inc. (Hamamatsu, Japan) for the five-choice serial 

reaction time task (5-CSRTT) (6-week-old rats) and the radial arm maze (RAM) test (8-week-old 

rats) [104]. Female Lister Hooded rats (21 days postnatal) were supplied by Harlan Laboratories UK, 

Ltd. (Bicester, UK) for the reversal learning test [105]. Female rats were used for reversal learning 

because females are highly sensitive to PCP [106] and showed more robust performance in certain 

cognitive tasks compared with male rats [107, 108]. Rats and mice were housed in groups of 4 or 5 

per cage in a light-controlled room (12 h light/dark cycle; lights on at 7:00 AM) with free access to 

food and water. The room temperature and humidity were 20–25 °C and 40–60 %, respectively, and 

the animals were given a minimum acclimation period of 1 week prior to the experiment. The 

animals were randomly assigned to the vehicle- or compound-treated groups. 

The delayed matching-to-sample (DMTS) task was evaluated in 4–6-year-old male cynomolgus 

monkeys (Macaca fascicularis) weighing 4–6 kg (Keari Co. Ltd., Osaka, Japan). The monkeys were 

housed individually in cages stored at a room temperature of (24 ± 1) °C and a humidity of (55 ± 

15) %, with a 12 h light/dark cycle (lights on at 7:00 AM). The monkeys were fed a complete, 

nutritionally balanced diet with fruit once daily (approximately 3:00–4:00 PM) and water was 

available ad libitum. All monkeys were housed and handled in strict accordance with good animal 
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practice under the supervision of veterinarians. They received environmental enrichment and were 

monitored for evidence of disease and changes in attitude, appetite, or behavior suggestive of illness. 

The care and use of the animals, and the experimental protocols used in this research except the 

reversal learning test, were approved by the Experimental Animal Care and Use Committee of 

Takeda Pharmaceutical Company Limited. The reversal learning test was carried out at b-neuroTM 

(University of Manchester, UK) in accordance with the Animals Scientific Procedures Act, UK, and 

was approved by the Ethical Review Panel of the University of Bradford.  

 

2.3  Behavioral assays  

2.3.1. Locomotion measurement in rats 

Locomotion was automatically evaluated using an infrared sensor system (SuperMex, Muromachi 

Kikai, Tokyo, Japan). The infrared sensor was placed on the center of the cover on the cage with a 

hole to detect locomotion. Each rat was placed in a Plexiglas covered cage (38 × 25 × 32 cm) for 

more than 2 h before the experiment was started to allow acclimation to the experimental 

environment. Food and water were available ad libitum. After acclimation, TAK-137 or the 

corresponding vehicle was administered p.o. 4 h prior to METH administration (0.5 mg/kg, s.c.). 

The numbers of animals used were as follows—vehicle/vehicle: 6, vehicle/METH: 12, TAK-137 

(0.1 mg/kg)/METH: 11, TAK-137 (1 mg/kg)/METH: 13, and TAK-137 (10 mg/kg)/METH: 13. The 

data were collected as an accumulation of the counts of infrared sensors in each 3 min block after 

METH administration and are presented as the mean ± standard error of the mean (S.E.M.) of the 

changes over time and the accumulation of activity counts for 120 min after METH administration. 

All the data were stored in a personal computer and analyzed by appropriate software (Comp ACT 

AMS, Muromachi Kikai, Tokyo, Japan).  

 

2.3.2 Locomotion measurement in mice 

Locomotion was automatically counted with an infrared sensor automated activity monitoring 

system. Each of the 36 test cages (30 × 40 × 20 cm) was equipped with a pyroelectric infrared sensor. 

Each mouse was allowed to acclimate to the test cage for more than 2 h before the experiment was 

started. After acclimation, TAK-137 or the corresponding vehicle was administered p.o. 2 h before 

the s.c. administration of MK-801 (Sigma-Aldrich St Louis, MO) at 0.3 mg/kg in 0.9 % saline or the 

corresponding vehicle. The numbers of animals used were as follows—vehicle/vehicle: 6, 

vehicle/MK-801: 13, TAK-137 (1 mg/kg)/MK-801: 14, TAK-137 (3 mg/kg)/MK-801: 13, TAK-137 

(10 mg/kg)/MK-801: 16, and TAK-137 (30 mg/kg)/MK-801: 15. The data were collected as 

accumulation of counts of infrared sensors in each 3 min block after MK-801 administration and 

presented as the mean ± S.E.M. of the changes over time and the accumulation of activity counts for 

120 min after MK-801 administration.  
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2.3.3 SI test 

The experiment was performed as described previously [109] with some modifications. One day 

before the experiment, the rats were placed in the experimental room for 2 h and orally administered 

distilled water for acclimation. On the day of the experiment, the rats were again placed in the 

experimental room for 2 h for acclimation. After acclimation, TAK-137 (0.1 or 0.3 mg/kg) or the 

corresponding vehicle was administered p.o., followed by s.c. injection of MK-801 (0.1 mg/kg) or 

the corresponding vehicle at 4 h before testing (n = 14 per group). Two rats in the same drug 

treatment group, from the different home cages but with a body weight difference of less than 15 g 

were placed diagonally opposite in a test box (60 × 60 × 60 cm, 35–40 lux). The SI between 2 rats 

was determined from the total time spent participating in social behaviors such as sniffing, genital 

investigation, chasing, and fighting. The interaction time within a 10 min test period was measured 

by a researcher through the monitoring of the CCD camera viewing the test box under blind 

condition. Between each session, the test box was cleaned with 10 % ethanol. In addition to the 

interaction time, the locomotor activity of each animal was measured by the tracking system in the 

same software (TopScan, CleverSys Inc., Reston, VA). The data are presented as the mean ± S.E.M. 

of the interaction time and distance moved during the test.   

 

2.3.4 5-CSRTT 

The experiment consisted of 2 sessions: training and testing. The training session started with 

7-week-old male Long-Evans rats, and 13 rats were used for the test at 12-13 months of age. These 

rats were also used to assess the effects of drugs other than TAK-137 on 5-CSRTT performance 

between ages 6 and 12 months. They had a 2-week washout period prior to the start of the study with 

TAK-137. From the training session, food was restricted to 80–85 % of the animals’ free-feeding 

body weight, throughout the experimental period. The training and testing were conducted by using 

4 operant chambers enclosed in sound-attenuating boxes (Med Associates Inc., St Albans, VT). Each 

chamber contained a curved wall with 5 contiguous apertures. Food pellets were supplied 

automatically into a magazine located in the opposite wall of the 5 contiguous apertures in the 

chamber, and a photocell beam was used to detect head entries into the magazine. In the training 

session, a pellet was delivered into the magazine at the start of each session to initiate the first trial. 

After a 5 s intertrial interval (ITI), a light stimulus was presented in one of the 5 apertures, followed 

by a 5 s limited hold in the absence of light stimulus. The duration of the light stimuli was set to 5 s 

and gradually decreased during training to 2 s. The rats were required to nose-poke into the 

illuminated aperture. The correct responses (nose-poke responses in the illuminated aperture during 

a light stimulus and limited hold) resulted in the delivery of a food pellet into the magazine, with 

sound and light signals above the magazine occurring for 2 s. Rats with incorrect responses 
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(nose-poke responses in non-illuminated apertures), omissions (failure to respond during the limited 

hold), and premature responses (responses occurring prior to the presentation of the stimulus) were 

punished by a 5 s time-out period, with extinction of the house light and no delivery of food. Each 

session lasted for 35 min or until 100 trials were completed. From a group of 15 trained rats, 13 rats 

that achieved the performance criteria (> 75 % correct responses and < 20 omissions) over three 

consecutive days were used for the experiment. In the testing session, the duration of light stimuli on 

the aperture was set to 0.5 s. Vehicle or 0.2 mg/kg TAK-137 was orally administered to the rats 4 h 

prior to testing in a crossover fashion, with a washout period of 1 week. The data are indicated as the 

mean ± S.E.M. of the number of correct responses, omissions, and premature responses.  

 

2.3.5 RAM test 

The experiment was performed as previously described [110, 111] with a minor modification. The 

dimensions of each arm were 50 cm × 10 cm × 40 cm (length × width × height); the maze was 

elevated 50 cm above the floor. After a 24 h fast, the rats’ food intake was restricted to 80–85 % of 

the free-feeding body weight on the first day of exposure to the maze and throughout the 

experimental period. The RAM test consists of 2 sessions: training and testing. In the training 

session, rats were acclimated to the maze and then trained. Reinforcement consisted of 3 food pellets 

(45 mg each) in a food cup. On the first day of acclimation to the maze, reinforcements were placed 

near the entrance and at the mid-point of each arm. Three rats were placed on the maze once and 

allowed to explore and consume the pellets for 8 min. On the second day of acclimation, each rat 

was placed on the maze and allowed 5 min to consume the pellets in the food cups placed at the 

mid-point and at the end of each arm. From the third day, reinforcements were placed in a food cup 

at the end of each arm. The rats were well-trained to collect the pellets placed on the edge of each 

arm. The learning criterion for the testing session was defined as 2 errors or fewer for 2 consecutive 

days. From a group of 50 rats which were trained for 15 days, 36 rats that achieved the performance 

criterion were used for the experiment. On the previous day of the testing session, the baseline level 

of performance of the rats was assessed to select the rats that would complete the collection of all the 

pellets placed in the 8 arms with 2 errors or fewer. In the testing session, each rat was placed on the 

maze facing away from the researcher and facing the fixed arm at the start of the trial. The entry of 

rats into each arm was recorded in sequence. The rats were allowed to explore until all the pellets in 

the 8 arms were consumed, or 5 min had elapsed; entry into an arm previously chosen was counted 

as an error. If an animal left some of the 8 arms unexplored during the 5 min session, the number of 

unexplored arms was also counted as an error. TAK-137 (0.2 and 0.6 mg/kg, p.o.) or corresponding 

vehicle was administered 4 h before the testing session. MK-801 (0.08 mg/kg, s.c., as a salt) or 

saline was administered 30 min before the testing session. The numbers of animals used were as 

follows— n = 7 in the vehicle/vehicle-treated group, n = 9 in the vehicle/MK-801-treated group, n = 
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11 in the TAK-137 (0.2 mg/kg)/MK-801-treated group, and n = 9 in the TAK-137 (0.6 

mg/kg)/MK-801-treated group. The data are presented as the mean ± S.E.M. of errors in the testing 

session.  

 

2.3.6 DMTS task 

The experiment was performed on 4–6-year-old male cynomolgus monkeys. The monkeys were 

maintained on 80 % of their free-feeding body weight throughout the experiment. 4 monkeys were 

trained to perform the DMTS task by using the Cambridge Neuropsychological Test Automated 

Battery system (CeNes, Cambridge, UK) [112]. Briefly, a trial was initiated by the presentation of an 

image of a sample object on the screen. The monkey had to touch this object on the screen within 30 

s. Subsequently, the sample object diminished from the screen, followed by a variable delay (0, 4, 8, 

or 16 s) before the re-appearance of the sample object together with 3 other objects. The monkey had 

to choose the sample object from the 4 objects and a correct choice was rewarded by food. The ITI 

was 5 s and one session consisted of 96 trials (24 trials with delays of 0, 4, 8, and 16 s). The variable 

delay durations were randomly presented within the 96 trials. The criterion for the experimental use 

of monkeys was 70 % or more of correct responses over the 96 trials. In the testing session, 

TAK-137 (0.1 mg/kg, p.o.) or corresponding vehicle were administered to monkeys 2 h before 

DMTS testing. Ketamine (1.0 mg/kg i.m., as a salt) or corresponding vehicle was administered 15 

min before DMTS testing. The administration followed a crossover design (n = 4). The dose of 

ketamine and the number of animals were determined on the basis of previous reports [39, 113] and I 

confirmed that the ketamine-induced deficits in the DMTS task was detectable under the 

experimental condition of n = 4. The correct responses were recorded for all the trials during the test 

sessions. The data were subdivided by delay interval, which consisted of 24 trials in each session, 

and are presented as the mean ± S.E.M. of the percentage of correct trials out of the 96 trials per 

session.  

 

2.3.7 Reversal learning test 

The reversal learning test was conducted by b-neuroTM (University of Manchester, UK). The training 

and testing methods have been previously described [105]. All rats were tested in operant chambers 

with 2-lever Skinner boxes. The details of the apparatus were described in the previous report [114]. 

The boxes were controlled by Med-PC software (Version 2.0 for DOS or Med-PC for Windows, 

Med Associates, Inc. Lafayette, IN). Programs were written using Medstate notation. At 12 weeks 

post-weaning, the female Lister Hooded rats (n = 60) were initially trained to respond to food (45 

mg Noyes pellets, PJ Noyes Co Inc., Sandown Chemical Ltd) on a fixed ratio 1 (FR1) schedule of 

reinforcement in standard 2-lever Skinner boxes for 30 min. In the FR1 schedule, one press of either 

lever resulted in the delivery of a food pellet. The rats were food-restricted to approximately 85 % of 
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free-feeding body weight, maintained throughout the training and testing by feeding them 

approximately 12 g of standard lab chow per rat per day. Following a stable level of response to the 

FR1 schedule, the rats were trained to respond to food in the presence or absence of a visual cue in 

the form of a light stimulus above the lever. At the start of each session, the house light was turned 

on; both levers were introduced into the chamber, and the activation of one lever resulted in the 

delivery of a food pellet. One half of the animals were trained to respond in the presence of visual 

cue and the other half in the absence of the cue. Following a response on one lever, the house light 

was turned off and both levers were retracted for a period of 3 s; subsequently, the cycle was 

repeated. The rats were tested until 128 responses were obtained, or until the experimental session 

was terminated 30 min after the initiation of the training. The active lever was changed from session 

to session according to a pseudorandom Gellerman schedule. The rats participated in approximately 

10–15 sessions over 2–3 weeks of training on the initial reward contingency and I ensured that they 

met the criterion on this initial task; i.e., achieved at least 90 % of correct responses with each lever 

active in at least 2 sessions. In the next step, they were trained on the opposite reward contingency, 

the reversal task. Once the criterion (90 % of correct responses) was achieved on the reversal task, 

PCP (2 mg/kg, as a salt) or vehicle was administered (i.p.) at a volume of 1 mg/kg twice per day for 

7 days [115]. During the PCP treatment period, the animals did not receive training to avoid 

association between drug treatment and cognitive performance. After 1-week drug-free period 

without training [116], the reversal testing was carried out on the animals. One day before the 

reversal testing, the rats were trained to respond to food using a randomly assigned contingency (i.e., 

in the presence or absence of a cue). The session was terminated after the consumption of 128 pellets. 

Both PCP- and vehicle-treated groups were required to achieve 90 % of correct responses. If the 

animals failed to reach this criterion, they were subjected to further training until they were able to 

sustain 90 % of the correct responses. The reversal testing consisted of 2 experimental phases: initial 

and reversal. In the initial phase, a consistent reward contingency like that of the previous training 

day was presented to the rats for 5 min or until the rats had earned 20 pellets. Following the initial 

phase, there was a time-out period of 2 min (the house light was turned off). The animal stayed in the 

Skinner box during this time-out period and the reversal phase was then initiated. In the reversal 

phase, the reward contingency was reversed so that the animals must respond in the opposite way 

from the initial test. The reversal test was also performed for 5 min. TAK-137 (0.01, 0.1, or 1 mg/kg, 

p.o.) or vehicle was administered 2 h before the initial phase of the reversal testing. The numbers of 

animals used were as follows: n = 10 in the vehicle/vehicle-treated group, n = 8 in the 

vehicle/PCP-treated group, and n = 8 in the TAK-137/PCP-treated groups. The data are presented as 

the mean ± S.E.M. of the percentage of correct responses in the initial and reversal phases of the 

reversal testing. 
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2.3.8 Novel Object Recognition Test (NORT) 

On day 1, male Long-Evans rats at 6 weeks old (Japan SLC Inc., Hamamatsu, Japan) were allowed 

to habituate to the behavioral test room environment for over 1 h, and then they were allowed to 

habituate to the empty test box [a gray-colored polyvinyl chloride box (40 × 40 × 50 cm)] for 10 min 

individually. Testing was composed of 2 trials; the acquisition and the retention trials (3-min per 

trial). These trials were separated by a 48-h inter-trial interval (ITI). On day 2, during the acquisition 

trial, rats were allowed to explore 2 identical objects (A1 and A2) for 3 min. On day 4, in the 

retention trial, rats were allowed to explore a familiar object (A3) and a novel object (B) for 3 min. 

Exploration of an object was defined as licking or touching the object with forelimbs while sniffing. 

Leaning against the object to look upward, and standing, or sitting on the object were excluded. The 

exploration time for each object (A1, A2, A3, and B) in each trial was scored manually. A novelty 

discrimination index (NDI) was calculated as the novel object interaction time / total interaction time 

× 100 (%). 

 

2.3.9 Measurement of cataleptic response 

The experimental procedure was performed in accordance with the method reported by Hoffman 

and Donovan [1217]. On the day before the experiment, the rats were trained to grab a horizontal 

metal bar at a 13 cm height with their forelimbs for approximately 30 s. Catalepsy-like behavior was 

measured 4 h after the administration of vehicle or TAK-137 (0.1, 1, and 10 mg/kg, p.o.) in blinded 

condition (n = 12). A rat was placed in front of the metal bar, with its forelimbs placed on the bar, 

and the time until the rat removed both forelimbs from the bar was recorded. Animals with sustained 

grabbing posture for 90 s were removed from the apparatus and assigned a latency time of 90 s. The 

average of three consecutive trials was recorded to determine the duration of the cataleptic response. 

The data are presented as the mean ± S.E.M. of the average latency time before the removal of both 

forelimbs from the bar in three consecutive trials. 

 

2.4  Measurement of plasma prolactin levels 

 TAK-137 (0.1, 1, and 10 mg/kg, p.o.) was administered 4 h before decapitation and whole blood 

samples were collected (n = 6). The collected samples were stored on ice in EDTA-containing tubes. 

Plasma was obtained by the centrifugation of whole blood (4 °C, 12000 rpm, and 15 min). The 

plasma supernatant was collected, transferred to another tube, and stored in a deep-freezer until use. 

The plasma concentrations of prolactin were measured by using an enzyme-linked immunoassay kit 

(Bertin Pharma, Montigny le Bretonneux, France).  

 

2.5  Measurement of plasma or brain concentration of compounds 

Male Sprague-Dawley rats (Charles River Laboratories Japan) were used in this experiment. The rats 
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were administered TAK-137 (0.1 mg/kg, p.o.), and were sacrificed by decapitation after 2 h for the 

collection of blood and brain tissues. The plasma was separated from the blood samples by 

centrifugation. The brain tissue was homogenized with saline. The concentrations of TAK-137 in the 

plasma and brain were determined by using liquid chromatography-tandem mass spectrometry. 

 

2.6  Combination effects of olanzapine and TAK-137 in locomotion, NORT, cataleptic 

response, and plasma prolactin levels 

Olanzapine was extracted from Zyprexa® (Eli Lilly and Company, Indianapolis, Indiana, US) at 

KNC Laboratories Co., Ltd. (Kobe, Japan) and dissolved in 1.5 % (v/v) lactic acid. The pH of the 

solution was adjusted to neutral using 1 M NaOH. Olanzapine was administered (p.o.) at a volume 

of 2 mg/kg in rats. After the habituation, TAK-137 (0.1, 1, and 10 mg/kg, p.o.), olanzapine, or 

corresponding vehicle was orally administered 4 h (TAK-137) or 1 h (olanzapine) before METH 

administration (0.5 mg/kg, s.c.). In NORT, TAK-137 (1 mg/kg) and olanzapine (3 mg/kg) were 

orally administered 2 h or 1 h prior to the acquisition and the retention trials, respectively. (n = 10). 

Catalepsy-like behavior was measured 4 h after the administration of vehicle, TAK-137 (0.1, 1, and 

10 mg/kg, p.o.), or olanzapine (3 mg/kg, p.o.) in blinded condition (n =12). For the measurement of 

plasma prolactin levels, TAK-137 (0.1, 1, and 10 mg/kg, p.o.) was administered 4 h before, and 

olanzapine (3 mg/kg, p.o.) was administered 1.5 h before decapitation to collect whole blood (n = 6). 

 

2.7  Statistical analysis 

The data are presented as the mean ± S.E.M. Statistical analysis was performed by EXSUS (CAC 

Croit Corporation). The F test, followed by Student’s t-test (for data with homoscedasticity with P ≥ 

0.2 by F test) or Aspin-Welch test (for data with heteroscedasticity with P < 0.2 by F test) with 

multiplicity adjustment by Bonferroni correction were used for comparisons between two groups: 

vehicle/vehicle and vehicle/METH (Fig. 2-1A and 2-1B), vehicle/MK-801, and vehicle/PCP 

treatments. The level of significance in each t test was designated by the values of P < 0.05. 

Bartlett’s test was performed to test the equality of variances, followed by a one-tailed Williams’ test 

(for parametric data, P ≥ 0.05 by Bartlett’s test) or one-tailed Shirley-Williams’ test (for 

non-parametric data, P < 0.05 by Bartlett’s test) to assess the dose-dependent effects of TAK-137 

compared with the vehicle/METH- or vehicle/MK-801-treatment groups and differences were 

considered significant for P values of < 0.025. The analysis of variance (ANOVA) followed by 

post-hoc analysis of contrast test (5-CSRTT), Bonferroni/Dunnett multiple comparisons (DMTS 

task), or a least significant difference (LSD) test (reversal learning test), which was used for 

crossover or repeated design experiments. The effect of TAK-137 was compared with vehicle-, 

vehicle/ketamine-, or vehicle/PCP-treatment groups and the differences were considered significant 

for P values < 0.05. The effect of olanzapine (3 mg/kg) was also compared with 
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vehicle/METH-treated group by F test followed by Student’s t-test (Fig. 2-7). In the experiments that 

examined the effects of multiple doses of test compounds, statistical significance was analyzed using 

Bartlett’s test to test for the homogeneity of variances, followed by one-tailed Williams’ test (for 

parametric data, P > 0.05 by Bartlett’s test) or one-tailed Shirley-Williams’ test (for non-parametric 

data, P ≤ 0.05 by Bartlett’s test) for the comparison of the dose-dependent effects of the multiple 

doses of the test compounds with the vehicle group. Differences at P values < 0.025 were considered 

statistically significant. In the NORT, the effect of combination of TAK-137 and olanzapine was 

assessed by using two-way ANOVA followed by Bonferroni/Dunnet multiple comparisons with 

significance set at P < 0.05. 
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3. Results 

3.1.  Effect of TAK-137 on the positive symptoms of schizophrenia 

The total count of locomotion over 120 min after METH administration in the METH-treated group 

(14470 ± 1136 counts) was significantly higher than that in the vehicle-treated group (2154 ± 588.7 

counts) (P = 0.0394, F test followed by P < 0.01, Aspin–Welch test; Fig. 2-1A). TAK-137 

significantly decreased the METH-induced hyperlocomotion to 10328 ± 943.5 counts in the 

TAK-137 (10 mg/kg)/METH group (P = 0.9298, Bartlett’s test followed by P < 0.025, one-tailed 

Williams’ test, compared with the vehicle/METH-treated group). The efficacy of TAK-137 was most 

prominent between 90 and 120 min after METH administration. TAK-137 at 0.1, 1, and 10 mg/kg 

reduced the total counts of locomotion in the TAK-137/METH-treated group to 1062 ± 449.7, 797.0 

± 287.9, and 653.4 ± 254.8, respectively in comparison with that in the vehicle/METH-treated group 

(2328 ± 521.3 counts) (P = 0.0917 in Bartlett’s test followed by P < 0.025, one-tailed Williams’ test; 

Fig. 2-1B).  

The effect of TAK-137 on hyperlocomotion induced by MK-801 (0.3 mg/kg as a salt, s.c.) 

was also investigated in mice (Fig. 2-1C). The total count of locomotion over 120 min after MK-801 

administration in the MK-801-treated group (1910 ± 197.8 counts) was significantly higher than that 

in the vehicle-treated group (317.7 ± 63.67 counts) (P = 0.0035, F test followed by P < 0.01, Aspin–

Welch test; Fig. 2-1C). TAK-137 (3, 10, and 30 mg/kg) significantly decreased MK-801-induced 

hyperlocomotion to 1290 ± 180.3, 1469 ± 119.0, and 1164 ± 128.8 counts respectively in the 

TAK-137/MK-801-treated group in comparison with that in the vehicle/MK-801-treated group (1910 

± 197.8 counts) (P = 0.2894 in Bartlett’s test followed by P < 0.025, one-tailed Williams’ test). In 

contrast to the result of METH-induced hyperlocomotion, TAK-137 did not induce prominent effects 

on locomotion between 90 and 120 min after MK-801 administration; a significant effect was 

observed only at 30 mg/kg (P = 0.0131 in Bartlett’s test followed by P < 0.025, one-tailed 

Shirley-Williams’ test; Fig. 2-1D). 

Unlike reported antipsychotics with dopamine D2 antagonism, TAK-137 did not induce a 

significant cataleptic response and increase of prolactin and glucose levels in plasma (Fig. 2-6). 

 

3.2.  Effect of TAK-137 on the negative symptoms of schizophrenia 

3.2.1.  Social behavior 

The interaction time in the vehicle/MK-801 (0.1 mg/kg, as a salt)-treated group (43.6 ± 4.33 s) was 

significantly lower than that in the vehicle/vehicle-treated group (90.33 ± 5.71 s, P = 0.3285, F test 

followed by P < 0.01, Student’s t-test; Fig. 2-2A). The interaction time was significantly increased 

by the administration of 0.1 and 0.3 mg/kg TAK-137 to 65.5 ± 4.78 and 58.9 ± 4.30 s, respectively 

(P = 0.9146 in Bartlett’s test followed by P < 0.025, one-tailed Williams’ test; Fig. 2-2A). MK-801 

administration did not affect the total distance moved. The total distances moved, in the presence and 
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absence of MK-801 were 5796 ± 149 cm and 6205 ± 155 cm, respectively. TAK-137 treatment did 

not significantly increase the distance moved in the presence of MK-801 (7048 ± 276 cm and 6171 ± 

324 cm at 0.1 and 0.3 mg/kg with MK-801, respectively) (Fig. 2-2B).  

 

3.3 Effects of TAK-137 on the cognitive symptoms of schizophrenia 

The plasma and brain concentrations of TAK-137 under fasted conditions were 67 % and 71 % of 

those under the fed conditions (Table 2-1). Thus, 0.2 and/or 0.6 mg/kg of TAK-137 were used in the 

experiments requiring restricted food consumption. 

 

3.3.1  Attention  

The vehicle-treated group achieved 59.1 ± 3.63 correct responses in 100 trials; this was significantly 

increased by TAK-137 (0.2 mg/kg, p.o.) to 69.0 ± 2.61 responses in 100 trials (F(1, 11) = 5.28, P < 

0.05, cross over ANOVA; Fig. 3A). There was no significant difference in the number of omissions 

and premature responses between the vehicle-treated group and the TAK-137-treated group. The 

number of omission responses recorded was 23.8 ± 3.73 and 15.5 ± 2.54 in the vehicle-treated group 

and the TAK-137-treated group, respectively (F(1, 11) = 4.56, cross over ANOVA, P = 0.056; Fig. 

2-3B). The number of premature responses (a response prior to light stimulation) was 5.15 ± 1.57 

and 6.92 ± 1.00 in the vehicle-treated group and the TAK-137-treated group, respectively (Fig. 

2-3C). 

 

3.3.2.  Working memory  

In the testing session of the RAM test, treatment with MK-801 (0.08 mg/kg, as a salt, s.c.) disrupted 

the performance of the well-trained rats in the collection of the pellets on the maze and increased the 

number of errors from 1.43 ± 0.81 to 10.33 ± 1.72 (P = 0.0461, F test followed by P < 0.001, Aspin–

Welch test, compared with the vehicle-treated group; Fig. 2-4A). TAK-137 (0.2 and 0.6 mg/kg) 

significantly reduced the number of errors to 4.00 ± 0.85 and 3.44 ± 1.02, respectively (P = 0.1488 

in Bartlett’s test followed by P < 0.025, one-tailed Williams’ test, compared with the 

vehicle/MK-801-treated group; Fig. 2-4A). 

In the DMTS task, the monkeys were trained to correctly identify a sample object from 4 

objects projected on the monitor after various delay intervals of 0 (no delay), 4, 8, and 16 s. 

Ketamine treatment significantly decreased the percentage of correct responses compared with 

vehicle treatment, with values of (96.88 ± 1.99) % and (82.63 ± 4.29) % recorded with 0 s interval, 

(89.58 ± 2.08) % and (76.99 ± 6.82) % recorded with 4 s interval, (87.50 ± 1.70) % and (64.18 ± 

1.48) % recorded with 8 s interval, and (70.8 ± 9.77) % and (55.0 ± 3.00) % recorded with 16 s 

interval after the administration of vehicle and ketamine, respectively (F(1, 24) = 18.39, P < 0.001, 

two-way ANOVA; Fig. 2-4B). The plasma concentration of TAK-137 at 0.1 mg/kg in monkeys (40 
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ng /mL as Cmax) was comparable to that at 0.1 mg/kg (25 ng/mL as Cmax)—the dose which showed 

pharmacological efficacies, in rats (Kunugi et al., 2019). At 0.1 mg/kg, TAK-137 significantly 

ameliorated ketamine-induced cognitive deficits, with percentage accuracy of (89.3 ± 6.51) %, (89.5 

± 6.54) %, (81.4 ± 6.97) %, and (71.5 ± 8.16) % at 0, 4, 8, and 16 s interval memory test, 

respectively (F(1, 24) = 7.29, P < 0.05, two-way ANOVA; Fig. 2-4B).  

 

3.3.3.  Cognitive flexibility 

I evaluated the effects of TAK-137 on subchronic PCP-induced deficits in a reversal learning task. In 

the initial phase of the testing session, there were no significant differences in the percentage of 

correct responses in all the groups: (77.7 ± 4.30) % in the vehicle/vehicle-treated group, (80.0 ± 

3.19) % in the vehicle/PCP-treated group (P = 0.68, Student’s t-test, compared with the 

vehicle/vehicle-treated group), (77.3 ± 4.07) % in the TAK-137 (0.01 mg/kg)/PCP-treated group, 

(82.0 ± 2.73) % in the TAK-137 (0.1 mg/kg)/PCP-treated group, and (77.7 ± 3.60) % in the 

TAK-137 (1 mg/kg)/PCP-treated group (F(3, 28) = 0.3992, P = 0.75, one-way ANOVA; Fig. 2-5). In 

the reversal phase, the percentage of correct responses was significantly lower in the 

vehicle/PCP-treated group than in the vehicle-treated group ((44.9 ± 7.63) % vs. (73.1 ± 5.20) %) (P 

= 0.4394, F test followed by P < 0.01, Student’s t-test; Fig. 2-5). TAK-137 significantly ameliorated 

the PCP-induced deficits and increased the percentage of correct responses to (68.5 ± 7.28) % at 0.1 

mg/kg and (71.3 ± 7.34) % at 1 mg/kg (F(3, 28) = 3.41, P < 0.05 and p < 0.01, at 0.1 and 1 mg/kg, 

respectively, one-way ANOVA). 

 

3.4.  Effects of TAK-137 under the combination with olanzapine 

I studied the effects of the combination of olanzapine (3 mg/kg), one of the antipsychotics, and 

TAK-137 (0.1, 1, and 10 mg/kg) on METH-induced hyperlocomotion, cataleptic response, and 

plasma prolactin level (Fig. 2-7). The results showed that the inhibitory effect of olanzapine on 

METH-induced hyperlocomotion was not affected by TAK-137 (Fig. 2-7A). TAK-137 did not 

exacerbate the cataleptic response and plasma prolactin level (Fig. 2-7B and 2-7C, respectively). In 

addition, co-treatment of TAK-137 (1 mg/kg, p.o.) and olanzapine (3 mg/kg, p.o.) did not affect the 

effect on cognitive improvement in novel object recognition test in rats (Fig. 2-7D). 
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4. Discussion  

Schizophrenia is a chronic psychiatric disorder with a spectrum of symptoms: positive, negative, and 

cognitive symptoms. Several hypotheses for the pathophysiology of schizophrenia have been 

indicated based on clinical findings [3]. The hyperdopamine hypothesis is considered to indicate the 

main cause of positive symptoms, and the hypoglutamate hypothesis has been proposed not only for 

positive symptoms but also for negative and cognitive symptoms [118]. Recent genetic findings in 

genome-wide association studies revealed that genes related to the NMDA receptor signaling 

complex are associated with an increased risk of schizophrenia [119]. Moreover, NMDA receptor 

antagonists are reported to induce schizophrenia-like psychosis, social dysfunction, and cognitive 

impairments in healthy volunteers, and exacerbate symptoms in patients with schizophrenia [25-27]. 

Indeed, several small molecules that enhance NMDA signaling, such as D-serine and a GlyT1 

inhibitor, have been reported to improve negative and cognitive function in clinical trials [31, 34]. 

Thus, modulation of NMDA function is likely a promising approach for the treatment of patients 

with schizophrenia. 

In the hypoglutamate state, NMDA receptor signaling on the parvalbumin (PV)-positive 

GABA interneurons is decreased in the cortex and hippocampus [120]. PV-positive GABA 

interneurons play a key role in cognitive function through the production of neural oscillation, 

especially gamma oscillation [121]. Moreover, a significantly low level of gamma oscillation during 

cognitive tasks is reported in patients with schizophrenia [122]. Thus, the clinical characterization of 

gamma oscillation could be a promising biomarker. 

Schizophrenia is recognized as a neurodevelopmental disease and altered fetal or neonatal 

environments, such as viral infection, are indicated to be risk factors [123]. Methylazoxymethanol 

acetate (MAM) exposure [124] and polyriboinosinic-polyribocytidylic acid (Poly(I:C)) injection 

[125] have been reported to mimic maternal mitotoxin or viral exposure during pregnancy in rodents 

and these manipulations result in the hypofunctioning of NMDA signaling in PV-positive GABA 

interneurons [126]. These preclinical results further support the association of the hypoglutamate 

state with the pathophysiology of schizophrenia. To evaluate the effects of TAK-137 on glutamate 

hypofunction, I used both acute and sub-chronic treatments with NMDA receptor antagonists. The 

acute treatment of MK-801 and ketamine can inhibit NMDA receptor signaling in PV-positive 

neurons, and the sub-chronic treatment of PCP is reported to reduce PV expression [96].  

The activation of the AMPA receptor leads to increased NMDA receptor function; thus, AMPA 

receptor potentiators have potential as therapeutic drugs for schizophrenia. However, risks such as 

the bell-shaped response and the induction of seizures have been indicated in previously reported 

compounds. The in vivo studies of LY451646 and LY404187 revealed their steeply bell-shaped 

responses. For example, c-fos induction in rats was detected only at 0.5 mg/kg after 0.05, 0.5, and 5 

mg/kg treatments [37]. Brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus 
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was induced only at 0.5 mg/kg after 7-day dosing at 0.125, 0.25, 0.5, and 1 mg/kg [127]. Such a 

bell-shaped response makes it difficult to select the optimal dosage in clinical studies given the 

heterogeneity of drug metabolizing enzymes in humans. In addition, LY451646 showed narrow 

safety margins between exposure at the effective dose in rat NORT and at the maximum dose in the 

absence of seizures, i.e., 3.1- and 7.5-fold in the AUCbrain and brain Cmax, respectively [39]. Thus, it 

can be presumed that the doses of AMPA receptor potentiators in previous clinical studies could not 

be increased to the exposure level required for efficacy owing to their narrow safety margin against 

seizure. Therefore, compounds with improved bell-shaped responses and reduced seizure risk should 

be generated. 

It is indicated that the bell-shaped response is related to the agonistic property of 

compounds, which was detected only in primary cells and not in recombinant cells [38]. Thus, the 

agonistic property of each compound should be characterized using the respective physiological 

receptor, although such complex conditions may not be appropriate for a high-throughput screening 

(HTS) assay. Therefore, I established an original screening strategy, which included a unique binding 

assay for HTS, and identified TAK-137 [39]. In the DMTS test in naive monkeys, TAK-137 

enhanced cognitive performance at 0.03, 0.1, and 1 mg/kg, whereas LY451656 enhanced 

performance only at 0.1 mg/kg when dosed at 0.03, 0.1, and 1 mg/kg. The safety margins between 

the exposure yielding cognitive enhancement in NORT and the maximum exposure in absence of 

seizure were 116- and 43.7-fold in the AUCbrain and brain Cmax, respectively. Therefore, TAK-137 is 

superior to LY451646 in terms of the bell-shaped responses and the safety margin. 

In this study, I investigated effects of TAK-137, a compound with low agonistic properties, 

on animal models of schizophrenia. At 10 mg/kg, TAK-137 significantly inhibited METH-induced 

hyperlocomotion in rats to 33.6 ± 7.66% of that in the control (Fig. 2-1A and 2-1B); however, the 

percentage of inhibition was lower than that of antipsychotics, which exhibited greater than 50% 

inhibition under the 60% occupancy of D2R [103, 128]. TAK-137 may therefore have limited 

efficacy against the positive symptoms of schizophrenia. Negative symptoms are rarely improved by 

current antipsychotics [129]. In this study, TAK-137 at 0.1 and 0.3 mg/kg significantly ameliorated 

MK-801-induced deficits in SI (Fig. 2-2A) without a significant increase in locomotion (Fig. 2-2B). 

This indicated that the effect was not a secondary effect of an increase in locomotion and that 

TAK-137 has the potential to improve the social behavior associated with NMDA receptor 

hypofunction. Further characterization should be considered using other in vivo tests, such as the 

sucrose preference test, as several neuronal networks may be related to the negative symptoms [2, 

130, 131]. The effects of TAK-137 on cognitive symptoms, especially attention, working memory, 

and executive control, were investigated as these were recognized as the key cognitive domains 

impaired in schizophrenia by the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia initiative [132, 133]. The 5-CSRTT contains aspects of the continuous performance 
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task in humans [134], the RAM test in rats can be adapted to mimic the N-back task in humans [135], 

and the monkey DMTS task can be translated to the human DMTS task [136]. A reversal learning 

task is regarded as the evaluation of the cognitive flexibility required for rule generation and 

selection [137, 138]. TAK-137 improved these cognitive dimensions in animal models with acute or 

sub-chronic NMDA receptor antagonists (Fig. 2-3, 2-4, and 2-5), indicating that it may be effective 

for the treatment of multiple cognitive domains in patients with schizophrenia. Recently, an AMPA 

receptor potentiator, PF-04958242, was reported to significantly reduce ketamine-induced 

impairment in immediate recall and working memory tasks in healthy human subjects at plasma 

concentrations similar to that in non-human primates [139]. The data further supported that AMPA 

receptor activation can counteract the hypoglutamate state induced by NMDA inhibitors in humans.  

The positive symptoms of schizophrenia are well-controlled by current antipsychotics compared 

with other symptoms. Considering the reported findings and the results in this study, TAK-137 may 

be characterized by particular efficacy against the negative and cognitive symptoms. Therefore, I 

investigated the impact of the concomitant use of TAK-137 and an antipsychotic (Fig. 2-7). 

TAK-137 did not interfere with the effects of olanzapine on METH-induced hyperlocomotion and 

did not exacerbate the cataleptic response and the plasma prolactin level. In addition, co-treatment of 

olanzapine did not alter the effects of TAK-137 on cognition. Thus, the combination of TAK-137 

with the currently available antipsychotics may be beneficial in treating multiple symptoms of 

schizophrenia. A synergistic enhancement of efficacies was not detected in this study, which may be 

a result of the different mechanisms of action of D2R antagonism by olanzapine and enhancement of 

the glutamate signal by TAK-137.  

Another critical issue in the development of drugs for schizophrenia is the heterogeneity of 

the disease etiology and biology of schizophrenia. Indeed, the importance of patient segmentation by 

biophenotype has been suggested [140]. Patients in the hypoglutamate state may be determined, for 

example, by mismatch negativity or gamma oscillations [141, 142]. The proof of concept should be 

investigated in the clinical studies of patients selected by such biomarkers. 

In conclusion, TAK-137, an AMPA receptor potentiator with a low agonistic activity, 

broader effective dose range, and greater safety margin against seizure, was shown to be efficacious 

in various animal models of schizophrenia. Thus, TAK-137-type AMPA receptor potentiators may be 

promising therapeutic options in neuropsychiatry and neurological diseases. 
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Table 2-1. 

Pharmacokinetic profile of TAK-137 in rats under non-fasted and fasted condition. TAK-137 at 0.1 

mg/kg was orally administered to rats (n = 3). 
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Fig. 2-1. (A) The effect of TAK-137 on METH-induced hyperlocomotion in rats. The rats were 

acclimated in Plexiglas-covered cages for at least 2 h before the start of the experiment. TAK-137 

(0.1, 1, or 10 mg/kg, p.o.) was administered 4 h before METH administration (0.5 mg/kg, s.c.). The 

data are presented as the mean ± S.E.M. of cumulative locomotion for 0–120 min. The numbers of 

animals (n) = 6 in the vehicle/vehicle-treated group, n = 12 in the vehicle/METH-treated group, n = 

11 in the TAK-137 (0.1 mg/kg)/METH-treated group, n = 13 in the TAK-137 (1 

mg/kg)/METH-treated group, and n = 13 in the TAK-137 (10 mg/kg)/METH-treated group. **P < 

0.01, statistically significant compared with the vehicle/vehicle-treated group by Aspin–Welch test, 

#P < 0.025, statistically significant compared with the vehicle/METH-treated group by one-tailed 

Williams’ test. (B) Data between 90 and 120 min after METH administration. **P < 0.01, 

statistically significant compared with the vehicle/vehicle-treated group by Aspin–Welch test. #P < 

0.025, statistically significant compared with the vehicle/METH-treated group by one-tailed 

Williams’ test. (C) The effect of TAK-137 on MK-801-induced hyperlocomotion in mice. The mice 

were acclimated in cages for at least 2 h before the start of the experiments. TAK-137 (1, 3, 10, or 30 

mg/kg, p.o.) was administered 2 h before MK-801 administration (0.3 mg/kg, s.c.). The data are 

presented as the mean ± S.E.M. of cumulative locomotion for 120 min after MK-801 administration, 

n = 6 in the vehicle/vehicle-treated group, n = 13 in the vehicle/MK-801-treated group, n = 14 in the 

TAK-137 (1 mg/kg)/MK-801-treated group, n = 13 in the TAK-137 (3 mg/kg)/MK-801-treated 

group, n = 16 in the TAK-137 (10 mg/kg)/MK-801-treated group, and n = 15 in the TAK-137 (30 

mg/kg)/MK-801-treated group. **P < 0.01, statistically significant compared with the 

vehicle/vehicle-treated group by Aspin–Welch test; #P < 0.025, statistically significant compared 

with the vehicle/MK-801-treated group by one-tailed Williams’ test. (D) Data between 90 and 120 

min after MK-801 administration. **P < 0.01, statistically significant compared with the 

vehicle/vehicle-treated group by Aspin–Welch test; #P < 0.025, statistically significant compared 

with the vehicle/MK-801-treated group by one-tailed Shirley-Williams’ test. 
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Fig. 2-2. Effect of TAK-137 on MK-801-induced deficits in the social behavior evaluated by the 

social interaction test in rats. (A) TAK-137 (0.1 or 0.3 mg/kg, p.o.) or corresponding vehicle, and 

MK-801 (0.1 mg/kg, s.c.) or corresponding vehicle were administered to rats 4 h before testing. The 

interaction time of each treatment group is presented as the mean ± S.E.M. (n = 14). **P < 0.01, 

statistically significant compared with the vehicle/vehicle-treated group by Student’s t-test. #P < 

0.025, statistically significant compared with the vehicle/MK-801-treated group by one-tailed 

Williams’ test. (B) The distance traveled during testing over 10 min was measured and is presented 

as the mean ± S.E.M. (n = 14).  
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Fig. 2-3. The effect of TAK-137 on attention in the five-choice serial reaction time task in rats. 

TAK-137 (0.2 mg/kg, p.o.) was administered 4 h prior to the trial. (A) Correct responses are the total 

number of nose-pokes in an illuminated aperture within the limited hold. (B) Omission responses are 

the number of non-responses during the limited hold. (C) Premature responses represent the number 

of responses that occurred prior to stimulus presentation. The data are presented as the mean ± 

S.E.M. (n = 13). Significant differences from the vehicle-treated group are indicated by *P < 0.05 in 

the crossover ANOVA followed by a contrast test.  
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Fig. 2-4. The effects of TAK-137 on MK-801- or ketamine-induced deficits in working memory in 

the radial arm maze test in rats or delayed matching-to-sample task in monkeys. (A) TAK-137 (0.2 

or 0.6 mg/kg, p.o.) or corresponding vehicle was administered to rats 2 h before MK-801 (0.08 

mg/kg, s.c.) or corresponding vehicle administration. The rats were placed on the maze 30 min after 

MK-801 administration and entries into the arms were recorded. The data are presented as the mean 

± S.E.M. of the number of errors. The numbers of animals (n) = 7 in the vehicle/vehicle-treated 

group, n = 9 in the vehicle/MK-801-treated group, n = 11 in the TAK-137 (0.2 

mg/kg)/MK-801-treated group, and n = 9 in the TAK-137 (0.6 mg/kg)/MK-801-treated group. **P < 

0.01, statistically significant compared between the vehicle/vehicle-treated and the 

vehicle/MK-801-treated group by Aspin–Welch test. #P < 0.025, statistically significant compared 

with the vehicle/MK-801-treated group by one-tailed Williams’ test.  

(B) TAK-137 (0.1 mg/kg) or corresponding vehicle was orally administered 2 h prior to ketamine or 

corresponding vehicle administration (1.0 mg/kg, i.m.) in monkeys. The DMTS task was conducted 

15 min after ketamine administration. Each plot represents the mean ± S.E.M. of the percentage of 

correct responses from 96 trials per session (n = 4). The statistical analysis was performed using 

two-way ANOVA followed by Bonferroni/Dunnet multiple comparisons, with significance set at 

***P < 0.001 (the vehicle/vehicle-treated group versus the vehicle/ketamine-treated group) and at 

#P < 0.05 (the TAK-137/ketamine-treated group versus the vehicle/ketamine-treated group). 
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Fig. 2-5. The effect of TAK-137 on subchronic PCP-induced deficits in cognitive flexibility in a 

reversal learning test in rats. The rats were trained to achieve 90 % criterion of the correct response, 

followed by the administration of PCP (2 mg/kg, i.p.) twice per day for 7 days without training. In 

the reversal testing, TAK-137 (0.01, 0.1, or 1 mg/kg, p.o.) or vehicle was administered 2 h before the 

initial phase. The reversal phase was examined for 2 min immediately after the completion of the 

initial phase. The data are presented as the mean ± S.E.M. of the percentage of correct responses in 

the initial and reversal phases. The numbers of animals (n) = 10 in the vehicle/vehicle-treated group, 

n = 8 in the vehicle/PCP-treated group, and n = 8 in the TAK-137/PCP-treated groups. **P < 0.01, 

statistically significant compared with the vehicle/PCP-treated group by Student’s t-test. #P < 0.05, 

##P < 0.01, statistically significant compared with the vehicle/PCP-treated group by one-way 

ANOVA followed by LSD test. 
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Fig. 2-6. The effects of TAK-137 on cataleptic response, and plasma glucose and prolactin level in 

rats. (A) TAK-137 (0.1, 1, or 10 mg/kg) was administered 4 h before test. The duration of grabbing 

the bar was measured to evaluate cataleptic response and is presented as mean ± S.E.M. (n = 6). (B) 

TAK-137 (0.1, 1, or 10 mg/kg) was administered 4 h before blood collection. Data are presented as 

mean ± S.E.M. of plasma prolactin levels (n = 5). (C) TAK-137 (0.1, 1, or 10 mg/kg) was 

administered 4 h before blood collection. Data are presented as mean ± S.E.M. of plasma prolactin 

levels (n = 6-7). 
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Fig. 2-7. Effects of TAK-137 on the pharmacological effects and side effects of olanzapine in 

METH-induced hyperlocomotion, NORT, cataleptic response, and plasma prolactin level in rats. (A) 

TAK-137 (0.1, 1, or 10 mg/kg, p.o.) and olanzapine (3 mg/kg, p.o.) was administered 4 h and 1 h 

respectively, before METH administration (0.5 mg/kg, s.c.). Total locomotor activities for 120 min 

after METH administration are presented as mean ± S.E.M. The numbers of animals used were 6, 12, 

13, 8, and 9 in the vehicle-treated group, vehicle/METH-treated group, olanzapine/METH-treated 

group, olanzapine/TAK-137 (0.1 or 1 mg/kg)–METH-treated group, and olanzapine/TAK-137 (10 

mg/kg)/METH-treated group respectively. ***P < 0.001, statistically significant compared with 

vehicle-treated group by Aspin–Welch test. ##P < 0.01, statistically significant compared with 

vehicle/METH-treated group by Aspin–Welch test. NS, not significant (versus 

olanzapine/METH-treated group; one-tailed Williams’ test). (B) TAK-137 (0.1, 1, or 10 mg/kg) and 

olanzapine (3 mg/kg) were administered 4 h before testing. The duration of grabbing the bar was 

measured to evaluate cataleptic response and is presented as mean ± S.E.M. (n = 12). NS, not 

B A 

D C 
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significant (versus vehicle-olanzapine group; one-tailed Williams’ test). (C) TAK-137 (0.1, 1, or 10 

mg/kg) was administered 4 h, and olanzapine (3 mg/kg) was administered 1.5 h before blood 

collection. Data are presented as mean ± S.E.M. of plasma prolactin levels (n = 6). **P < 0.01, 

statistically significant compared with vehicle-treated group by Aspin–Welch test. NS, not 

significant (versus vehicle-olanzapine- treated group; one-tailed Williams’ test). (B) TAK-137 (1 

mg/kg) and olanzapine (3 mg/kg) were orally administered 2 h or 1 h prior to the acquisition and the 

retention trials, respectively (n = 10). A novelty discrimination index (NDI) was calculated as the 

novel object interaction time / total interaction time × 100 (%) and are presented as mean ± S.E.M. 

##P < 0.01, ###P < 0.001 statistically significant compared with vehicle-treated group by ANOVA 

followed by Bonferroni/Dunnet multiple comparisons. 
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In the first chapter, this study clarified that CRF signaling in the CNS is the main route of 

locomotion and anxiety-like behavior. As compounds with the same main chemical structure were 

confirmed to be selective to the CRF1 receptor compared with the CRF2 receptor [143], the 

anxiogenic effect of CRF can be regarded as being blocked by CRF1 receptor inhibition. In view of 

the receptor expression patterns and the effect of the CRF1 receptor antagonist in rodents, this 

indicates that blocking of CRF signaling via the CRF1 receptor may be a new treatment strategy for 

anxiety. CRF signaling in acute and chronic stress responses still needs further investigation. Stress 

loading would induce neuronal transmission much more broadly than exogenous CRF injection. In 

addition, the acute and chronic stress response would be different in terms of epigenetic changes of 

the synaptic function via changes in the expression of neurotransmitters or receptors. 

In the second chapter, AMPA receptor signaling was indicated to be involved in the 

behavioral modulation of multiple symptoms of schizophrenia, especially in negative and cognitive 

symptoms. It was also indicated that the combination therapy with current medication mainly for 

positive symptoms would be beneficial since a combination with an AMPA receptor potentiator and 

olanzapine did not affect side effects. This study used NMDA receptor antagonist-induced 

behavioral deficits in animal models. Since schizophrenia is considered as a developmental disease, 

further studies can be conducted in other animal models such as Poly(I:C) or MAM models [124, 

125]. 

The experiments in this study indicate two main points. The first is that it is important to 

investigate the function of neurotransmitters via specific receptors in disease models to clarify the 

scope of their efficacy. This will provide further applications to consider drug candidates. The 

current medication for schizophrenia, anxiety, and depression was accidentally found in clinical 

evidences. For example, antipsychotics are based on the dopamine D2 receptor antagonism, 

followed by additional affinities to other receptors such as serotonin and noradrenaline receptors to 

reduce side effects, especially of extrapyramidal symptoms [144]. The first generation of 

antidepressants is based on the selective serotonin reuptake inhibitor followed by serotonin 

noradrenaline reuptake dual inhibitor to reduce side effects or for additional benefits on pain. These 

past facts indicate that drug discovery targeting multiple molecules would be benefit for efficacy and 

safety. On the other hand, a multi-targeting approach should be based on a precise and deep 

understanding of each signal function to consider the key biological signals for each symptom in a 

disease [145]. Therefore, an investigation that focuses on one specific form of neuronal transmission 

would yield fundamental biological findings that would allow a comprehensive approach to be 

considered. 

The second point is the importance of translational tools for three reasons. The first 

rationale is understanding the relationship between the extent of signal modulation and the efficacy 

of the outcome. Although this study indicated the key roles of CRF and AMPA receptor signaling on 
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anxiety and schizophrenia-like behavior, respectively, further translational studies would offer a 

better understanding of how much CRF1 receptor should be antagonized or how much AMPA 

receptor should be activated for efficacy to be achieved. This can be analyzed by receptor occupancy 

of the ligand using PET or by assessing changes in electrophysiological signal with the 

electroencephalogram (EEG). There might be some limitations in the application of PET studies in 

terms of the difficulties in PET ligand generation and the level of expression and distribution of its 

target. Ionotropic receptors such as AMPA and NMDA receptors recycle quickly at the postsynaptic 

site and their expression levels change according to neuronal excitation, which makes it difficult to 

develop a clinically applicable PET ligand although several candidates have been reported in 

preclinical research [146]. The second rationale is based on the difficulty in visualizing the CNS 

diseases. Especially for neuropsychiatric diseases, significant morphological changes in neurons or 

synapses cannot be detected between the normal and diseased state. The imaging tools mentioned 

above might be one candidate to detect changes in the expression of a target or in ligand binding in a 

living body. There might also be some proteins in body fluids that are related to the function of 

specific neurotransmitters. The third reason is based on the heterogeneity of neuropsychiatric 

diseases in terms of their etiology, symptoms, and functional abnormality in multiple neurons, which 

makes it difficult to treat a disease and specific neuron signaling as a one-to-one response. If patients 

can be classified according to the most affected neurons or signals, this would enhance 

understanding of the relationship between key receptor signaling or pathways and clinical symptoms. 

In fact, the concept of a biophenotype, which classifies patients according to biomarkers, including 

biochemical, imaging, and electrophysiological features, has been developed. This concept is 

supported by such biomarker tools. In addition, such patient stratification would help clinical studies 

of specific drug targets. The CRF1 receptor antagonist can be administered to patients who show 

overactivated CRF signaling. The AMPA receptor potentiator should be administered to people who 

show dysfunctional NMDA receptor signaling. Dysfunctional NMDA receptor signaling would be 

translationally evaluated as a reduction of gamma-oscillation by an EEG. 

As a next step, a network analysis would be important to investigate the role of neuronal 

connectivity in functional outcomes, especially in cognitive functions, which are classified into 

many categories such as working memory, attention, and cognitive flexibility. Many types of 

neurons and cells are involved in a single cognitive domain. This would also be important to 

consider when assessing potential combination therapies to treat diversified neuronal dysfunctions in 

neuropsychiatric diseases based on an understanding of the functions of each neurotransmitter. 

In summary, this study found that CRF1 receptor signaling in the CNS plays a critical role 

in locomotion and anxiety behaviors, and that AMPA receptor activation improves behavioral 

deficits which are related to positive, negative, and cognitive symptoms in schizophrenia. This 

indicates that an investigation of specific neurotransmitter signaling is important to identify 
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functional roles. In addition, these results will add value when considering the treatment of 

neuropsychiatric diseases in terms of monotherapy and combination therapies with other drugs by 

modulating different neurotransmitters based on a scientific understanding of each signal function. 

In the future, further analysis of the neuronal network and the level of signal activation by imaging 

or electrophysiological analysis with translational tools such as PET ligand and EEG would be key 

to understand the role of neurotransmitters and their interaction with other neurons in the diseased 

state. 
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