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Chapter 1

Introduction

1.1 Background

Since the discovery of the quantum Hall effect by K. von Klitzing et al. in 1980 [1], the
topological materials have attracted great deals of attentions in condensed matter physics.
One of the remarkable features of the topological materials is that the topological property
is determined by the bulk wavefunctions [2]. Another remarkable feature is the bulk-edge
correspondence [3–6], which claims that gapless edge states appear when the insulator has
non-trivial bulk topological property.

In 2005, the quantum spin Hall effect for the insulator under the time-reversal symmetry
was proposed by C. Kane and E. Mele [7,8]. It is a topological material that has a finite spin
current on edges protected by non-trivial topological invariant. The concept of the quantum
spin Hall effect was brought in three dimensions, which is called the topological insulator [9].
After the epoch-making study, the topological insulators had been extensively studied. One
of the prominent discovery might be the periodic table of the topological insulators and su-
perconductors [10–12], which is also called the Altland-Zirnbauer classification [13]. It gives
the comprehensive classification of non-interacting topological insulators and superconduc-
tors under time-reversal symmetry, chiral symmetry and particle-hole symmetry in arbitrary
spacial dimensions. The topological classifications are extended to include the crystalline
symmetries, such as inversion, mirror and glide symmetries [14,15,15–19].

While the topological insulator phases appear in non-interacting systems, the electron-
electron interactions enrich the physics of topological insulators. One of the effect of in-
teractions is known to be the reduction of the classification [20–23]. For example, the Z
classification of one-dimensional BDI symmetry class is broken to Z8 with interactions. Fur-
ther, the interactions induce the new topological physics – such as the topological Mott
insulator [24,25] and the fractional topological insulator [26–29]. Also, it is revealed that the
short-range entangled states of many-body systems protected by symmetries can host the
nontrivial topological state, which are now understood as the symmetry-protected topological
(SPT) phases [30–34].

The Berry phase is known to be an useful tool to characterize the SPT phases [35–44].
The Berry phase get a quantized value because of the symmetry of the system, such as
the chiral symmetry, the time-reversal symmetry, the inversion symmetry and the SU(N)
symmetry of the spins.

In the couple of years, the higher-order topological insulators (HOTI) are intensely stud-
ied [45–56]. The HOTIs in d-dimensions has topologically protected boundary states in
d − n dimensional boundaries (n ≥ 2), e.g., hinge states in three dimensions and corner
states in two and three dimensions. Since the proposal of the HOTIs, the higher-order topo-
logical materials are experimentally realized one after another, such as bismuth crystals [57],
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4 CHAPTER 1. INTRODUCTION

mechanical systems [58], electrical circuits [59, 60], photonic crystals [61, 62] and acoustic
systems [63].

On the other hand, the machine learning, especially the artificial neural network, is widely
used in the various fields in physics, including astrophysics [64], high-energy physics [65,66],
Monte Carlo simulations [67] and quantum many-body systems [68–72]. As for the research of
topological states, the first-order topological insulators and the topological superconductors
have been successfully classified in the presence of disorders, and the resulting phase diagrams
reproduce those obtained by the other methods [73–75].

1.2 Purpose

The primary purpose of this thesis is the theoretical investigation of the properties of the
higher-order topological insulator phases by numerical analysis of the boundary states and
the topological invariants. We investigate the higher-order topological insulator phases by
both the Berry phases and the machine learning. By the Berry phase, we investigate the
higher-order topological insulator phases for the system with and without interactions and
the spin models. By the machine learning, we investigate the phase transition of the higher-
order topological insulator models with disorders.

1.3 Outline

In Chapter 2, we briefly introduce the topological phases and their topological invariants.
Firstly, we introduce the quantum Hall effect and its topological invariants, the Chern num-
ber. Secondly, we introduce the quantum spin Hall effect and the Z2 index. Thirdly, we
introduce the topological insulator phase and the Z2 indices. Lastly, we review the related
studies about the entanglement Chern numbers, which characterizes these topological phases.

Chapter 3 reviews the higher-order topological insulators. Firstly, we show the theory
of the higher-order topological insulators in both hyper-cubic lattices and hyper-tetrahedral
lattices. Then, we briefly review the experimental realizations of the higher-order topological
materials.

Chapter 4 describes the Berry phase and its quantization. Firstly we show the definition
of the Berry phase by introducing a local bond twists. Then we show the symmetries and
the quantization of the Berry phase.

Chapter 5 proposes the quantized Berry phase with the bond-twists as a topological in-
variant, which characterizes the higher-order topological insulator phases. The quantized
Berry phase is topologically stable even with the electron-electron interactions unless the en-
ergy gap is closed. To demonstrate it for a concrete model, we have shown the quantization
of the Berry phase in Z4 and the characterization of the higher-order topological insulator
phases in several extended Benalcazar-Bernevig-Hughes (BBH) models that contain the in-
tersite Coulomb interactions and the next-nearest neighbor hopping. In addition, we show
the quantized Berry phase for the quantum spin analog of the BBH model. Further, we show
that the BBH model in three-dimensions also has the Berry phase quantized in Z4. We also
confirm the bulk-corner correspondence between the quantized Berry phase and the corner
states in the higher-order topological insulator phases.

In Chapter 6, we investigate the higher-order topological insulators by using machine
learning technique. We applied the image recognition method of machine learning, which
detects the boundary states of topological materials. Focusing on the higher-order topological
insulator model on a breathing kagome lattice, we studied the robustness of the higher-
order topological insulator phases against disorders. We have successfully generated a phase
diagram by machine learning which is consistent with the other analytical method. We have
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also numerically found that the higher-order topological insulator phases are robust against
disorder as far as the disorder strength does not exceed the energy gap.



Chapter 2

Topological insulator phases and
topological invariants

In recent decades, the topological phenomena have highly attracted many researchers in
condensed matter physics. One of the typical phenomena is the quantum Hall effect. The
quantum Hall effect is a phenomena that the Hall conductance σH of the system in the
strong magnetic field is quantized as σH = e2

h ν. Here, e is the elementary electric charge
and h is the Planck constant. The ν is the filling factor, which is the ratio of the electrons
to the Landau level under the Fermi level. The quantum Hall effect is discovered by K. von
Klitzing, G. Dorda and M. Pepper in 1980 [1]. They measured the Hall conductance of a
two dimensional electron gas on a silicon metal-oxide-semiconductor field-effect transistor.
The filling factor ν for the quantum Hall systems is given as the Chern number

ν ≡ 1

2πi

∫
BZ
Bz(k)d

2k (2.1)

Here, ψ(k) is the Bloch wave-function, A(k) = 〈ψ(k)|∇|ψ(k)〉 is the Berry connection, and

B(k) = ∇ × A(k) is the Berry curvature. The formula σH = e2

h ν is called as the TKNN
formula, which is given by D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den
Nijs [2]. Because the Chern number is a topological number for the Bloch wave function,
it does not change under adiabatic transformation. The quantum Hall system has a bulk-
edge correspondence that the Chern number corresponds to the number of chiral edge states
localized on the edge of the system [5].

In the following sections, we introduce the novel topological phases, the quantum spin
Hall phase and the topological insulator phases. We also review the related studies about
the entanglement Chern numbers, which characterizes these topological phases.

2.1 The quantum spin Hall phase

In 2005, the quantum spin Hall effect is proposed by C. L.Kane and E. J. Mele [7]. They found
that the two-dimensional system under time-reversal symmetry has a topological phase, in
which the spin current on the edges is finite and the state is protected by the non-trivial Z2

index. A typical model for the quantum spin Hall effect is the Kane-Mele model, which is a
tight-binding model on a honeycomb lattice [7]. The model Hamiltonian contains the spin-
orbit coupling that is essential for the quantum spin Hall effect. The spin-orbit coupling can
be considered as the effective magnetic field for up and down spins in the opposite directions.
When the up and down spins are decoupled, the quantum spin Hall system consists of two
copies of the quantum Hall systems about each of spins. In this section, we review the
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2.1. THE QUANTUM SPIN HALL PHASE 7

quantum spin Hall effect and the Z2 index. Firstly, we introduce the Z2 index and the
quantum spin Hall effect. Secondly, we show the Kane-Mele model as a typical model for
the quantum spin Hall effect.

2.1.1 The time-reversal symmetry, Kramers’ theorem and time-reversal
invariant momentum

The time-reversal operator Θ is defined as changing the direction of the time as Θ : t 7→ −t.
The time-reversal operator transforms the position operator r to r, the momentum operator
p to −p, and the spin operator s to −s. Here we represent the spin operator s = σ/2
using the Pauli matrices σ . In this representation, the time-reversal operator is written as
Θ = −iσyK, where K is the complex conjugation operator.

Next, we consider the system with the time-reversal symmetry, whose Hamiltonian H
satisfies ΘHΘ−1 = H, i.e. [H,Θ] = 0. Hence, if one of the eigenstate of the system is
|uj〉, then Θ |uj〉 is also the eigenstate of the system. We note that the eigenstates |uj〉 and
Θ |uj〉 are orthogonal The degenerated pair |uj〉 and Θ |uj〉 are called the Kramers pair and
the degeneracy is called the Kramers degeneracy. The Kramers theorem states that if the
Hamiltonian commutes with the time-reversal operator Θ with Θ2 = −1, the eigenstates of
the Hamiltonian have the Kramers pairs and the eigenenergies are at least doubly degenerate.

Next, we consider the electrons on the lattice with periodic potentials. The Bloch theorem
states that the eigenstates of the Hamiltonian H are represented as {|ψnk〉}, which satisfy
H |ψnk〉 = Enk |ψnk〉. Here, k is called the Bloch wave number. The wave functions |ψnk〉
are written by the periodic state |unk〉 as |ψnk〉 = eik·r |unk〉. Now the Bloch Hamiltonian
H(k) is defined as H(k) = e−ik·rHeik·r. The Bloch states |unk〉 are obtained by solving the
Schrödinger equation for the Hamiltonian H(k),

H(k) |unk〉 = e−ik·rH |ψnk〉
= Enke

−ik·r |ψnk〉
= Enk |unk〉 . (2.2)

Considering the system with the time-reversal symmetry, the Bloch Hamiltonian H(k) sat-
isfies ΘH(k)Θ−1 = H(−k). 1 This equation guaranties that the energy bands of the system
with the time-reversal symmetry make pairs and the states with the Bloch wave number k
and the Bloch wave number −k have the same energies. The pairs of the bands, un,k and
um,k, are the Kramers pair.

The Bloch space {k} is periodic with the reciprocal lattice vectors G. For special wave
numbers that satisfy k = −k + G, the Bloch Hamiltonian H(k) commute with the time-
reversal operator Θ. These wave numbers are called the time-reversal invariant momentum
(TRIM). The TRIM of the honeycomb lattice is shown in Fig. 2.1 (b). For d dimensional
systems, the TRIM can be expressed as

∑d
i=1 niGi/2, where Gi is i-th reciprocal vector and

ni takes 0 or 1. For d-dimensional systems, the number of the TRIM is 2d.

1To calculate eik·rΘHΘ−1e−ik·r, one can obtain

eik·rΘHΘ−1e−ik·r = Θe−ik·rHeik·rΘ−1

= ΘH(k)Θ−1.

On the other hand, by using ΘHΘ−1 = H, one can obtain

eik·rΘHΘ−1e−ik·r = eik·rHe−ik·r = H(−k).

Hence ΘH(k)Θ−1 = H(−k).
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2.1.2 The Z2 index for the quantum spin Hall phase

Next, we introduce the Z2 index, which is the topological number for the quantum spin Hall
systems. First, we define the sewing matrix for the system with the time-reversal symmetry

wαβ(k) = 〈uα−k|Θ|uβk〉 . (2.3)

Here, α, β = 1, 2, · · · , N is the index of the Kramers pairs. The sewing matrix w is the
U(2N) matrix. To show the unitarity, let us calculate the matrix element of w,∑

α

w†
γα(k)wαβ(k) =

∑
α

w∗
αγ(k)wαβ(k)

=
∑
α

〈Θuγk|uα−k〉 〈uα−k|Θuβk〉

= 〈Θuγk|Θuβk〉
= 〈uβk|uγk〉
= δβγ . (2.4)

Hence the matrix w is unitary. The sewing matrix w also has the property

wβα(−k) = −wαβ(k)
2. (2.5)

The property shows that the sewing matrix w(k) is skew-symmetric if the k is at the TRIM.
Hence the Pfaffian can be defined at the TRIMs.

Now we can define the Z2 index ν for the time-reversal symmetric systems:

(−1)ν =
∏
i

Pf[w(Λi)]√
det[w(Λi)]

(2.6)

where Λi is the i-th TRIM and multiplication is taken over all the TRIMs. Pf[w] is the
Pfaffian of w. To consider the property of the Pfaffian, det[w] = Pf[w]2, we can find that
the Z2 index ν takes 0 or 1. Hence the Z2 index is a topological number and the ν is not
changed unless the band gap is closed. The Z2 index is one of the topological order, which
characterizes the quantum spin Hall phase. For ν = 0, the system is topologically trivial,
while for ν = 1, the system is in the quantum spin Hall phase. In the phase, the spin Hall
conductance is finite and the spin current is localized on the edge of the system. In the
next section, we demonstrate it through the concrete model, the Kane-Mele model for the
quantum spin Hall effect.

2.1.3 The tight-binding model for the quantum spin Hall phase – the
Kane-Mele model

In this section, we review the Kane-Mele model that is a typical model of the quantum spin
Hall phase. The Kane-Mele model is a tight-binding model for the s-states in a honeycomb
lattice. In 2005, C. L. Kane and E. J. Mele proposed the model for the quantum spin Hall
state [7, 8].

2We can show the equation as following:

wβα(−k) = ⟨uβk|Θ|uα−k⟩
= −⟨uα−k|Θ|uβk⟩
= −wαβ(k).
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Figure 2.1: (a) The lattice structure of the honeycomb lattice. A unit cell is shaded. The
black and white sites form the sublattice degree of freedom. We denote them as A (B) for
the black (white) sites. (b) The first Brillouin zone of the honeycomb lattice, which is shaded
in the figure. There are two high symmetric points K and K’. In addition, the time reversal
invariant momentum, Γ, M1,M2,M3 are shown. (c)-(d) The bulk bands of the Kane-Mele
model. The parameters are set to t = 1, λSO = 0.05 and (c) λν = λSO, λR = λSO, (d)
λν = 6λSO, λR = 3λSO. As seen in later, the model is in (c) the quantum spin Hall phase
and (d) trivial phase.

Graphene is a two dimensional honeycomb lattice composed of carbon atoms. A carbon
atom has six electrons, which forms a ground-state with electron configuration of 1s22s22p2.
In a graphene sheet, three of the outer four electrons form three sp2 orbitals and the rest
remains in 2p orbital. The sp2 orbital electrons yield the σ-bonds, on the other hand, the 2p-
electron forms the π-electron, which moves as a free electron. The energy of the sp2-electrons
is much less than that of π-electrons and the elements in the carbon group have four valence
electrons. Hence the tight-binding approximation for the π-electrons are justified.

The honeycomb lattice has sublattices so a unit cell consists of two individual sites A and
B (see Fig. 2.1 (a)). The figure shows the lattice vectors a1 and a2. The shaded region is a
unit cell. The vectors di (i=1, 2, 3) represent the nearest-neighbour vector between the sites.
The Brillouin zone and the reciprocal lattice vectors b1 and b2 are shown in Fig. 2.1 (b).
Here, the high symmetry points, K and K’, are shown. There are four TRIMs, Γ, M1,M2

and M3.

The Kane-Mele model is a tight-binding model for π-electrons in a honeycomb lattice,
which contains the terms for the nearest neighbour hopping, the next-nearest neighbour
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spin-orbit coupling, the nearest neighbour Rashba effect and the staggered potentials:

HKM = t
∑
⟨ij⟩

ĉ†i ĉj + iλSO
∑
⟨⟨ij⟩⟩

νij ĉ
†
i ŝ

z ĉj

+iλR
∑
⟨ij⟩

ĉ†i{s× dij}z ĉj + λν
∑
i

ξiĉ
†
i ĉi. (2.7)

where ĉi = (ĉiA↑ ĉiA↓ ĉiB↑ ĉiB↓ )T are the annihilation operators of the π-electrons in i-
th unit cell and s is the spin operator The first term is the hopping term between the
nearest-neighbour sites. The second term is the spin-orbit coupling term between next-
nearest-neighbour sites. The factor νij = ±1 is the sign of d̂1 × d̂2. Here d̂1,2 are the
nearest-neighbour bond vectors that make the trajectory between the i-th site and the j-th
site. The factor νij corresponds to the z component of the angular momentum Lz = (r×p)z.
The third term is the Rashba effect term between the nearest-neighbour sites. Here dij is
the nearest-neighbour vector from the i-th site to the j-th site. This term is from the effect
by the substrate and the electric field perpendicular to the lattice. This term breaks the
mirror symmetry with respect to the lattice plane and conservation of sz. The fourth term is
the staggered potential term, which represent the difference of the site potential between the
sublattices {A,B}. The ξi equals to +1 (−1) for electrons at A (B) site. This term violates
the inversion symmetry.

Next, we consider the bulk Hamiltonian of the Kane-Mele model. After the Fourier trans-
formation ĉi =

1√
N

∑
k∈BZ e

−ik·Ri ĉk, the Hamiltonian of the Kane-Mele model is written as

H =
∑

kH(k) where

H(k) =

5∑
a=1

daΓ
a +

5∑
a<b=1

dabΓ
ab. (2.8)

Here, {Γa,Γab} are the generators of the 4 × 4 hermitian matrices, which are Γ(1,2,3,4,5) =
(σx ⊗ I, σz ⊗ I, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz) and Γab = [Γa,Γb]/2i. The coefficients d are
shown in the table below [7]. In the table, x and y span in the first Brillouin zone.

d1 t(1 + 2 cosx cos y) d12 −2t cosx sin y

d2 λν d15 λSO(2 sin 2x− 4 sinx cos y)

d3 λR(1− cosx cos y) d23 −λR cosx sin y

d4 −
√
3λR sinx sin y d24

√
3λR sinx cos y

otherwise : 0

If the Rashba term vanishes (λR = 0), the total sz is conserved. In this case, the
Hamiltonian can be block diagonalized with respect to the sz basis

H =

(
H↑ 0
0 H↓

)
. (2.9)

and one can calculate the Chern number ν↑(ν↓) for each block Hamiltonians H↑ (H↓). The
number νs is called the spin Chern number. Due to the time-reversal symmetry, the total
Chern number ν = ν↑+ν↓ is zero. However, for the quantum spin Hall systems, the difference
of the Chern numbers νs = ν↑ − ν↓ is nonzero. The spin Chern number is related to the
spin Hall conductivity as σsxy = (e/4π)(ν↑ − ν↓), hence the spin Hall conductivity in the
quantum spin Hall phase is nonzero. In the phase, the edge states appear for each block
Hamiltonians and the currents for up and down spins have opposite directions. For the
system without sz conservation, the Z2 index determines the quantum spin Hall phase. The
phase diagram determined by the Z2 index is shown in Fig. 2.2 (a) for two parameters λR
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and λν , normalized by λSO. If there are only the hopping and the spin-orbit coupling, the
system is in the quantum spin Hall phase. To increase λR and λν , the band gap is closed
and the topological phase transition occurs from the quantum spin Hall phase to the trivial
insulator phase.

In next, we analyze the edge spectrum for the Kane-Mele model. To analyze the edge
states, we consider the system on the cylinder geometry [Fig. 2.2 (b)]. To achieve this, the
system takes the periodic boundary condition for x direction as the open boundary condition
for y direction. Thus, we take the Fourier transformation ĉx,y = 1√

N

∑
kx∈0,2π e

−ikx·Rx ĉkx,y
to the Hamiltonian along the x direction. The spectrum for the Kane-Mele model under
those conditions are shown in Fig. 2.2 (c)-(d) as a function of kx. We fixed the parameters
t = 1, λSO = 0.05. The other parameters are set to (c) λR/λSO = 1, λν/λSO = 1 and (d)
λR/λSO = 3, λν/λSO = 6. The system of Fig. 2.2 (c) is in the quantum spin Hall phase and
the system of Fig. 2.2 (d) is in the trivial phase. As seen in Fig. 2.2 (c), the system has the
dispersive states in the band-gap, which is localized on the edge. This existence of the edge
states shows the bulk-edge correspondence between the non-trivial Z2 index and the edge
states. On the other hand, in Fig. 2.2 (d), there are no edge state in the band gap. This is
because the system is in the trivial insulator phase.

Figure 2.2: (a) The phase diagram of the Kane-Mele model. On the blue line, the band
gap is closed. The inner region of the blue line is the quantum spin Hall phase. The outer
region is trivial insulator phase. (b) The schematic picture of the cylinder geometry. There
are open boundaries along the y direction. (c)-(d) The energy spectrum of the Kane-Mele
model with the cylinder geometry. Parameters are set to t = 1, λSO = 0.05, (c) λR/λSO = 1,
λν/λSO = 1 and (d) λR/λSO = 3, λν/λSO = 6. The model is in (c) the quantum spin Hall
phase and (d) the trivial phase.
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2.2 Topological insulator phases

In this section, we introduce the strong topological insulator and the weak topological insula-
tor, which is a typical topological phase in three dimensions. As seen in the previous section,
the quantum spin Hall effect appears in two dimensions where the spin-orbit coupling is
essential. The quantum spin Hall phase is characterized by the Z2 index, which is defined for
the system under the time-reversal symmetry. To generalize the quantum spin Hall phase
to three dimensions, the Fu-Kane-Mele model is proposed [9]. The model is a tight-binding
model of s states on a diamond lattice with the spin-orbit coupling. In three dimensions,
four Z2 indices classify the topological phases into the strong topological insulator phases and
the weak topological insulator phases. The strong topological insulators are robust against
disorders, while the weak topological insulators can be continuously connected to the trivial
insulators.

2.2.1 The Z2 indices for strong and weak topological insulator phases

In this section, we consider topological insulator phase, which is the extension of the quantum
spin Hall phase in three dimensions. In the topological insulator phase, the topological spin
current emerges not in the edge but the two-dimensional surfaces. Here we introduce the
Z2 index for the topological insulator phase. Naturally, the definition of the Z2 index can
be extended for each two-dimensional surfaces. To define the Z2 index in this way, let us
consider the TRIM in three-dimensional Brillouin zone. We denote the eight TRIMs in three-
dimensions as Λn1,n2,n3 = (n1π, n2π, n3π) in the basis of the reciprocal vectors (nj ∈ {0, 1}).
On the TRIMs, the Z2 index is defined as

δn1,n2,n3 =
Pf[w(Λn1,n2,n3)]√
det[w(Λn1,n2,n3)]

(2.10)

We note the δn1,n2,n3 is a topological number because it is quantized to -1 or 1. Here, we
consider the Z2 index defined for each of the two-dimensional surfaces, such as

(−1)νj =
∏

ni ̸==j∈0,1;nj=1

δn1,n2,n3 , (2.11)

where one component of the wave vector is fixed to π. This is a natural extension of the Z2

index in the two-dimensional plane, which is called the weak Z2 indices. On the other hand,
one can define three-dimensional version of the Z2 index as

(−1)ν0 =
∏

ni̸==j∈0,1
δn1,n2,n3 , (2.12)

which is called the strong Z2 index and it characterizes the topological insulator phase.
Analogous to the quantum spin Hall insulators, if the system has non-trivial Z2 index,

the system with open boundary condition has the in-gap surface state on the plane. The
topological insulator is the insulators with the non-trivial strong Z2 index. The schematic
picture for the surface state is shown in Fig. 2.3. Figure 2.3 (a) shows the bulk spectrum
and the surface states for the topological insulator. If the strong Z2 index is non-trivial,
odd number of the in-gap surface state that connect the conduction band and the valence
band emerge. On the other hand, if the strong Z2 index is trivial, there are even number of
the surface states in gap and these surface states are not topological, because these surface
states can be removed from the band gap by adiabatic transformation. In next, we show the
surface states of the concrete model, the Fu-Kane-Mele model, of the topological insulator
and also demonstrate the strong Z2 index characterize the topological insulator phase.
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Figure 2.3: From Ref. [9]. Schematic picture of the surface state and bulk spectrum as a
function of momentum between two TRIMs, Λa and Λb. (a) The surface states for the strong
topological insulators. (b) The surface states for the insulator with trivial strong Z2 index.
In (a), the dispersive edge states connects the conduction band and the valence band but
not in (b).

2.2.2 The tight-binding model for the topological insulator phase – the
Fu-Kane-Mele model

L. Fu, C. L. Kane and E. J. Mele proposed a tight-binding model on a diamond lattice
with the spin-orbit coupling as the generalization of the quantum spin Hall effect in three
dimensions [9]. This model is called the Fu-Kane-Mele model. The model Hamiltonian is
defined as

H =
∑
⟨ij⟩

tijc
†
icj + iλSO

∑
⟨⟨ij⟩⟩

c†is ·
(
d1
ij × d2

ij

)
cj . (2.13)

Here, cTi = (ci,↑, ci,↓) if the annihilation operators of the electron at the i-th site and the s
is a spin operator. The first term is the nearest-neighbor hopping term and the second term
is the next-nearest-neighbor spin-orbit coupling term. There are four bonds for each of sites
in the diamond lattice and the different hopping parameters labeled t1 to t4 are introduced
as shown in Fig. 2.4 (a). The vectors d1,2

ij are the two nearest-neighbor bonds traversed
between sites i and j as shown in Fig. 2.4 (a). Both time-reversal symmetry and inversion
symmetry are preserved in the Fu-Kane-Mele model.

In next, we consider the bulk Hamiltonian of the Fu-Kane-Mele model. To take the
Fourier transformation ĉi = 1√

N

∑
k∈BZ e

−ik·Ri ĉk, we obtain the bulk Hamiltonian of the

present model as

H(k) =

(
P (k) S(k)I
S(k)∗I −P (k)

)
, (2.14)

where the basis is cTk = (ckA↑, ckA↓, ckB↑, ckB↓), I denotes the 2×2 identity matrix, and both
S(k)I and P (k) are the 2 × 2 matrices. The S(k) is the contribution of the hopping term,
which is defined as

S(k) =
∑
µ

tµe
ik·dµ . (2.15)

On the other hand, the matrix P (k) is the contribution of the spin orbit coupling term,
which is defined as

P (k) = iλSO
∑
µ,ν

eik·(−dµ+dν)S · (−dµ × dν). (2.16)

Here, dµ (µ = 1, 2, 3, 4) is the vector between the µ-th nearest-neighbour sites associated
with the hopping parameters as shown in 2.4 (a).
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Figure 2.4: (a) A part of the diamond lattice is shown. In the diamond lattice, each of sites
has four bonds. The hopping parameters tj (j = 1, 2, 3, 4) corresponding with the bonds are
shown. (b) The first Brillouin zone in three-dimensions and the first Brillouin zone projected
to two-dimensional plane to the z direction are shown.

To use the notation, one can obtain the eigenvalues of the Hamiltonian as

E±(k) = ±
√
|S(k)|2 + |P11(k)|2 + |P12(k)|2. (2.17)

Because of the inversion symmetry and the time-reversal symmetry, the eigenvalues are dou-
bly degenerated. To simplify the matrix P (k), we introduce the vector B(k) =

∑
µ e

ik·dµdµ.
To use the vector, P (k) is deformed as

P (k) = −iλSOS · (B(−k)×B(k)) . (2.18)

Having the expression, we can show the P (k) is zero at the TRIMs because B(−k) = B(k)
at the TRIM.

Figure 2.5 (a) shows the bulk bands of the model with t ≡ t1 = t2 = t3 = t4 = 1
and λSO = 0.125 as a solid line. The horizontal line shows the wave vectors connecting
symmetry points, where Γ = (0, 0, 0), L = (1/2, 1/2, 1/2),K = (3/4, 3/4, 0),W = (1, 1/2, 0)
and X = (1, 0, 0) in units of 2π/a for lattice constant a. For the system with isotropic
hopping parameters, one can see the band gap is closed at X as following. The band gap
can be calculated by Eq. 2.17, where P (k) = 0 because X is a TRIM. Combining it to the
Eq. 2.15 which shows S(k) = 0 for the isotropic case, the band gap in Eq. 2.17 is closed
at the X. Hence, the Fu-Kane-Mele model with the isotropic hopping parameters is the
Dirac semimetal, in which Dirac cones appear at the TRIMs. To change one of the hopping
parameters, the band gap is open, because S(k) can be finite. The dashed line in this figure
shows the bulk bands with δt1 = 0.4, in which the band gap is open. Hence, we can consider
the topological phase for the insulators with anisotropic hopping parameters. The Z2 indices
for the model about the difference of two hopping parameters δt1 and δt2 is shown in Fig. 2.5
(b). We note that the bond vectors associated with t1 and t2 are denoted by using the Miller
indices as (111) and (111), respectively. In this figure, the strong Z2 index and the Miller
indices associated with t1 and t2 is shown. The shaded region shows the (strong) topological
insulator phase, whereas the white region shows the weak topological insulator phase. On
the solid and dashed line, the band gap is closed and the solid line is the phase boundary of
the strong and weak topological insulators. The Miller indices have the relation to the weak
Z2 indices (ν1, ν2, ν3). Actually, the weak Z2 indices are ν0; (ν1, ν2, ν3) = 1; (1, 0, 0) in the
top triangle region and ν0; (ν1, ν2, ν3) = 0; (1, 0, 0) in the bottom triangular region. On the
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Figure 2.5: From Ref. [9]. (a) The bulk bands of the model with t = 1 and λSO = 0.125
are shown as a solid line for the wave vectors connecting symmetry points. The symbols for
the symmetry points are defined in the main text. The dashed line is the bulk bands with
δt1 = 0.4, in which the band gap is open. (b) The phase diagram of the Fu-Kane-Mele model
as a function of δt1 and δt2. In the shaded region, the system is in the (strong) topological
insulator phase, while in the white region the system is in the weak topological insulator
phase.

other hand, the Z2 indices are ν0; (ν1, ν2, ν3) = 1; (1, 1, 1) in the right triangular region and
ν0; (ν1, ν2, ν3) = 0; (1, 1, 1) in the left triangular region.

Finally, we investigate the surface states of the model. For the sake to study the surface
state, we consider the slab geometry where the model is under the open boundary condition
for the z axis but periodic boundary conditions for the x and y axes. Under these boundary
conditions, the wave vector in the xy-plane is defined in the Brillouin zone projected about
the z axis, as shown in Fig. 2.4 (b). Here, M1,M2 and M3 are the symmetry points in the
two-dimensional Brillouin zone. Figure 2.6 shows the bulk spectrum and the surface states
are shown for (a) δt1 = 0.5 and (b) δt1 = −0.2. The Z2 index is 1 for the system in (a)
under periodic boundary condition, hence the system is in the topological insulator phase.
Corresponding with the phase, the surface states appear in the energy gap. On the other
hand, the Z2 index is 0 for the system in (b). Thus, there are no surface state in the energy
gap.

2.3 The entanglement Chern number for topological phases

The quantum entanglement in many-body systems is useful to describe a quantum phase
of the system [76–80]. In particular, the quantum entanglement of insulators describes
the topological phase of the system [81–84]. In this section, we review another topological
invariant, the entanglement Chern number for both the quantum spin Hall phase and the
topological insulator phase [85–89]. The entanglement Chern number is the Chern number
for the ground state of the entanglement Hamiltonian, which is constructed by tracing out
certain subspaces of a given system [83, 84, 86]. In the following, we show the definition of
the entanglement Hamiltonian and the entanglement Chern number. Then, we review its
characterization for the quantum spin Hall and the topological insulator phases.
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Figure 2.6: The bulk spectrum and the edge states are shown for (a) δt1 = 0.5 and (b)
δt1 = −0.2 for the two-dimensional Brillouin zone projected about the z axis. In (a), the
system is in the topological insulator phase and the corresponding surface states appear in
the energy gap. On the other hand, in (b), the system has trivial Z2 index and no surface
state appears in the energy gap.

2.3.1 Definition of the entanglement Chern numbers

Here, we introduce the entanglement Chern number. Firstly, let us define the entanglement
Hamiltonian. We consider the tight-binding Hamiltonian for non-interacting fermions as
H =

∑
kl tklĉ

†
k ĉl where ĉ

†
k is a creation operator of k-th fermion. For this Hamiltonian, we

define |ψ0〉 as the ground-state of the Hamiltonian. Next, we consider the density matrix
ρ. To think about the pure state of |ψ0〉, the ρ is defined as |ψ0〉 〈ψ0|. Here, we divide the
system into A and B in order to consider the entanglement for the subsystems. By tracing
out the density matrix about subsystem B, the reduced density matrix for A is defined as

ρA = TrB ρ

= TrB |ψ0〉 〈ψ0| .
(2.19)

Similarly, the reduced density matrix for B is defined as ρB = TrA ρ. Here, we introduce the
entanglement Hamiltonian for subsystem A as

ρA = e−HA . (2.20)

Here, the HA is the entanglement Hamiltonian. In the similar way, the entanglement Hamil-
tonian for subspace B is defined. We note that the entanglement Hamiltonian contains
information about the entanglement between the subsystems.

Next, we introduce the entanglement Chern number in two dimensions. Let B be the two
dimensions Brillouin zone spanned by the wave vector k = (k1, k2). Then, the entanglement
Chern number is defined as the Chern number for the entanglement Hamiltonian HA:

cA =
1

2πi

∫
B
F12(k)d

2k, (2.21)

where F12(k) = ϵij∂kiψ
†
A(k)∂kjψA(k) is the Berry curvature of the ground state (negative

energy) multiplet ψA of the entanglement Hamiltonian HA. For free fermion systems, it
is convenient to use the correlation matrix instead of the entanglement Hamiltonians. The
correlation matrix for the subsystem A is defined as (CA)ij = 〈c†icj〉 = Tr[ρAc

†
icj ], where c

†
i

is the creation operator of an electron in the subsystem A. Then, it turns out [90] that CA

is related with HA such that
HT

A = ln[(1− CA)/CA]. (2.22)
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By calculating the Chern number of the correlation matrix, we can obtain the Chern number
of the entanglement Hamiltonian. [85]

To contemplate the quantum spin Hall phase and the topological insulator phases, it is
useful to choose the subsystem as up- and down-spins in the system. In following sections,
we describe how the entanglement Chern number works to characterize the quantum spin
Hall phase and the topological insulator phases.

2.3.2 The entanglement Chern number for the quantum spin Hall phase

Here we contemplate the quantum spin Hall phase. First of all, let us consider there is spin
orbit coupling but the z-component of total spin (sz) is conserved. For the Kane-Mele model,
this case corresponds that the Rashba term is vanished. In this case, the Bloch Hamiltonian
H(k) can be block diagonalized for sz as

H(k) =

(
H↑(k) 0

0 H↓(k)

)
, (2.23)

where H↑(k) and H↓(k) are the Bloch Hamiltonians defined in the up- and down-spin space,
respectively. We can calculate the Chern number for the Hamiltonian in each spin space.
For the quantum spin Hall phase, the Chern numbers are non-trivial. Incidentally, the sum
of the Chern numbers is vanished. In this case, the Chern numbers are the same to the
entanglement Chern numbers for up- and down-spin, because the up-spins and the down-
spins are decoupled. When the sz conservation is broken, the entanglement Chern number
still unchanged as far as the band gap of the entanglement Hamiltonian is open, because the
entanglement Chern number is the topological number.
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Figure 2.7: The phase diagram for the Kane-Mele model as function of λν and λR for
λSO = 0.06 and t = 1, which is determined by the entanglement Chern numbers (c↑, c↓).
(c↑, c↓) = (0,0) and (1,-1) are corresponding to the trivial insulator phase and the quantum
spin Hall phase, respectively.

In next, we consider the entanglement Chern number for the Kane-Mele model. The
Kane-Mele model had been introduced in Sec. 2.1.3. Figure 2.7 shows the phase diagram for
the Kane-Mele model determined by the entanglement Chern numbers (c↑, c↓). For small λν
and λR, the quantum spin Hall phase emerges, which is characterized by (c↑, c↓) = (1, -1).
Wheres, the trivial insulator phase is characterized by (c↑, c↓) = (0, 0). The entanglement
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Chern number changes on the blue lines in Fig. 2.7 where the band gap is closed at K and K’
point in the Brillouin zone. We see the entanglement Chern number successfully reproduce
the phase diagram of the Kane-Mele model by the Z2 index shown in Fig. 2.2. We note
that the relation to the Chern number for block diagonalized Hamiltonian is hold only when
λR = 0, although the topological classification by the entanglement Chern number is still
valid in the global parameter space.

2.3.3 The entanglement Chern number for the topological insulator phase

Next, we contemplate the topological insulator phases. In three dimensions, we have ar-
bitrary choice of axis in spin space to consider the entanglement Chern numbers. Here,
let us choose the z-axis of the spin space for the entanglement Chern number. For three-
dimensional systems, one can define the Chern number for the two-dimensional periodic
plane in the three-dimensional Brillouin zone, by fixing one of the component of the recip-
rocal vector. Hereafter, we consider the (k2, k3) plane with fixed k1. On this plane, the
entanglement Chern number is defined in the same way to define it in two-dimensions. The
entanglement Chern number is called the section entanglement Chern number.

Figure 2.8: The schematic picture for the correspondence between the section entanglement
Chern numbers and the Z2 indices, which is determined in the time-reversal invariant planes.
Figure (a) shows the Brillouin zone for the strong topological insulators that have the non-
trivial Z2 indices ν0 = ν1 = 1. For this case, the Z2 indices on the time-reversal invariant
planes are different, corresponding the difference of the section entanglement Chern numbers.
Figure (b) shows the Brillouin zone for the weak topological insulator phase that have ν0 = 0
and ν1 = 1. In this case, the Z2 indices on the time-reversal invariant planes are the same.

Remembering the Z2 indices for the topological insulator phases, the weak Z2 indices
{νj} are defined on the time-reversal invariant planes, which is a plane in the Brillouin zone
with fixed kj = π. Whereas, the strong Z2 index corresponds the difference between the
weak Z2 indices in the time-reversal invariant planes. Based on that, we firstly consider the
strong topological insulator phase. In this phase, definitely the strong Z2 index is non-trivial
and the weak Z2 indices for k1 = 0 and k1 = π are different [see Fig. 2.8 (a)]. Figure 2.8 (a)
shows an example, where the orange (ivory) color corresponds the non-trivial (trivial) weak
Z2 index. To remember the correspondence between the entanglement Chern number and
the Z2 index in the two-dimensional systems, which is demonstrated in the quantum spin
Hall phase, there should be same kind of correspondence in three dimensions. That is, the
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non-trivial (trivial) weak Z2 indices defined in the time-reversal invariant plane corresponds
the non-trivial (trivial) section entanglement Chern number in the same plane. This implies
the section entanglement Chern numbers interpolate the weak Z2 indices. For the strong
topological insulator phase of Fig. 2.8 (a), the section entanglement Chern numbers are 1
for k1 = π and 0 for k1 = 0, corresponding the weak Z2 indices. On the other hand, for the
weak topological insulator with ν0 = 0 and ν1 = 1 [see Fig. 2.8 (b)], the weak Z2 indices are
1 for both k1 = π and k1 = 0 planes. Corresponding them, the section entanglement Chern
numbers with k1 = π and k1 = 0 are also 1.

Figure 2.9: The section entanglement Chern numbers and the Weyl points of the entangle-
ment Hamiltonian H↑(k) for (a)-(b) (t1, t2, t3, t4) = (1.15t, t, t, t) and (c)-(d) (t1, t2, t3, t4) =
(t, 1.15t, t, t). Figures (a) and (c) show the section entanglement Chern numbers. Figures
(b) and (d) show the Weyl points of the entanglement Hamiltonians. The red (blue) color
shows the chirality + (−) of the Weyl point.

These correspondence indicates that the section entanglement Chern number changes
between k1 = 0 and k1 = π planes for the strong topological insulator phase, whereas it does
not change or changes even times for the weak topological insulator phase. The change of the
topological invariant suggests the existence of a gapless point. As consequence, for the strong
topological insulators, there are odd number of the Weyl point(s), which is the gapless point
in the entanglement Hamiltonian. The Weyl point is considered as a topological charge,
which is characterized by the monopole or anti-monopole of the Berry curvature. The Weyl
points appear as pair of the monopole and anti-monopole because total monopole charge
is zero. The chirality of the Weyl points are defines as + for the monopole and − for the
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anti-monopole, respectively. Hence, total chirality of the Weyl points in the whole Brillouin
zone is zero. Whereas, for the weak topological insulators, there are odd number of the Weyl
point(s) in the entanglement Hamiltonian.

Then, we contemplate the section entanglement Chern numbers for the Fu-Kane-Mele
model. The Fu-Kane-Mele model had been introduced in Sec. 2.2.2. Hereafter, we con-
sider the entanglement Hamiltonian for up-spins, H↑(k). Figure 2.9 shows the section
entanglement Chern numbers with fixed k3 and the Weyl points for two different topo-
logical insulator phases. In (a) and (b), the hopping parameters of the model is set to
(t1, t2, t3, t4) = (1.15t, t, t, t). The corresponding phase is ν0; (ν1, ν2, ν3) = 1; (1, 1, 1). Figure
(a) shows the section entanglement Chern number with fixed k1. We can see there are to-
tally six changes of the section entanglement Chern numbers. Figure (b) shows the Weyl
points in the Brillouin zone. Corresponding with the changes of the section entanglement
Chern numbers, there are six Weyl points, which is the gapless point in the entanglement
Hamiltonian. Here we note that there are two Weyl points in the same plane, hence the
section entanglement Chern number spontaneously changes by two. The Weyl points has
the chirality + (−), which is colored in red (blue) in Fig. 2.9. On the other hand, in (c)
and (d), the hopping parameters of the model is set to (t1, t2, t3, t4) = (t, 1.15t, t, t). The
corresponding phase is ν0; (ν1, ν2, ν3) = 1; (1, 0, 0). Figure (c) shows the section entanglement
Chern number and Fig. (d) shows the Weyl points for this system. We can see there are two
changes of the section entanglement Chern numbers. Corresponding with it, there are two
Weyl points. Here we have seen the two phases, the difference of the phases appear in the
section entanglement Chern numbers. In (a), the entanglement Chern number with k1 = 0 is
trivial, wheres it is non-trivial with k1 = π. This agrees the Z2 indices (ν0, ν3) = (1, 1). We
can see in Fig. (c) that the entanglement Chern number with k1 = 0 (k1 = π) is non-trivial
(trivial). This also agrees the Z2 indices (ν0, ν3) = (1, 0). These results clearly shows the cor-
respondence between the section entanglement Chern numbers and the Z2 indices. Although
we only show the section entanglement Chern numbers with fixed k3, same correspondence
for the section entanglement Chern numbers holds for other axes.



Chapter 3

Higher-order topological insulators

The “higher-order” topological boundary states, which is localized at the boundary of the
boundary, is found in 2017 [46]. The bulk-boundary correspondence is also found for the
higher-order topological insulators (HOTIs) on the hyper-cubic lattices [53–55]. One of the
typical models is the HOTI model on a hyper-cubic lattice, so called Benalcazar-Bernevig-
Hughes (BBH) model [47–49], which has alternating hopping strength and the π-flux in a
plaquette. In this model, the π-flux opens the band gap and the topological corner states
exists in the band gap. Another typical model is the HOTI model in a hyper-tetrahedral
lattice, which include the kagome and the Pyrochlore lattice [50, 52]. The model also has
the alternating hopping strength and the energy gap is opening without the flux. There are
the topological corner states in the energy gap. We note that the models are equivalent to
the molecular orbital models on the hyper-tetrahedral lattice [91] by the energy shift. The
exactly solvable hinge and corner states for several HOTI models, including the breathing
kagome HOTI model, are found [51,56].

In this chapter, we introduce the higher-order topological insulator (HOTI) models on the
hyper-cubic lattices [Sec. 3.1] and the hyper-tetrahedral lattices [Sec. 3.2], which have the
0-dimensional corner states. We also introduce the topological invariants for these models.
In Sec. 3.3, we briefly review the previous experimental realizations of the HOTIs.

3.1 Higher-order topological insulator on hyper-cubic lattices

In this section, we introduce the typical models of the HOTIs, the BBH models, which
is defined on the hyper-cubic lattices [47–49]. The models have the HOTI phase where
the topological corner states appears. First, we introduce the models in two- and three-
dimensions. Then, we review the topological invariant for the models.

3.1.1 Tight-binding models for the higher-order topological insulators on
hyper-cubic lattices

In first, we introduce the BBH model, which is defined as a square lattice model. The model
is a tight-binding model of single-orbital electrons with the nearest-neighbour hopping on a
square lattice with the π-flux in a plaquette. The Hamiltonian is written as

H = −
∑
<i,j>

tijc
†
icj . (3.1)

Here, ci and c†i are the annihilation and creation operators for an electron on i-th site,
respectively. The model has alternating hopping parameters t1 and t2 between the nearest-

21



22 CHAPTER 3. HIGHER-ORDER TOPOLOGICAL INSULATORS

neighbour sites, as shown in Fig. 3.1 (a). In this figure, the amplitude of the hopping is
t1 (t2) on the red (blue) lines. To induce the π-flux, one of the nearest-neighbour hopping
in every plaquettes has the minus sign. The π-flux open the band gap on the zero-energy.
Hereafter, we consider that the electrons are half-filled.

The Bloch Hamiltonian of the BBH model is calculated as

H(k) = (t1 + t2 cos (kx)) Γ4 + t2 sin (kx) Γ3

+ (t1 + t2 cos (ky)) Γ2 + t2 sin (ky) Γ1.
(3.2)

Here, Γ0 = τ3σ0,Γ4 = τ1σ0,Γj = −τ2σj for j = 1, 2, 3 and τ , σ are Pauli matrices indicating
four electrons in an unit cell. The bulk spectrum of the model with t1 = 0.7, 1.0 and 1.3 are
shown in Fig. 3.1 (b), (c) and (d), respectively. The t2 is fixed to 1.0 for each figures. There
are four bands but each of two band are degenerated. The model has finite gap between the
second and the third band as long as |t1/t2| 6= 1.

Figure 3.1: (a) The hopping parameters are shown. On the red (blue) lines, the amplitude
of the hopping is t1 (t2). The hopping parameter on the dashed lines has minus sign. (b)-(d)
The bulk spectrum of the BBH model with t1 = 0.7, 1.0 and 1.3 are shown. The t2 is fixed
to 1.0.

Here we consider the model with open boundary condition that has 16× 16 sites. Figure
3.2 (a) shows the eigen energies of the finite system against t1/t2. The figure shows that the
energies of the corner states, which are colored in red, is in the energy gap. There are four
corner states in the gap, which are localized in four corners. The total density plot of the
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corner states is shown in Fig. 3.2 (b). The red circles represent the amplitude of the corner
states on these sites.

Figure 3.2: (a) The energies of the BBH model are shown against t1/t2. The system size
is 16× 16. There are the corner states in the energy gap, which is colored in red. (b) Total
density plot of the corner states with t1/t2 = 0.4 are shown. The radius on a site corresponds
the amplitude of the corner state on the site.

In next, we introduce the BBH model in three-dimensions. The model is a tight-binding
model of single-orbital electrons with the nearest-neighbour hopping on a cubic lattice with
the π-flux in each surface of the unit cells. Similar to the two-dimensional BBH model, the
model Hamiltonian is defined as H = −

∑
<i,j> tijc

†
icj , which has alternating hoppings t1

and t2 between the nearest-neighbour sites. In the three-dimensional model, three hoppings
for bonds in a unit cell has minus sign to induce the π-flux [Fig. 3.3 (a)].

Here, we consider the energies of the model with finite sites. Figure 3.3 (b) shows the
eigen energies for the finite system that has 8× 8× 8 sites with periodic boundary condition
is shown. The figure shows the gap of the bulk energy is opening as long as |t1/t2| 6= 1. On
the other hand, the Fig. 3.3 (d) shows the the eigen energies for the finite system with open
boundary condition. In contrast with the 3.3 (b), the in-gap states which is colored in red
appear. One of the sample is shown in Fig.3.3 (c). The figure shows the total density of the
eight corner states with t1/t2 = 0.4.

3.1.2 The topological invariants for the BBH models

The topological invariant for the BBH model is proposed by W. A. Benalcazar, et al. As
shown [48], the quadrupole moment of the BBH model serves as a topological number, which
is quantized to 0 or 1/2. The paper proved that the quadrupole moment qxy of quantized by
the mirror symmetries about x and y directions and the quadrupole moment can be calculated
by the nested Wilson loop of the system. In this section, we introduce the topological number
proposed in [48].

In first, we introduce the Wilson loop for the bulk Hamiltonian. Let us define |umk 〉 as
the eigen state of the bulk Hamiltonian H(k). Here, we consider the electrons are half-filled
and the bulk bands have finite gap. The Wilson loop in the x direction Wx,k is defined as

Wx,k = Fx,k+N,∆kx . . . Fx,k+∆kxFx,k (3.3)

[Fx,k]
mn =

〈
umk+∆kx|unk

〉
(3.4)

where ∆kx = (2π/Nx, 0), Nx is the number to divide the kx in the Brillouin zone. Here,
m,n = 1, 2 are spanned for half-filled Bloch states |ujk〉 (j = 1, 2). The Wilson loop in the y
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Figure 3.3: (a) A unit cell of the BBH model in three-dimensions is shown. The hopping
parameters on the red line has minus sign. The amplitude of the hopping parameters in the
unit cell is t1. The amplitude of the hopping parameters connecting to the other unit cells
is t2. (b) The eigen energies of the 3D BBH model with the periodic boundary condition is
shown. The systems size is 8 × 8 × 8. (c) Total density of the corner states are shown. (d)
The energies of the 3D BBH model are shown against t1/t2. There are the corner state in
the energy gap, which is colored in red.

direction Wy,k is defined in similar way about the definition of the Wx,k. Then, the Wannier
Hamiltonian HWx(k) is defined by

Wx,k = eiHWx(k) . (3.5)

As shown in Ref. [92], the Wannier Hamiltonian is adiabatically connected to the edge
Hamiltonian perpendicular to the x direction. Then, we can diagonalize the Wilson loop as

Wx,k =
∑
j=±

∣∣∣vjx,k〉 e2πivjx(ky) 〈vjx,k∣∣∣ , (3.6)

where 2πvjx (ky) (j = 1, 2) is the eigen value of the Wannier Hamiltonian and
∣∣∣vjx,k〉 is the

eigen vector of the Wilson loop. We note that the phases vjx (ky) are proportional to the

Wannier centers [93–99]. The vjy (kx) and
∣∣∣vjy,k〉 is also defined in the same fashion. Because

of the mirror symmetry about x direction, the equation v−x (ky) = −v+x (ky) mod 1 holds.
Here, we redefined the 2πv−x (ky) (2πv

+
x (ky)) as the lower (higher) eigen value of the Wannier

Hamiltonian. Hereafter, we restrict the phase v−x (ky) in [0, 1/2]. The schematic picture of
the phases v±x (ky) is shown in Fig. ??. In the present model, fortunately, the Wannier
Hamiltonian is gapped for arbitrary ky ∈ (−π, π].
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Figure 3.4: From Ref. [48]. (a) The Brillouin zone for the square lattice is shown. The
Wilson loop Wx,k is calculated along the red line. (b) shows the eigen values of the Wannier
Hamiltonian for ky ∈ (−π, π]. The gap opens for any ky.

Thus, we can calculate the nested Wilson loop in the following way. In the beginning, we
define the Wannier band subspaces as∣∣∣w±

x,k

〉
=

∑
n=1,2

|unk〉
[
v±x,k

]n
. (3.7)

To define the nested Wilson loop for the Wannier band, we define

F±
y,k =

〈
w±
x,k+∆ky

|w±
x,k

〉
(3.8)

for ∆ky = (0, 2π/Ny). Then, the nested Wilson loop for the Wannier band v±x is defined as

W̃±
y,kx

= F±
y,k+Ny

∆ky · · ·F±
y,k+∆ky

F±
y,k. (3.9)

Then, the polarization of the Wannier band is

pv
±
x

y = − i

2π

1

Nx

∑
kx

log
[
W̃±

y,kx

]
=

{
1/2, |t1/t2| < 1

0, |t1/t2| > 1.
(3.10)

The polarization of the Wannier Hamiltonian HWx(k) captures the topology of the edge
Hamiltonian.

In next, we consider the polarization and the spacial symmetries. Firstly, we consider
the mirror symmetries Mx : x→ −x, My : y → −y and the inversion symmetry I : (x, y) →
(−x,−y). These symmetries enforce the polarization as

pv
+
x

y
Mx= pv

−
x

y , pv
±
x

y

My
= −pv

±
x

y , pv
+
x

y
I
= −pv

−
x

y mod 1. (3.11)

Therefore, the polarizations is quantized as

pv
±
x

y , p
v±y
x = 0 or 1/2 (3.12)

with these symmetries. Thus, the Wannier bands with these three symmetries has the

Z2 × Z2 classification. In this classification, the non-trivial phase corresponds
(
pv

±
x

y , p
v±y
x

)
=
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(1/2, 1/2). The classification is reduced to Z2 if the C4 symmetry is satisfied. In this case,
the quadrupole moment qxy can be the topological invariant as

qxy = pv
+
x

y = pv
−
x

y = p
v+y
x = p

v−y
x = 0 or 1/2. (3.13)

Actually, considering the BBH model that has the C4 symmetry, the non-trivial polarization
pv

±
x

y = 1/2 as calculated in Eq. 3.10 corresponds the existence of the edge state shown in
Fig. 3.2 (b).

Concluding the review, the polarization calculated for the Bloch Hamiltonian is quantized
by the mirror and inversion symmetries. In this section, we have seen the polarizations for
the two-dimensional BBH model, which is 1/2 for |t1/t2| < 1 and 0 for |t1/t2| > 1. This
agrees with the existence of the corner states in the higher-order topological insulator phase
seen in Fig. 3.2. In the similar way, the polarization for the three-dimensional BBH model
is quantized as long as the mirror and inversion symmetries are preserved. It has also
correspondence with the higher-order topological insulator phase [Fig. 3.3(d)], where 1/2 for
|t1/t2| < 1 and 0 for |t1/t2| > 1.

The Berry phase is also serve as the topological invariant for the higher-order topological
insulator phase with the C4 symmetry. The quantization of the Berry phase is shown in
Chapter 4. The Berry phase of the BBH model and the bulk-corner correspondence is shown
in Chapter 5.

3.2 Higher-order topological insulators on hyper-tetrahedral
lattices

In this section, we introduce the HOTI model on the hyper-tetrahedral lattices introduced by
M. Ezawa in 2018 [50]. The models have the HOTI phase where the topological corner states
appears. First, we introduce the models in two- and three-dimensions. Then, we review the
topological invariant for the models.

Figure 3.5: (a) The hopping parameters are shown. On the red (black) lines, the amplitude
of the hopping parameter is t1 (t2). (b) shows the energies of the kagome HOTI model
against t1/t2.
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Figure 3.6: (a) The energies of the finite system of the breathing kagome model for a
triangular geometry is shown. The red colored in-gap states show the corner states localized
at three corners as shown in figure (c). The in-gap states are triply degenerated in the HOTI
phase −1 < t1/t2 < 0.5. (c) The total-density of the in-gap corner states with t1 = −0.5 and
t2 = 1.0 is shown. The radius on sites correspond the amplitude of the corner state on these
sites. (b) The energies of the finite system of the breathing kagome model for a rhombic
geometry is shown. The red (green) colored in-gap states show the corner states localized
at the left-bottom (right-top) corner as shown in figure (d) ((e)). (d-e) The density of the
in-gap corner state with t1 = −0.5 (t1 = −2.0) and t2 = 1.0 is shown in figure (d) ((e)).

3.2.1 Tight-binding model for Higher-order topological insulators on hyper-
tetrahedral lattices

Firstly, we consider a tight-binding Hamiltonian for spinless fermions on a breathing kagome
lattice

H0 = −
∑
i,j

tijc
†
icj . (3.14)

Here, c†i and ci are the creation and annihilation operators of an electron on a site i, respec-
tively, and tij = t1(t2) if the bond between i and j belongs to the nearest-neighbor bond and
it lives on the upward (downward) triangles (see Fig. 3.5(a)). In the following, we set t2 = 1.

Here we consider the Bloch Hamiltonian of the breathing kagome model. The Bloch
Hamiltonian for the three bands are calculated as

H(k) = −

 0 h1 h2
h∗1 0 h3
h∗2 h∗3 0

 . (3.15)

Here, the elements of the Hamiltonian are h1 = t1+ t2e
−i(kx/2+

√
3ky/2), h2 = t1+ t2e

−ikx and

h3 = t1 + t2e
i(−kx/2+

√
3ky/2). The bulk spectrum obtained by diagonalizing the Hamiltonian
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is shown in Fig. 3.5 (b) for the t1 = 0.7 and t2 = 1.0. There are a flat band and two
dispersive bands. The latter bands are gapped for |t1/t2| 6= 1.0.

Figure 3.7: (a) The hopping parameters for the breathing Pyrochlore lattice model are
shown. On the red (blue) lines, the amplitude of the hopping parameter is t1 (t2). (b) The
bulk spectrum of the present model are shown as a function of t1/t2.

We then consider the energies for the finite system with open boundary conditions. Figure
3.6 (a) shows the eigen energies of the finite system for a triangular geometry as a function
of t1/t2. The states in the energy gap is the localized states at corners. Figure 3.6 (c) shows
the density plot of the corner states for t1 = −0.5 and t2 = 1, where the t1-plaquette exists
at the corners. The size of the points corresponds with the amplitude of the corner state on
the site. As seen in the figure, the in-gap states are localized at the corners.

Next, we consider the rhombic geometry. Figure 3.6 (b) shows the eigen energies of the
finite system for a rhombic geometry as a function of t1/t2. The states in the energy gap is
the localized state at a corner. Figure 3.6 (d) and (e) show the density plot of the corner
states for t1 = −0.5 and t1 = −2.0 with fixed t2 = 1, respectively, where the t1-plaquette
exists at the left-bottom corner. The system size is 11× 11 sites. As seen in the figure, the
in-gap states are localized at the corners. In this geometry, the in-gap state with |t1/t2| < 1
(colored in red in Fig. 3.6 (c)) is localized in the left-bottom corner. On the other hand, the
in-gap state with |t1/t2| > 1 (colored in green in Fig. 3.6 (c)) is localized in the right-top
corner.

In next, we introduce a higher-order topological insulator model on a breathing Py-
rochlore lattice, which is the extension of the breathing kagome model to three-dimensions.
The model is a tight-binding model of single-orbital electrons with the nearest-neighbour
hopping on a breathing Pyrochlore lattice, which is shown in Fig. 3.7 (a). Similar to the

two-dimensional BBH model, the Hamiltonian is described as H = −
∑

<i,j> tijc
†
icj , where

the nearest-neighbor hopping parameters take t1 or t2 [Fig. 3.7 (a)]. Figure 3.7 (b) shows
the bulk spectrum of the model. The model has two flat bands and two dispersive bands.
The gap of the latter two bands opens for |t1/t2| 6= 1.

Here, we consider the energies of the model with finite system sites. Figure 3.8 (a) shows
the eigen energies for the finite system that has 6× 6× 6 unit cells under the open boundary
conditions. There are in-gap states, which is localized at corners. A sample of the corner
state is shown in Fig. 3.8 (b). This is the corner state for t1 = 0.4 and t2 = 1.0. The in-gap
state colored in green (red) shows the corner states localized at the right-top (left-bottom)
corner shown in Fig. 3.8 (b).
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Figure 3.8: (a) The energies of the finite system of the breathing Pyrochlore model is
shown. The red (green) colored in-gap states show the corner states localized at the left-
bottom (right-top) corners in figure (b). (b) The in-gap corner state with t1 = 0.4 and
t2 = 1.0 is shown. The radius on sites correspond the amplitude of the corner state on these
sites.

3.2.2 The topological invariants for the hyper-tetrahedral HOTI models

The topological invariants for these systems are proposed by M. Ezawa [50]. He proposed a
topological quantity corresponding with the Wannier center of the electrons. The topological
quantity for two-dimensional kagome HOTI model is written as

P3 =
3

2

(
p2x + p2y

)
= p2x + p2+ + p2−, (3.16)

for the polarizations pi =
1
S

∫
BZAid

2k and p± = −px/2 ±
√
3py/2. The Ai = −i 〈ψ |∂ki |ψ〉

is the Berry phase, and S = 8π2/
√
3 is the area of the Brillouin zone. Firstly we con-

sider the limitation of the value of polarizations. If we consider the gauge transforma-
tion as |ψ〉 → eiχ(k) |ψ〉. The transformation enforce 1

2π

∮
Ax(k)dkx → 1

2π

∮
Ax(k)dkx +

1
2π (χ(2π, ky)− χ(0, ky)). We can take (χ(2π, ky)− χ(0, ky)) = 2πn where n is an integer.
Hence, 1

2π

∮
Ax(k)dkx is well-defined mod 1. As same, 1

2π

∮
Ay(k)dky is also well-defined

mode 1. As consequence, the polarizations pj are well-defined mod 1. Hereafter, we take
pj ∈ [0, 1).

The quantity is quantized under the three-fold rotational (C3) symmetry, the mirror
symmetries Mx with respect to the x axis and M± with respect to the two lined obtained by
rotating the x axis by ±2π/3. The quantization of the quantity is shown as follows. Firstly,
under the mirror symmetry Mx, px obeys px = −px. Hence the px is quantized as 0 or 1/2.
In the similar way, we can show that p± are quantized as 0 or 1/2 by using M±. In the
trivial phase, the quantity is 0, which means the Wannier center is at the origin in the unit
cell as shown in Fig. 3.9 (b). On the other hand, in the HOTI phase, the quantity is 1/2,
which means the Wannier center is at the center of the unit cell as shown in Fig. 3.9 (a).

Similar to the kagome HOTI model, the topological quantity for the Pyrochlore HOTI
model is defined as

P6 = p2x+y + p2y+z + p2z+x + p2x−y + p2y−z + p2z−x

= 4
(
p2x + p2y + p2z

)
.

(3.17)

As same as the derivation of the quantization of the P3 in two-dimensions, quantization of
the P6 is shown under the mirror symmetries for each plane. As a consequence, the quantity
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Figure 3.9: The figure shows the Wannier center of the electrons on the kagome lattice for
(a) the HOTI phase and (b) the trivial phase.

is quantized to P6 = 0 or 3. In this model, the non-trivial P3 = 3 corresponds the HOTI
phase of the model with −1 < t1/t2 < 1/2.

As shown in [91], the quantized Berry phase is also the topological invariant for the
systems. The Berry phase is quantized by the symmetric group SQ, where Q = d+ 1 and d
is dimension of the system. The SQ symmetries are equivalent to the mirror symmetry for
one-dimensional systems, the C3 symmetry for two-dimensional systems and a combination
of the mirror and C3 symmetries for three-dimensional systems. Then the Berry phase is
quantized to be 2π n

Q . The quantization of the Berry phase is described in the next chapter.

3.3 Experimental realizations

Recently, the higher-order topological materials are experimentally found one after another.
Firstly, the second-order topological insulator is realized in a bismuth crystal [57]. In this
material, the topological hinge states protected by the C3 symmetry appear. They calcu-
lated the eigenstates of the system by both the tight-binding model and the first-principle
calculations. Also they observed the hinge states of the system by the STM experiment.

The higher-order topology is also observed in classical systems. A phononic quadrupole
topological insulator is observed in a two-dimensional mechanical system [58]. The system
consists of silicon plates and they measured the resonance frequencies for the finite system.
They observed the corner modes corresponding with the second-order quadrupole topological
insulator phase. Electrical circuits are also the playground of the higher-order topology [59,
60]. In this case, the impedance between two nearest-neighbour sites at the corner is intense
in the higher-order topological phase. The second-order topological insulator is found in a
photonic crystal [61,62]. The system is in a square lattice with a breathing structure. They
consider the transverse-magnetic (TM) field of light and predict the classification of the
topological phases of the system [61]. After that, the corner mode for the topological phases
are observed [62]. These kind of topological boundary state are observed in various one-
dimensional photonic crystals [100, 101]. However these are one-dimensional systems, they
have similar topological origin to the higher-order topological insulators. Actually, both of
them are characterized by the Zak phase, which is quantized under the inversion symmetry.
The higher-order topology is also found in the acoustic system [63]. They fabricated a
breathing kagome structure of the cylindrical resonators. They measured the frequency and
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found the corner modes corresponding with the higher-order topology.
We have briefly reviewed the experiments for higher-order topological insulators, which

are mostly in two-dimensions. Because the impurities break the spatial symmetry, it is a
basic problem whether the higher-order topological insulators are robust against disorders.
In Chapter 6, we investigate the disorder effect for the higher-order topological insulators by
using artificial neural networks.



Chapter 4

Berry phase and its quantization

This chapter introduce the Berry phase as a topological invariant with symmetries. Firstly
we show the definition of the Berry phase and its quantization for both tight-binding models
and spin models. In next, we briefly describe the symmetry and the quantization of the
Berry phase.

4.1 Berry phase with local bond twist

This section introduce the definition of the Berry phase by introducing the local bond twist,
originally defined by Y. Hatsugai and I. Maruyama [91].

4.1.1 The Berry phase for tight-binding models

Hereafter, we deal with the tight-binding model of single orbital spinless electrons with the
unit cell of N sites and the Hamiltonians H are invariant under the symmetric group ZN ,
which changes the index of the sites j → j + 1 (N + 1 = 1). Hereafter, we consider the
finite system under periodic boundary conditions. The local bond twistings are introduced
as follows. To begin with, we write H as

H = hP0 +
∑
P ̸=P0

hP . (4.1)

where hP is the Hamiltonian that consists of hoppings and electron-electron interactions
closed in a unit cell P . The P0 is one of the unit cells. We then modify hP0 in such a way
that

H(θ) := hP0(θ) +
∑
P ̸=P0

hP . (4.2)

where the creation and annihilation operators only in hP0 is modified as c̃j := eiφjcj and

c̃†j := e−iφjc†j with φj =
∑j

q=1 θq for j = 1, 2, · · · , N and φN = 0. The parameter space Θ is

defined by N − 2 independent parameters (θ1, θ2, · · · , θN−1) and θN = −
∑N−1

j=1 θj . We note
that the Hamiltonians defined in all the other unit cells are unchanged.

Now let us define the paths Lj (j = 1, 2, · · · , N) in the twist-parameter space, Ej−1 →
G → Ej where E1 = (2π, 0, · · · , 0), E2 = (0, 2π, · · · , 0), · · · , EN−1 = (0, 0, · · · , 2π), E0 =

EN = (0, 0, 0), and G = 1/N
∑N

j=1Ej .

We define the Berry phase in the parameter space as an integral in the closed path for
the Berry connection,

A(θ) = 〈Ψ(θ)| ∂
∂θ

|Ψ(θ)〉 , (4.3)

32
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along the path Lj ,

γj = −i
∮
Lj

dΘ ·A(Θ) (4.4)

where |Ψ(Θ)〉 denotes the many body ground state of H(Θ).
The Berry phases of the models are quantized in ZN as the following reasons: Firstly,

because the Berry phases for each of the paths are canceled, we have

N∑
j=1

γj ≡ Nγ ≡ 0 mod 2π. (4.5)

Secondly, the ZN symmetry enforces

γ1 ≡ γ2 ≡ · · · ≡ γN ≡ γ mod 2π. (4.6)

To combine the above two equations, we obtain γj ≡ 2π n
N mod 2π, n ∈ Z for j = 1, 2, · · · , N .

Figure 4.1: The twist parameters induced for the nearest-neighbour hopping on (a) a square
lattice and (b) a kagome lattice are shown.

Here we show the example for the N = 4 case for a square lattice model and the N = 3
case for a kagome lattice model. Figure 4.1 shows the twist parameters for the nearest-
neighbour hopping on (a) a square lattice and (b) a kagome lattice. In these models, the
Berry phases are quantized in Z4 and Z3, respectively.

4.1.2 The Berry phase for spin models

This section introduce the Berry phase of spin models. Again, we consider a spin model with
the unit cell of N sites and the Hamiltonians H are invariant with the symmetric group ZN ,
which changes the index of the sites j → j + 1 (N + 1 = 1). To introduce the twist for the
interactions in a unit cell, we modify the Hamiltonian

H(Θ) := hP0(Θ) +
∑
P ̸=P0

hP . (4.7)

where S−
j → eiφjS−

j and S+
j → e−iφjS+

j , instead of cj → eiφjcj and c†j → e−iφjc†j for the
tight-binding model. The definition of φj is same to that for the tight-binding model.

As same as the derivation in the previous section, we conclude the Berry phase for the
spin model is quantized as

N∑
j=1

γj ≡ Nγ ≡ 0 mod 2π. (4.8)
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4.2 Symmetries and quantization of the Berry phase

This kind of the Berry phase with the local bond twist is firstly introduced for the spin liquid
models [35]. The Berry phase is quantized under some anti-unitary operation, including the
time-reversal symmetry [36, 38]. The Berry phase is quantized for the spin chains with
inversion symmetry [37,40,44]. The quantization is extended to the system with the SU(N)
symmetry [41] and the rotational symmetry [43]. Here, we mention that the calculation
method for the quantized Berry phase is developed by using path-integral Monte Carlo
simulations [39,42].

Figure 4.2: The Berry phase for the SSH model, the breathing kagome (BK) model and the
breathing Pyrochlore (BP) model is shown. The Berry phases are quantized in 2π/2 = π,
2π/3 and 2π/4 = π/2 for the SSH model, the BK model and the BP model, respectively.

Now we return to the model with the ZN symmetry shown in the previous section.
One of the typical models of the symmetry is the breathing hyper-tetrahedral models as
γ = 2π/(d+1) where d is the spacial dimension [91]. In Ref. [91], they deal with the molecular
orbital models, but they are equivalent to the breathing tetrahedral models we introduced
in Chapter 3 by just the energy shift. Hence, the models include the Su-Schrieffer-Heeger
(SSH) model, the breathing kagome model and the breathing Pyrochlore model. They have
quantized Berry phases as shown in Fig. 4.2. As seen in previous chapter, they have the
corner states corresponding with the HOTI phases. For the series of the models, the ZN

symmetry is equivalent to the inversion symmetry, the three-fold rotational (C3) symmetry
and the mirror plus C3 symmetry for the SSH model, the breathing kagome model and the
breathing Pyrochlore model, respectively.

Further, the Berry phase is quantized in Z4 for the BBH model on the hyper-cubic lattices.
The details for the quantization and the relation to the higher-order topology is described
in the next chapter.



Chapter 5

Quantized Berry phases for
higher-order topological insulators

In this chapter, the Berry phase for the Hamiltonian with the local twists is proposed to char-
acterize the HOTI phases and the higher-order symmetry protected topological (HOSPT)
phases. For the the SPT phases, the quantized Berry phase has been used to characterize
them including both the many-body and the non-interacting systems [35–44]. In this study,
we extend the characterization of the SPT phases to the HOSPT phases. The main observa-
tion of the study is that non-trivial Berry phases illustrate the ground state of the system is
adiabatically connected with the irreducible (decoupled) cluster state. The irreducible clus-
ter states are not divided in the smaller clusters or elements under the symmetries that
protect the topological insulator phases. This chapter demonstrates the ground state of
the HOTI/HOSPT can be adiabatically connected to the irreducible cluster states. We
also demonstrate the boundary states of the HOTIs are obtained by cutting the clusters on
higher-order boundaries. Similar to the first-order SPT phases, the quantized Berry phase
is a topological invariant to characterize the HOSPT phases.

5.1 Quantized Berry phases

The quantized Berry phase has been defined in the previous chapter. In this section, we
consider the Berry phase for the BBH model. Then, we show the bulk-corner correspondence
for the HOTI phases in which the ground state is adiabatically connected to the decoupled-
clusters.

5.1.1 Quantized Berry phases for the BBH model

Here we define the BBH model, which is mainly studied exampled in this chapter. The BBH
model is written as

HBBH = −
∑
⟨kl⟩

tkle
iαk,l ĉ†k ĉl, (5.1)

where tkl = t2 (t1) for the nearest-neighbour hopping are alternated bonds, which is colored
in blue (red) in Fig. 5.1(a). The model has the π-flux in every square plaquettes, which
is implemented in the phase factor eiαk,l . The π-flux is essential to open the energy gap in
bulk [53,54]. For the explicit representation for the C4 symmetry of the model, the phase αk,l

is set to be π/4 for the nearest-neighbour hoppings (see Fig. 5.1(a)). We emphasize that the
model defined above is equivalent under the gauge transformation to the model introduced in
Chapter 3, which is originally proposed in Ref. [48]. For the later discussions, we introduce
three types of the square plaquettes: type-I where all the amplitude of the hopping belong to

35
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the plaquette are t1, type-II where all the amplitude of the hopping belong to the plaquette
are t2, and type-III where two of four amplitude of hoppings are t1 and the rest two are t2.

Figure 5.1: (a) This figure shows the hopping parameters in a square lattice. The red
and black colors on the nearest-neighbour bonds correspond the amplitude of the hopping
t1 and t2, respectively. Along the arrows, the phases factors of the hopping parameters on
the bonds are set to e−iπ/4. (b) The twist parameters of the Berry phase are shown. The
parameters induce the twists on the nearest-neighbour bonds along the arrows.

Now the Berry phase of the BBH model is introduced, which is quantized due to the C4

symmetry. In the beginning, we rewrite the non-interacting Hamiltonian H0 as

H0 =
∑

η=I,II

∑
P∈type−η

hP (5.2)

by using the Hamiltonian hP for the plaquette P . Then, we specify a plaquette P0, which is
chosen to reside in either the type-I plaquette or the type-II plaquette. In next, we change
the Hamiltonian hP0 such that ĉk → eiφk ĉk with φk =

∑k
n=1 θn for k = 1, 2, 3, 4 and φ4 = 0.

The fourth parameter θ4 is fixed by the condition to be −
∑3

n=1 θn. Hence, there are three
independent parameters, θ1, θ2 and θ3, which form the parameter space Θ = (θ1, θ2, θ3). The
total Hamiltonian modified by the twist parameters is written as

H(θ) = hP0(θ) +
∑
P ̸=P0

hP , (5.3)

where θ ∈ Θ. The paths in the parameter space Ln (n = 1, 2, 3, 4) are defined as En−1 →
G → En where the points in the parameter space En are E1 = (2π, 0, 0), E2 = (0, 2π, 0),
E3 = (0, 0, 2π), E0 = (0, 0, 0), E4 = E0 and the center of the points is G = 1/4

∑4
n=1En.

The Berry phase is defined in the parameter space as an integral on the closed path Ln for
the Berry connection A(θ) = 〈Ψ(θ)| ∂

∂θ |Ψ(θ)〉,

γηn = −i
∮
Ln

dθ ·A(θ) (5.4)

where θ runs on the path Ln and |Ψ(θ)〉 is the ground state of the modified Hamiltonian
H(θ). In the case for the non-interacting systems, |Ψ(θ)〉 is calculated by occupying the all
of single-particle states which have the negative energy.

In the following, we consider the reason for the quantization of the Berry phase in Z4.
In the first, as seen in Fig. 5.2 (b), we can see the Berry phases on each of paths {Ln} are
canceled. Therefore, we have the equation

4∑
n=1

γηn = 4γ = 0 mod 2π. (5.5)
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Figure 5.2: Figure (a) and (b) shows the paths of the ZN Berry phase for the case of N = 3
and N = 4 in the parameter space, respectively.

In the second, because of the C4 symmetry of the BBH model, we obtain

γη1 = γη2 = γη3 = γη4 ≡ γη mod 2π. (5.6)

To use above two equations, we have γηn = γη = 2πm
4 mod 2π where m is an integer. Hence

we can conclude the Berry phase is quantized in Z4.

5.1.2 Bulk-corner correspondence

In this section, we describe the bulk-corner correspondence, which is a relation between the
corner states of the HOTIs and the (bulk) Berry phase. For the sake to show the bulk-corner
correspondence, we consider the ZN Berry phase for the HOTIs in the decoupled cluster
limit. For the BBH model, the clusters are shown in Fig. 5.3. In the decoupled limit, which
means t1 or t2 is 0, the Berry phase for the whole system is equivalent to the Berry phase
for one of the clusters. Hence, we need to deal with the Berry phase for single cluster in the
limit. Hereafter, we consider that the cluster consists of N sites, c.f. N = 4 for the BBH
model and N = 3 for the breathing kagome model. The Hamiltonian has ZN symmetry that
require the Hamiltonian is invariant with the cyclic operations ĉk → ĉk+1, ĉN+1 = ĉ1 where
ĉk (n = 1, · · · , N) is the annihilation operators of the k-th electron in a unit cell. For that
case, we calculate the Berry phase for the single cluster γ as

γ = 2π 〈n1〉 = · · · = 2π 〈nN 〉 = 2πν (5.7)

where 〈nk〉 are occupation numbers of the electron at the k-th site and ν is the filling factor
of the system. The detail of the derivation is shown in Appendix 5.4. For the BBH model
with half-filling, the Berry phase for the single cluster takes γ = 2π/2 = π.

As the Berry phases of the decoupled clusters has been obtained, the boundary states for
the finite system is simply inferred. Figure (5.3) is an illustration for the decoupled clusters
of the BBH model with the cutting on boundaries. If one of the clusters with strong bonds
is cut off at a corner, the corner state emerged from the localized state at the isolated site.
In that case, under periodic boundary conditions, the Berry phase for the decouple clusters
is non-trivial. In addition, as the Berry phase is the topological invariant, the Berry phase
is unchanged as long as band gap remains open. In conclusion, the ground state, which
is adiabatically connected to the decoupled cluster state has also non-trivial Berry phase.
Following section demonstrates the bulk-corner correspondence for the several extensions of
the BBH model.
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Figure 5.3: This figure shows a schematic picture about the bulk-corner correspondence,
which is a relation between the corner state and the Berry phase. The type-I (type-II)
plaquettes are colored in red (blue). Thick and dashed lines corresponds to the strong and
weak bonds, respectively. In (a), a plaquette is cut at a corner with strong bonds. On the
other hand, in (b), a plaquette is cut at a corner with weak bonds.

5.2 Quantized Berry phases for Higher-order topological in-
sulator models

In this section, we show that the Berry phase describes the HOTI phases of the extended BBH
models. Firstly, we demonstrate the Berry phase characterize the HOTI phase of the BBH
model with the next-nearest-neighbor (NNN) hoppings. Then, we extend the model to the
many-body analogue for the BBH model with the inter-site repulsive interactions. Further,
we analyze the quantum spin analog of the model. This is the platform of the HOSPT phases.
For these systems, we confirmed the correspondence of the quantized Berry phase with corner
excitations in finite systems. The correspondence clearly shows the characterization of the
Berry phase for the HOTI phases beyond the non-interacting fermions. Finally, we discuss
the application of the characterization we proposed to the three-dimensional (3D) BBH
model.

5.2.1 The BBH model with next-nearest neighbour hopping

In this section, we analyze the BBH model with next-nearest neighbour (NNN) hopping and
its Berry phases. In first, we introduce the NNN hopping term to the BBH model such that
the extended model still has the zero-energy corner state.

Here, we define the BBH model with the NNN hopping term as H0 = HBBH + HNNN

where

HNNN = −λ
∑
⟨⟨kl⟩⟩

uklĉ
†
k ĉl. (5.8)

The ukl is determined according to whether the NNN bond is belong to the type-I plaquettes,
the type-II plaquettes or the type-III plaquettes as shown in Fig. 5.4 (a). Namely, ukl = t1, t2,
and (t1+ t2)/2 for the bonds for the type-I plaquettes, the type-II plaquettes or the type-III
plaquettes, respectively. A ratio of the NNN term HNNN of the NN term HBBH is controlled
by the λ. We note that the C4 symmetry still holds but the chiral symmetry is broken with
finite λ. Hereafter, we consider the system with the half-filled electrons.

As illustrated before, non-trivial Berry phase is instinctive by considering the decoupled
cluster limits, namely, t1 = 0, t2 6= 0 and t1 6= 0, t2 = 0. For the former case, the Hamiltonian
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Figure 5.4: (a) The hopping parameters for next-nearest neighbour hopping is illustrated.
The red and black lines are the nearest-neighbour hoppings with t1 and t2, respectively.
(b) The one particle energies with λ = 0.2 against t1/t2. The system size is 20 × 20. On
the red line, the corresponding state is the corner state. The phase transition occurs when
t1/t2 = ±1. (c) The density plot for the four corner states of the system with λ = 0.2 and
t1/t2 = 0.4. (d) The Berry phase against t1/t2 for the model with λ = 0.2. The non-zero
Berry phases are corresponding with the HOTI phase.

can be expressed as H =
∑

P∈type−II hP . The ground state in this limit is simply the

product state consisting of the plaquette state, |ΨII
0 〉 =

∏
P∈type−II

(
ψ†
P,2ψ

†
P,1 |0〉P

)
. Here,

the operators ψ†
P,1 (ψ†

P,2) are the lowest (second-lowest) energy state of the Hamiltonian for
the chosen plaquette hP . The |0〉P is the vacuum state of a plaquette P . Here, we define
|ΨII

0 〉 as the type-II plaquette state. In this limit the hopping terms on the type-I plaquettes
is turned off, hence γI = 0. The Berry phase for the type-II plaquette γII is obtained to
be 2π × 1

2 = π (see Fig. 5.4(d)), which comes from the fact the quantized Berry phase is
related to the filling factor in the decoupled cluster limit, as shown in Appendix 5.4. In
next, we consider the finite t1. In the present model, as long as |t1| < |t2| is satisfied, the
bulk band gap remains open with increasing t1. Hence the Berry phase unchanges for finite
|t1| (< |t2|). The fact means the ground state of the model with the condition |t1| < |t2| is
adiabatically connected to the product state for the type-II plaquettes. Corresponding to
the non-trivial Berry phase, four corner-state appears localized at the corners, which have
nearly zero energies. One of the sample is shown in Fig. 5.4 (c). Differently, for the latter
limit t1 6= 0, t2 = 0, the ground state is adiabatically connected to the plaquette state of
type-I |ΨI

0〉 as long as |t1| > |t2| is held. For that case, the Berry phase of the ground state
has the non-trivial value for the type-I plaquette γI = π [see Fig. 5.4(d)]. Note that the
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minimally decoupled states form the plaquette states for the ground state of H0. Because
we cannot adiabatically deform the plaquette states to the atomic insulators, they are the
“reference states” for the HOTI phases of the present model.

The model has the exact corner states for any λ and the localized corners are different
between |t1/t2| > 1 and |t1/t2| < 1 as shown in Appendix 5.4. This implies that the
higher-order topological phase transition occurs from the trivial phase to the HOTI phases
at t1/t2 = ±1. Considering the model with the periodic boundary conditions, the quantized
Berry phase for type-II plaquette turns into non-zero for the model with |t1/t2| < 1, This
completely concurs in the HOTI phase. We note a relation between the Berry phases for
the type-I and type-II plaquettes where γI with (t1, t2) is same to γII for (t2, t1). This fact
express the duality for the type-I and type-II plaquettes. In conclusion, we have shown that
there is the correspondence between the corner states in HOTI phases and Z4 Berry phases,
and the quantized Berry phase characterizes the HOTI phase as a topological invariant.

5.2.2 The BBH model with intersite interactions

Figure 5.5: (a) The energy difference between the many-body first excited state and the
many-body ground state of the model with periodic boundary conditions. The horizontal axis
shows the intersite interaction V . We fixed t1/t2 = 0.8 and the lattice size is 4×4. The HOTI
phase is overlapped to the CDW phase with finite V . (b) The quantized Berry phase for the
BBH model with interactions. The strength of the intersite interactions is fixed to V = 0.4.
(c)-(d) The ground state of the model with the open boundary condition is calculated, in
which (L× L)/2 + 2 electrons are filled. The system size is 4× 4. The parameters are fixed
to V = 0.4 and t1/t2 = 0.4. (c) The occupation number at representative sites indicated in
the inset. (d) The color map of the occupation number of the electrons is shown.

In next, we investigate the HOTI/HOSPT phase with the intersite interactions. We
calculate the many-body eigenstates and eigenenergies by the exact diagonalization using
HΦ, which is the solver of the many-body lattice-model [102]. In the beginning, we consider
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the BBH model with the nearest neighbour repulsive interactions, H = H0 +Hint. Here,

Hint = V
∑
⟨kl⟩

n̂kn̂l (5.9)

where n̂k = ĉ†k ĉk denotes the density operator of the electron at k-th site. We exploit the
finite system that contains the N = L× L sites. We consider the half-filled systems for the
bulk calculations. In the following, we take λ = 0 for simplicity.

From numerical calculations, we find that the many-body ground state under the periodic
boundary condition has the gapped excitation for V ≥ 0 [see Fig. 5.5 (a)]. For large
V , present model goes to a charge density wave (CDW) phase. We note that, for the
thermodynamic limit (L → ∞), the quantum phase transition to the CDW phase from the
HOTI phase will occur at V = Vc upon increasing V . However, if V is smaller than the bulk
energy gap, it is expected that the analysis in the following will be valid. Figure 5.5 (b)
shows the Berry phase of the model with V = 0.4 against t1/t2. It is clearly seen that the
topological phase transition occurs upon changing t1/t2.

Analogous to the non-interacting BBH model, the non-zero Berry phase implies the
topologically non-trivial HOTI phase. For the sake to confirm it, we considered the model
with open boundary condition and then calculated the spacial profile of the electron’s charge
distributions. In detail, we add two electrons into this system. It means the number of
electrons is increased from half-filling L×L

2 electrons to L×L
2 + 2. Then, we investigate the

occupation numbers of electrons for this system. If there is a low-energy excitation that is
localized at the corners, it is expected that the occupation numbers approaches to 1 at the
corners. On the other hand, the occupation numbers at the rest of sites approaches to 1/2.
Hence that calculation is a hallmark for the higher-order topological phase.

Fig. 5.5 (c) shows the result. In this figure, the occupation numbers at corners are
enlarged. On the other hand, the occupation numbers in the bulk sites are closed to 1/2.
This result express that the gapless excitations localized at the corners are the reminiscent
of the zero-energy corner state of the non-interacting HOTI. In conclusion, we found that
the higher-order topological phase with the gapless corner excitation exists in the interacting
BBH model with the inter site interactions, and the quantized Berry phase characterizes the
topological phase as a topological invariant, as is in the non-interacting model.

5.2.3 Spin-model-analogue of the BBH model

Secondly, we investigate the quantum spin analog of the BBH model [103] as an example for
the HOSPT phase of the quantum many-body system:

Hspin =
∑
⟨k,l⟩

Jkl

[
1

2

(
S+
k S

−
l + S−

k S
+
l

)
+∆Sz

kS
z
l

]
. (5.10)

Here, Sk denote the spin operator with S = 1/2 at the k-th site. Jkl = J1, J2 are the
coupling constant between the NN sites. The configuration of the Jij is the same as that of
the hopping tkl = t1, t2 of the BBH model. ∆ is the Ising anisotropy – for ∆ = 1 (∆ = 0),
the spin model corresponds with the quantum Heisenberg-like model (the quantum XY-like
model). By using the Jordan-Wigner transformation, the existence of the corner states of
the present model has been discussed [103].

Here, we modify the Hamiltonian to define the quantized Berry phase by introducing the
twisting parameters as

S−
k → eiφkS−

k (5.11)

S+
k → e−iφkS+

k (5.12)



42 CHAPTER 5. QUANTIZED BERRY PHASES FOR HOTIS

Figure 5.6: (a) The quantized Berry phases for the BBH-type spin model is shown. The blue
(yellow) line denote the Berry phase for the model with ∆ = 1 (∆ = 0) in Eq. 5.10, which
corresponds the Heisenberg-like model (the XY-like model), respectively. (b) Schematic
picture of the corner state for the model. The red (blue) lines denote the J1(J2) interactions.
If J1 vanishes, the free spins emerge at corners.

on a specified plaquette belonging to either the type-I plaquettes or the type-II plaquettes.
Thus, the quantized Berry phase is obtained in the same way to the Berry phase of the
fermions. In Fig. 5.6 (a), the quantized Berry phase γII is shown. In the spin system, the
Berry phase γII is clearly changed. In this figure, the Berry phase γη = π implies that the
decoupled cluster state of the type-η plaquettes can be obtained by adiabatic deformation
from the state with non-trivial Berry phase, i.e., the state belongs to the HOSPT phase. The
schematic picture for the corner states is shown in Fig. 5.6 (b). In this figure, the red (blue)
lines denote the J1(J2) coupling. If J1 vanishes, the free spins emerge at corners. This is the
origin of the corner states of the model in the HOSPT phases. Fascinatingly, comparing to
the BBH model of electrons, the XY model has the different phase transition point J1/J2 6= 1.
This means that there is an intermediate state where both of the quantized Berry phase of
type-I and type-II plaquette equal to 0, which cannot be adiabatically connected to neither
of the type-I or the type-II decoupled cluster states. It can be an artifact thing that arise
from thee effect of the finite size. In the further studies, we need to identify the nature of
this phase.

5.2.4 The BBH model in three-dimensions

Lastly, we analyze the 3D version of the BBH model by the quantized Berry phases. The
Hamiltonian for the model is defined as [48,49]

H3D
0 = −

∑
⟨kl⟩

e−iαk,ltklĉ
†
k ĉl. (5.13)

Here, tkl = t1 for the NN sites in the unit cells and otherwise tkl = t2, as the same fashion
to the 2D version of the BBH model. The phase factors of the hopping parameters are set
to α = π and 0 for the bonds colored in blue and black, respectively, as shown in Fig. 5.7
(a). The phases of the hopping parameters induce the π-flux in each of the surfaces of all
the unit cells. The 3D BBH model has the HOTI phase for t1/t2 < 1. In Fig. 5.7 (b), the
density plot for the corner states of the present model with t1/t2 = 0.1 is shown.
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Figure 5.7: (a) This figure shows a unit cell for the 3D version of the BBH model. The model
has the π-flux in each plane of the unit cell and the blue lines denotes that the hoppings
between the sites having the e−iπ = −1 phase. The Z4 symmetry operates the system to
change the basis in the unit cell from the left to the right figure. (b) Density plot of the
corner states with t1/t2 = 0.1 is shown. The system size is 10× 10. (c) The quantized Berry
phase for the present model as the function of t1/t2.

Now we define the quantized Berry phase. We again introduce the twisting into the
Hamiltonian as

ĉk → eiφk ĉk (5.14)

with φk =
∑k

m=1 θm for k = 1, 2, · · · , 8 and a condition φ8 = 0. Thus, we have seven inde-
pendent twisting parameters θ = (θ1, · · · , θ7). Figure 5.7 (a) shows the Z4 symmetry, under
which the model Hamiltonian is invariant. There are Z8 symmetry which cycle the indices
of the sites in a unit cell. The model Hamiltonian is invariant under the two operations,
hence the model has the (Z8)

2 = Z4 symmetry. We define paths Lj(j = 1, 2, · · · , 8) in the
parameter space as Ek−1 → G → Ek where E1 = (2π, 0, · · · , 0), · · · , E7 = (0, 0, · · · , 2π),
E8 = E0 = (0, 0, · · · , 0), and G = 1/8

∑8
k=1Ek. Because of the Z4 symmetry, an equation

of the Berry phase γj = −i
∮
Lj
dθ ·A(θ) holds:

γ1 + γ2 = γ3 + γ4 = γ5 + γ6 = γ7 + γ8 ≡ γ mod 2π. (5.15)

Combining to the equation
∑

k γk = 0, the Berry phase γ is quantized in Z4.

In Fig. 5.7 (c), the Berry phase γ is shown as a function of t1/t2. The figure clearly
shows the non-trivial Berry phases characterize the HOTI phase in t1/t2 < 1.
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5.3 Conclusion

The Z4 Berry phase has been demonstrated to characterize the HOTI/HOSPT phases of
the square lattice models under the C4 symmetry. The main idea is based on the fact
that the ground states are adiabatically connected to the product states of the irreducible
decoupled clusters. In these systems, the bulk-corner correspondence between the bulk Berry
phase and the corner state of the HOTI phases is naturally explained as a consequence that
the isolated site(s) appears if the cluster with non-trivial Berry phase is cut at the corner.
Numerical evidences of the above statement are presented for the BBH model with NNN
hopping term, the BBH model in the presence of NN intersite interactions, and the spin
model that is analogous to the BBH model. Furthermore, we have found that the Z4 Berry
phases correspond the HOTI phases of the 3D BBH model as well.

In this chapter, we have investigated the BBH type models with the C4 symmetry. Here,
we should note the symmetries which protect the BBH model. Previous study in Ref. [49,104]
argues that it is enough to protect the HOTI phases by two mirror symmetries, instead of
the C4 symmetry. If two mirror symmetries are preserved while the C4 symmetry is broken,
the ground state can be adiabatically connected to the valence-bond-solid (VBS) state for
the strong bonds, where the conventional Z2 Berry phase capture the VBS states [35,38,105].
However, the VBS states are not the irreducible-cluster state at the C4-symmetric point since
it does not preserve the C4 symmetry. As a consequence, the Z2 Berry phase is ill-defined
at the point. Thus it is necessarily to use the Z4 Berry phase for these systems.

We note that the models with the CN symmetry or the ZN symmetry are good examples
to straightforwardly apply the quantized Berry phase. The examples include the Z6 Berry
phase for C6 symmetric honeycomb lattice model [106] and the Z3 Berry phase for C3 sym-
metric breathing kagome model [91, 107]. Because various models for the HOTI/HOSPT
phases with the CN or the ZN symmetries have been proposed [108], we believe the ZN

Berry phases serve as a useful tool for studying such phases.
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5.4 Appendix

Berry phase for decoupled clusters

Before we show the bulk-corner correspondence, we calculate the quantized Berry phase for a
decoupled cluster of the HOTIs. We contemplate the single cluster, which consists of N sites
and also the Hamiltonian of the single cluster is under ZN symmetry, i.e., the Hamiltonian
is invariant with the cyclic operation cj → cj+1, cN+1 = c1. Here, cj(j = 1, · · · , N) denote
an annihilation operator for i-th electron.

Then, we consider the many-body ground state |Ψ〉. The unitary operator for the bond-
twisting is defined as

U = e−iφ1n1e−iφ2n2 · · · e−iφN−1nN−1 , (5.16)

where φj =
∑j

i=1 θi, φN = 0. By the unitary operator U , the annihilation operators of
electrons are connected

UcjU
−1 = eiφjcj . (5.17)

Hence, the ground state of the modified Hamiltonian H(θ) is given as

|Ψ(θ)〉 = U |Ψ〉 . (5.18)

Here, we can show that the expectation of the number of electron is not changed by θ as

〈nj〉θ = 〈Ψ(θ)|nj |Ψ(θ)〉 (5.19)

= 〈Ψ|U †njU |Ψ〉 (5.20)

= 〈Ψ|nj |Ψ〉 = 〈nj〉 . (5.21)

In next, let us introduce paths Lj , (j = 1, · · · , N) (see Fig. 5.2) to define the Berry phase,

L1 : O → G → E1

L2 : E1 → G → E2

· · · (5.22)

LN : EN−1 → G → O

where Ej = 2πej and G = 1/N
∑N−1

j=1 Vj . The {ej} is the unit vectors in the parameter
space. We then have

N∑
j=1

γj = 0 (mod 2π). (5.23)

because the Berry phases on each paths are canceled each other.

By explicitly parameterize the path, the Berry phase can be calculated. By using Eq.
(5.18), we obtain

dθ · 〈Ψ(θ)| ∂
∂θ

|Ψ(θ)〉 = dt 〈Ψ(θ)| ∂t |Ψ(θ)〉

= −idt∂θ1
∂t

(〈n1〉+ 〈n2〉+ · · ·+ 〈nN−1〉)

−idt∂θ2
∂t

(〈n2〉+ · · ·+ 〈nN−1〉)

− · · · − idt
∂θN−1

∂t
〈nN−1〉 . (5.24)
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Here, the real number t parameterizes the path. In the path Lj (j = 1, · · · , N), only the
∂θj
∂t

is 2π and the others
∂θk ̸=j

∂t are zero. Hence, the Berry phase expressed as

γj = −i
∫
Lj

〈Ψ(θ)| ∂t |Ψ(θ)〉 dt, (5.25)

are calculated as

γ1 = 2π(〈nN 〉 −N)

γ2 = 2π 〈n1〉
· · ·

γN = 2π 〈nN−1〉 . (5.26)

Here, the integer N =
∑N

j=1 〈nj〉 is the total number of electrons in the cluster, Hence,
γ1 = 2π 〈nN 〉 (mod 2π).

Due to the CN symmetry, we can conclude the density of the electrons are

〈n1〉 = · · · = 〈nN 〉 ≡ ν (5.27)

where ν is the filling factor of the electrons in a unit cell. Finally, to combine Es. (5.23)
and (5.27), we find the Berry phase for the decoupled clusters is γ1 = · · · = γN ≡ γ =
2πν mod 2π, n ∈ Z.

The exact corner states of the BBH model with the NNN hopping

Figure 5.8: The exact corner state for the model with the NNN hoppings is illustrated for
(a) t1 > t2 and (b) t1 < t2. The corner state has finite amplitude only at the sites colored
in green. (a) The corner state is localized at the right-top corner. (b) The corner state is
localized at the left-bottom corner.

Now we consider the BBH model with NNN hopping with the lattice sites of Lx × Ly

and the lattice size is Lx = 2Nx+1 and Ly = 2Ny +1. In this case, the model has the exact
zero-energy corner state, which is expressed as

|ψ0〉 =
1

N

Nx,Ny∑
k,l=0

rk+l |2k + 1, 2l + 1〉 , (5.28)

where N is the normalization constant. The amplitude of the electrons are finite for only
(Nx + 1)× (Ny + 1) sites but zero for other sites (see Fig. 5.8). The proportion r = −t1/t2
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determines the localization length of the corner state. |i, j〉 is the basis of the eigen space
at the site (i, j). It is confirmed that the state satisfies H |ψ0〉 = 0, by the straightforward
calculation. This means the corner state is the zero-energy eigenstate of the present model.
When |t1| < |t2|, the corner state is localized at the position (1, 1) and the localization length
is −1/log|r|. On the other hand, when |t1| > |t2|, the corner state is localized at the positions
(Lx, Ly).

The zero-energy state in Eq. (5.28) is valid for the lattice size of odd Lx and Ly. For
the even lattice size, four corner states emerge. The energies of the corner states are not
exactly zero due to the finite size effect, which are seen in Fig. 5.4 (b). However, the exactly
zero energy state in Eq. (5.28) is a nicely approximate the corner states for sufficiently large
systems. As the exactly zero energy state has the exponential localization, the corner states
are orthogonal for the sufficiently large systems.



Chapter 6

Machine learning study for the
disordered higher-order topological
insulators

This chapter investigate tight-binding model of a breathing kagome lattice [50–52, 91]. As
explained before, the tight-binding model exhibits the higher-order topological insulator
phase having zero-dimensional corner mode protected by mirror and three-fold rotational
symmetries [50–52]. Firstly, we apply the supervised learning for this model in the clean
limit, in which the topological phase diagram has been already known [50–52]. Then, we
introduce the disorders as on-site potentials and determine the phases by using the supervised
neural-network for classification. We can get the phase diagram for the disordered kagome
higher-order topological insulator model of both triangle and rhombus geometries. We have
found that as long as the energy gap does not collapse,the HOTI phase survives because of
the robustness of the topological corner states versus disorders.

We organize this chapter as following. Section 6.1 shows the model we study in the
chapter and reviews a phase diagram of the model in a clean limit. We also summarized the
topological invariant that is proposed in the previous works and the symmetries of the model.
Section 6.2 explains the machine learning method we use in this chapter, It is the supervised
learning and identifies the phases of the model with disorders. Section 6.3 presents the main
results of the study. We applied the machine learning method to the disordered HOTI model
and the method successfully generated a phase diagram of the model, which is compared to
the analytical method, the inverse participation ratio. In Sec. 6.4, we summarize the study
and present discussions.

6.1 Disordered kagome higher-order topological insulators

In the beginning of this section, we introduce a tight-binding Hamiltonian on a breathing
kagome lattice for spinless fermions, as shown in Chapter 3

H0 = −
∑
k,l

tklc
†
kcl, (6.1)

Here, ck and c†k are the annihilation and the creation operators of an electron on a k-th site,
respectively The tkl = t2(t1) are the hopping parameters between k and l, which belong to
the NN bonds living on the downward (upward) triangles [Fig. 6.1(a) and 6.1(d)]. We set
t2 = 1 in the following.

48
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To diagonalize the Hamiltonian H0 in a Fourier space, the bulk spectrum is obtained. In
this model, a flat band appears in the energy of t1 + t2. There are a band gap between the
rest two bands if |t1| 6= |t2|. If t1 = t2, there appears the gapless linear dispersions at K and
K ′ point. If t1 = −t2, the gapless linear dispersion appear at Γ point.
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Figure 6.1: In (a)/(d), a flake of the kagome lattice with a rhombus/triangle geometry is
shown. In each geometry, the green circles denotes the corners. In (b) and (e), the energy
spectrum as a function of t1/t2 for a rhombus and triangle geometry are shown, respectively.
In (c)/(f), the energy spectrum for the present model in a rhombus/triangle geometry with
the disorder strength W = 1.1 are shown.

6.1.1 Phase diagrams for rhombus and triangular geometries in the clean
limit

Let us consider the finite system with an open boundary condition to study HOTI phases
of the present model. As yet, rhombus and triangular geometries are chosen to generate the
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finite system [see Fig. 6.1(a) and 6.1(d)]. In the model of these geometries has HOTI phases
with the corner states, which is the zero-dimensional localized states at corners [50–52]. To
consider the limit for |t1| = 0 or |t2| = 0, the existence of the corner states can be understood.
For example, if we consider the |t1| = 0 limit, there are “dimers” aligning on the edges of
the triangular or rhombus geometry, which do not reside in the downward triangles, and
there are the “trimers” in the bulk, which forms all downward triangles. In the rhombus
geometry, only the site at Γ1 corner is isolated, which generates a zero-energy corner state,
The corner states survive even with t1 6= 0 as far as |t1| < |t2| is satisfied, Likewise, there
the corner state localized at the Γ2 corner for |t1| > |t2|. Actually, as shown in Ref. [51],
the exact zero-energy corner states for the system with |t1| 6= |t2| are explicitly constructed.
We note that there are no corner states which is localized at Γ3 and Γ4 for any t1 and t2.
On the other hand, in a triangular geometry, because there are three corners that belong to
the upward triangles, the corner modes appear at three corners if −1 ≤ t1/t2 ≤ 1/2 and the
corner modes have three-fold degeneracy [50].

To define the phases, the difference between the corner states of the system with different
geometry is crucial. The corner state appears for every parameter in a rhombus geometry,
however it is matter whether the corner state is the in-gap state or not. Therefore, for the
classification of the phases, we fix the number of electrons such that N = M2 = νR. Here,
we contemplate the system consists of M ×M rhombuses or 3M2 − 2M sites and consider
the highest occupied (single-particle) state. Figure 6.1(b) shows four phases of the model
as a function of t1/t2. The system is in the HOTI phase for t1/t2 > 2, in which there are
zero-energy state in a band gap localized at the Γ2 corner. We refer to the phase as “HOTI
2”, which is named after the position of the corner state. The system is in the metallic phase
for 1/2 < t1/t2 < 2, in which the zero-energy corner state is buried in the bulk and edge
states. There is another HOTI phase in −1 < t1/t2 < 1/2, where a zero-energy state appear
and the state is localized at the Γ1 corner. We refer to this phase as “HOTI 1”. There is a
“trivial” phase for t1/t2 < −1, where there is a zero-energy state which is localized at the
Γ2 corner, but it is not the highest occupied state for fixed νR. In this phase, the highest
occupied state is one of the degenerated flat band states.

In contrast to the rhombus geometry, three phases exist for the system in a triangle
geometry. In this geometry, there is only a HOTI phase in −1 ≤ t1/t2 ≤ 1

2 [50]. There
are three corner states at (νT − 1)-th, νT-th, and (νT + 1)-th states in the phase. Here,

νT = M(M+3)
2 and the system has M(M−1)

2 number of upward triangles pr 3M(M−1)
2 sites. So

that the highest occupied state in this region becomes one of the corner states, we fix the
number of electrons as N = νT. There are two other phases, the trivial phase for t1/t2 ≤ −1
and the metallic phase for t1/t2 ≥ 1/2. Essentially, they are same as the phases in the
rhombus geometry.

6.1.2 Symmetries and topological invariants

As yet, previous studies revealed that the symmetries of the Hamiltonian protects the zero-
energy corner state in the HOTI phase. However, according to the geometry of the system,
the protecting symmetries and corresponding topological invariants are different. Firstly,
we consider the triangle geometry. In this case, the distance of the “Wannier center” from
the origin, P3, is quantized as 0 for the trivial phases and 1/2 for the HOTI phase [50].
The quantization of P3 originates from the three mirror symmetries. Next we consider the
rhombus geometry. In this case, the topological invariant can be obtained from the trajectory
of the eigenvalues of the “Wannier Hamiltonian” during the adiabatic deformation of the
Hamiltonian [52]. Then, the composite operation of symmetry for complex conjugation and
the three-fold rotation protects the corner state in the HOTI phase.
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One important thing is that the spacial symmetries are crucial for both of these geome-
tries for the Hamiltonian, while these symmetries are broken by random impurity potentials.
Therefore, the quantization of the above topological invariants are also broken in the disor-
dered systems. In addition, as seen in Figs. 6.1(c) and 6.1(f), the corner state in the HOTI
phase has non-zero energy any further. Hence for the system with disorders, the definition
of the HOTI phases is more or less subtle, but it may be reasonable to adopt whether the
corner states exist or not as a working definition of the HOTI phase with disorders. For
the sake of detecting the (disordered) HOTI phases in the definition, it is suitable to apply
the machine learning method. This method can detect the corner states existing in the gap,
systematically.

6.1.3 Effect of disorders

As an effect of disorders, the on-site random potentials are introduced as

HR =
∑
j

wj ĉ
†
j ĉj (6.2)

where wj is a randomness in the uniform distribution of [−W/2,W/2). The W denotes
the strength of the random potentials. Here after, we consider the total Hamiltonian as
H = H0 +HR.

6.2 Identification of the topological phase by machine learn-
ing

In this section, we introduce a detection method for the disordered phases of HOTIs by the
state-of-the-art machine learning technique. In this study, we use an algorithm based on a
neural network, which is implemented by PyTorch [109] that is the open-source library for
Python.
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Figure 6.2: An configuration of the artificial neural network is shown. The first and the
second layers are the convolutional neural-network layers for two-dimensions. The rests of
the layers are the ordinal linear layers. The batch normalization and the max pooling layers
are used. The figure also shows the size of the layers.

6.2.1 Configuration of the neural network

Figure 6.2 shows a schematic picture of the configuration of the multi-layer neural network
used in the chapter. The configuration contains five artificial neural network, in which first
two layers are the convolutional neural network. The rests of them are the linear layers.
We take the activation functions as the ReLU functions f(x) = max(0, x). The max pooling
layers are inserted after the convolutional neural networks. We insert the batch normalization
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layer after the second convolutional neural network and the first linear layer. The max
pooling layer takes the max value in 2 × 2 sectors. The outputs of the neural networks
are the probabilities of phases. Corresponding the number of phases for clean systems, the
number of output is three for triangle geometry and four for rhombus geometry.

6.2.2 Input and output data

Our input data is the electron densities of the single-particle highest occupied state. The
machine learning method that we show in the following is similar to the method for the
first order TI developed in Ref. [73, 75]. First we consider the rhombus geometry. With
cνR =

∑
i ϕ

νR
i ci, as the annihilation operator of the state νR, the input data for this case

is |ϕνRi |2. Next we consider the triangle geometry. In this case, we use the average density
of electrons among three corner states, (|ϕνT−1

i |2 + |ϕνTi |2 + |ϕνT+1
i |2)/3, as the input data.

In this geometry, the specific choice is reasonable because the C3 symmetry is preserved.
We note that since it is useful to detect corner states of the HOTIs, we adopt the choices
of the input data. Other possible choices of the input data can be considered, such as the
topological numbers [110] and the all of the occupied states [71].

Γ1

Γ2
t1
t2Γ2

Γ1
Γ1

Γ2

Figure 6.3: A schematic picture for the modification is shown. The kagome lattice is
modified to the square lattice. The upper (lower) figures show the modification for the
rhombus (triangular) geometry. The gray circles are the artificial sites we added.

We transform the geometry from a kagome lattice to a square lattice in order to make
the input data as two-dimensional square-shaped images, [Fig. 6.3]. The vacancy sites are
inserted for the input data. Firstly let us consider the rhombus geometry. This deformation
from the equilateral triangles to the right triangles is accomplished by appending redundant
sites at the centre of the hexagonal plaquettes. We take the zero probability at the additional
sites for the single-particle wavefunctions of the input data. This proceeding increases the
size of image data from 3N to 4N . Here N denotes a number of unit cells. We note that
the deformation do not lose any information, although the computational cost is increased.
Next, let us consider the triangle geometry. Similar to the rhombus geometry, the redundant
sites at the center of the plaquettes are inserted. Furthermore, it is necessarily to append
a large downward triangle, which consists of the redundant sites. Then, the probabilities of
more than half of the sites are zero in the deformed image. Finally we consider the output
data. For rhombus (triangular) geometry, the output data are four- (three-) dimensional
vectors. The components of the vectors correspond the probabilities for the phase that the



6.2. IDENTIFICATION OF THE TOPOLOGICAL PHASE BYMACHINE LEARNING 53

neural network estimates.

Figure 6.4: The probability density of the wavefunctions is shown for a rhombus geometry.
(a) The averaged densities of the wavefunctions of the highest occupied state are shown. We
used 30 samples to calculate the averaged density of the wavefunctions. (b) The densities
of single-shot wavefunctions of the highest occupied state are shown. Both of them, the
disorder strength is set to W = 1.

6.2.3 Supervised learning

Firstly, we do a supervised learning to optimize the parameters of the model to classify the
phases. To achieve that, we randomly choose the t1/t2 and then obtain the highest occupied
state of the Hamiltonian in the clean limit. Then, the 5000 images, i.e. the probability
density of the state, are prepared. The label of each image is the phase corresponding with
the randomly-chosen parameter and the label is represented as a three- (four-) dimensional
vector for a triangular (rhombus) geometry. We use the one-hot representation, in which
only n-th component is 1 and all the other components are 0 for the label of the n-th phase.
We employ the cross entropy as the loss function. Then, we train the model such that the
loss function is minimized. To achieve that, a kind of the gradient method is used to update
the parameters of the model. Here we note that the trained model can reproduce the label
of the test data over 99% of accuracy.

In next, we use the trained model to identify the phases of the systems with disorders. To
accomplish that, we take the probability density of the state of the system with disorders as
the input data for the trained model. Then, we adopt the output vectors as the probabilities
for the phases of the input data. To averaging the state, 30 samples are prepared for chosen
parameters of W and t1/t2. Then, we take two distinct methods to average the densities of
these states to investigate the phase diagram as follows. Firstly, we take an average for the
input data, i.e., the probability densities are averaged over the samples. The disorders break
the translational symmetry but the averaging process is needed to restore the symmetry,
as mentioned in Ref. [75]. The second way of averaging is taking the average of output
data. In this way, we take an average over the obtained output vectors for 30 samples of the
single-shot wavefunctions. The two ways of averaging complement each other. Because the
randomly-localized states are uniformly distributed, the former way of averaging is expedient
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Figure 6.5: The probability density of the wavefunctions is shown for a rhombus geometry.
(a) The averaged densities of the wavefunctions of the highest occupied state are shown. We
used 30 samples to calculate the averaged densities of the wavefunctions. (b) The densities
of the single-shot wavefunctions of the highest occupied state are shown. Both of them, the
disorder strength is set to W = 1.

for large W to distinguish the corner states from the randomly-localized states. Although,
because the probability density of all of these states is uniform, this way of averaging has no
capacity of distinguishing the randomly-localized states, the trivial states and the metallic
states. On the other hand, because the single-shot wavefunctions has clear difference of
them, the latter way of averaging can distinguish them.

In next, we see the averaged probability density of the wavefunctions and the single-shot
wavefunctions. Figure 6.4 (a) and Fig. 6.5 shows the averaged densities of the wavefunctions
for a rhombus geometry and a triangular geometry, respectively. The disorder strength
is fixed to W = 1. In Fig. 6.4 (b) and Fig. 6.5 (b), the single-shot wavefunctions for
a rhombus geometry and a triangle geometry, respectively. The parameters of the model
Hamiltonian are same to the averaged densities of the wavefunctions. For the wavefunction
at t1/t2 = −3.0, the flat-band states are dominant in the single-shot wavefunctions. and
we can clearly see that the averaging restores the translational symmetry. Let us see the
other phases. As we will see later, the corner states can be seen in both the single-shot and
averaged wavefunctions. Hence, they can serve as a fingerprint of the HOTI phases for the
neural network.

6.3 Disordered higher-order topological insulator phases

6.3.1 Result for the rhombus geometry

Firstly, let us contemplate the rhombus geometry. We take the system size of M = 10. Here
we generate phase diagrams in two ways. Figure 6.6 (a) shows the phase diagram generated
by averaged densities of the wavefunctions. On the other hand, Fig. 6.6 (b) shows the phase
diagram generated by the single-shot wavefunctions. In the figures, the right-blue, orange,
yellow and blue colors represent the HOTI 1, HOTI 2, metallic and trivial phase, respectively.
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Figure 6.6: The phase diagram for the kagome HOTI model for the rhombus geometry,
which contains the terms for disorders. (a) The phase diagram is plotted for the averaged
densities of the wavefunctions. Here, orange, yellow, right-blue and blue regions denote the
HOTI 2 phase, the metallic phase, the HOTI 1 phase and the trivial phase, respectively. The
energy gap between the corner states and the bulk or edge states are shown as green dashed
line. (b) plots the phase diagram by the calculation of the averaged probabilities, which is
averaged over 30 densities of the single-shot wavefunctions.

Firstly, we contemplate the HOTI phases. The HOTI phases remain to the critical

disorder strength as seen in both of two phase diagrams. For W > W
(1)
c , the HOTI 1 phase

take transition to the trivial phase. On the other hand, the HOTI 2 phase turns into the

gapless phase for W > W
(2)
c . These phase transitions indicate that the level cross between

the states nearby zero-energy and the corner states occurs in these regimes. For these cases,

W
(1,2)
c can be estimated by the energy gap between the nearby bulk/edge states and the

corner states. To specify it, the formulae for W
(1)
c are −2t1/t2 + 2 for 0 ≤ t1/t2 ≤ 1/2 and

2t1/t2 + 2 for −1 ≤ t1/t2 ≤ 0. Similar to that, those for W
(2)
c are 2t1/t2 − 2 for t1/t2 > 2.

The green dashed lines in the figures are these estimated values and turn out to be good
approximations. We note that the behavior is a reminiscent of the on-site disorder-induced
SSH model. In this model, there are the zero-dimensional edge states and when the strength
of disorders is comparable to the band gap, they become unstable [111,112].

Next, we see the other phases. In all the phases, the most fragile phase is the trivial
phase against disorders. Actually, the mosaic-like area exists in Fig. 6.6 (a). In this area,
the trained neural network predicts the phase “unknown”. Specifically, the confidence of the
four phases in the area is less than 98%. This phase is expected to be an Anderson-localized
(AL) phase. The reason is described as follows. In the trivial phase, the highest occupied
state is one of the massively degenerated states in a flat band. Then, the degeneracy is
lifted by the disorders and one of the localized states become the highest occupied state.
Later, we use the inverse participation ratio (IPR) to analyze the qualitative argument for
the transition of the localization. We note that the existence of the critical phase between
the AL phase and the trivial phase, which is predicted by the previous study [113]. However,
the phase transition point appears at very small disorders (W < 10−2). The strength of the
disorder is much smaller than our minimum disorder strength (W = 0.2). We also note that
Refs. [114, 115] predict the reentrance to the metallic phase, which appears at much larger
disorder strength than the maximum value we study.
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Figure 6.7: The phase diagram for the kagome HOTI model for the triangle geometry in
the presence of disorders. (a) The phase diagram is plotted for the averaged densities of the
wavefunctions. The green, blue and red areas denote the HOTI phase, the metallic phase
and the trivial phase, respectively. (b) plots the phase diagram by the averaged probabilities
for 30 single-shot wavefunctions.

6.3.2 Result for the triangular geometry

Then, let us show the results for the triangular geometry. Figure 6.7 shows the phase
diagrams for M = 16. In this case, the three-dimensional vectors of the output is mapped
to the color map of the RGB component; the trivial, HOTI and metallic phases respectively,
correspond with red, blue, and green areas.

Above a critical line of the disorder strength, the HOTI phase vanishes. Similar to the
rhombus geometry, we can calculate the rough estimation of the critical strengths by the
energy gap. One can assume the HOTI phase is robust for disorders as long as the corner
states are alive, as same as the rhombus geometry.

Next, we see the phase diagram generated by the averaged densities of the wavefunction.
Above the trivial phase, there is a metallic phase as shown in Fig. 6.7 (a). As described in
the previous section, it is an artifact of the averaging of the densities of the wavefunctions.
Indeed, as seen in the phase diagram generated by the single-shot wavefunction [Fig. 6.7
(b)], we clearly see the mosaic-like pattern. It clearly indicates the AL phase and it is
consistent with the wavefunction [Fig. 6.5]. Furthermore, one can observe that the Anderson
localization occurs above the metallic phase. We also see that its critical value is smaller
compared with the case of the rhombus geometry.

6.3.3 Inverse participation ratio

The localized states are distinguished from the extended state by the IPR [115–118]. The
definition of the IPR is

p =
∑
i

|ϕ(ri)|4. (6.3)

We assume the normalized eigenstates (
∑

i |ϕ(ri)|2 = 1). For N -site system, the fully ex-
tended states are ϕ(ri) = 1/

√
N , hence p ' 1/N . Hence, in the thermodynamic limit, the

IPR for the extended states vanishes. For the AL states, the IPR gets larger value. Hence
it do not vanished in the thermodynamic limit.

For the breathing kagome model, metallic states and trivial states are the extended
states, and the AL and corner states are the localized ones, so these two classes of phases
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are distinguished by the IPR with the single-shot wavefunctions. For distinguishing the AL
and corner states, it is needed to compare the IPR for the single-shot wavefunctions with the
IPR for the averaged densities of the wavefunctions. Namely, there are uniform distribution
of the averaged densities of the wavefunctions for the AL states. Hence, as same to the
case of extended states, the obtained IPR is vanishing. On the other hand, as seen in Figs.
6.4 and 6.5, the distribution is still weighted at the corners for the corner states even for
the wavefunction that is averaged over a number of samples, thus the IPR is not vanishing.
Table 6.1 summarizes the expected behaviors for each phase.

Figure 6.8: (a) The IPR calculated by the averaged densities of the wavefunctions is shown.
(b) The IPR that is averaged for the densities of the single-shot wavefunctions is shown. For
each parameters, 30 samples are taken. The system size is 10. As same to lines in Fig. 6.6,
the green dashed lines denote the energy gap between the corner states and the bulk / edge
states. We note the scale of the plots is logarithmic.

Figure 6.8 (a) shows the result of the IPR for the averaged densities of the wavefunctions
for a rhombus geometry. Whereas Fig. 6.8 (b) shows that for the densities of the single-shot
wavefunction. For the averaging, 30 samples are used. Indeed, we see that the IPR shows
the behaviors expected in Table 6.1, comparing the phase diagram generated by the machine
learning (Fig. 6.6). It indicates that the machine learning method is reliable.

Besides the correspondence between the phase diagram generated by the machine learning
and the IPR, it is also found that we obtain large IPR at t1/t2 = 1 for weakW . These points
originate from the appearance of the Dirac point at the Fermi level in the clean limit. The
strongly-localized zero-energy modes, which are inherent in the disordered Dirac fermion
systems may attribute this [119].

Table 6.1: The expected behaviors of the IPR for HOTI, AL, and trivial/metallic phases.

HOTI AL Trivial/metallic

Single-shot ∼ 1 ∼ 1 ∼ 0
averaged ∼ 1 ∼ 0 ∼ 0

6.4 Conclusion

In this chapter, the phase diagram of the disordered breathing kagome model is investigated
by the machine learning method. To achieve this, the wavefunction of the highest occupied
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state is used as input data. In this study, the HOTI phase in which the corner states exists
can be distinguished by the artificial neural network from other phases. The results reveal
the robustness of the HOTI phase is remaining against disorders as far as the energy gap in
the clean limit is not be exceeded by the disorder strength. To combine the results of the
single-shot wavefunctions and the averaged densities of the wavefunctions, trivial/metallic
states and the AL states can be successfully distinguished.

To use the conventional approaches to study the disordered models is important to jus-
tify the results about the study of the machine learning method. One of the conventional
approaches is the IPR method. The IPR for our model is investigated for the rhombus ge-
ometry. The result is consistent with the phase diagram by the machine learning. Testing
various other approaches, such as the transfer matrix method [73–75, 120, 121], will be an
interesting future problem.

Finally, we emphasize the remark of the related works. In the electric circuit, Refs. [59,60]
investigate the robustness of the corner states against disorders. In the platform, it was
discovered the resonance peak of the impedance that the corner mode induces survives even
though the inductances and capacitances are slightly disordered. Both bond disorders and
on-site disorders in the language of the tight-binding model are induced by disorders of this
kind in the electric circuits [122]. Our results are consistent with these results for the
robustness about the corner states.



Chapter 7

Conclusions and perspectives

This thesis was dedicated to the theoretical study for the higher-order topological insulators.
We have studied the higher-order topological insulators in several situations by using the
Berry phase characterizations and the machine learning technique. Firstly, the Benalcazar-
Bernevig-Hughes model with and without interactions are investigated by the Berry phase.
In next, the kagome higher-order topological insulator model with disorders is investigated
by the machine learning technique.

The thesis proposed the Berry phase as a topological invariant for the higher-order topo-
logical insulators. The Berry phase is quantized by symmetries, which is associated with the
crystalline symmetries. We have found the bulk-corner correspondence between the Berry
phase and the corner states of the higher-order topological insulators. The correspondence
states the nontrivial Berry phase characterizes the higher-order topological insulators, which
is adiabatically connected to the decoupled clusters. In Chapter 5, we demonstrate it for
the Benalcazar-Bernevig-Hughes models in two- and three-dimensions. The bulk-corner cor-
respondence still alive even with the electron-electron interactions. We also investigate the
Berry phase for the spin-model-analogue of the Benalcazar-Bernevig-Hughes model.

The disorder effect for the higher-order topological insulators is studied in Chapter 6. We
investigated the phase diagram of the disordered kagome higher-order topological insulator
model. We generated a phase diagram of the model by machine learning. We also confirmed
the phase diagram is consistent with the other analytical method. The study reveals that
the HOTI phases of the kagome higher-order topological insulator model are robust against
the disorders as far as the disorder strength does not exceed the energy gap.

In conclusion, we have obtained the numerical results about the higher-order topological
insulator phases by two methods. In the first part, we proposed the quantized Berry phases
characterize the higher-order topological insulators even with electron-electron interactions.
In this study, we numerically found the phase transition point of the spin-model-analogue of
the Benalcazar-Bernevig-Hughes model differs from that of the original Benalcazar-Bernevig-
Hughes model. For the sake to find whether the difference comes from the finite size effect
or not, we need to cautiously investigate the ground-state and the Berry phase in the larger
systems. To obtain the explicit relation between the Berry phase and the other topological
invariants is another perspective. However, we hope the Berry phase we proposed in the
thesis may open a new way to search the higher-order topological insulators in correlated
systems. In the second part, we have generated a phase diagram of the kagome higher-
order topological insulator model and confirmed that the result is consistent with the other
analytical method. We expect that the method can be applied to detect disordered phases
for the higher-order topological materials in experiments.
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