
Computation Offloading in Mobile Cloud
Computing

March 2020

Guo Kai

Computation Offloading in Mobile Cloud
Computing

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2020

Guo Kai

Abstract
With the growth of IoT technologies, mobile devices have become an indispens-
able part of daily life, as they provide data processing ability to mobile users any-
time and anywhere. On one hand, daily life becomes immensely convenient ac-
cording to executing various mobile applications on mobile devices. On the other
hand, it is difficult for the limited resources of mobile devices, such as processing
power, storage capacity and battery life, to satisfy the demands of current mo-
bile applications, especially of computationally intensive applications. Thus, it is
important to find a way to execute mobile applications while satisfying the de-
mands on response time and energy consumption. Fortunately, a new paradigm,
mobile cloud computing (MCC), is introduced to alleviate the problem of limited
resources for mobile devices. Migrating (offloading) computations from mobile
devices to servers in MCC paradigm can augment the computational capabilities
and reduce the power consumptions for resource-scarce mobile devices. In or-
der to get the highest offloading performance, it is important but difficult to find a
proper strategy for computation offloading. In this thesis, we focus on the problem
of how to offload computations from mobile devices to servers so as to minimize
the response time of applications. Two offloading strategies are proposed to adapt
different scenarios.

In chapter 3, we study the computation offloading problem in two-tier MCC
system including mobile devices and an edge server. An application is considered
as a set of dependent tasks each of which can be independently offloaded and the
capacity limitations of both the communication channel and the edge server are
taken into account. We firstly formulate an offline offloading problem as a mixed-
integer linear programming problem. Then, we extend the offline problem to an
online offloading problem in which an application can be executed at any time.
Due to the complexity of the problem, it is difficult to obtain a solution within a
realistic time period. Therefore, we propose an efficient approach based on con-
gestion control. Extensive simulations demonstrate that our proposed approach
significantly outperforms previous approaches.

In chapter 4, we study the offloading problem in three-tier MCC system includ-
ing mobile devices, edge servers and cloud servers, in which the computations at
mobile devices can be offloaded to edge servers or can be further offloaded to cloud
servers if necessary. An application is considered to be an inseparable job that can
be integrally offloaded and the capacity limitations of the communication chan-
nels, the edge servers and the mobile devices are taken into account. The problems
of how to determine the offloading strategy and of how to determine the trans-
mission rate of communication channels are jointly studied and formulated as an
optimization problem. Then, we analyse the joint problem and transform it into a

piecewise convex optimization problem. An efficient algorithm that can find the
optimal solution is proposed in our study. Extensive experiments show that our al-
gorithm significantly outperforms previous algorithms. The experimental results
also demonstrate high robustness of our algorithm.

Contents

1 Introduction 1
1.1 Mobile Computing . 1
1.2 Cloud Computing . 2
1.3 Mobile Cloud Computing . 3
1.4 Computation Offloading . 4
1.5 Application Level and Task Level Offloading Strategies 6

1.5.1 Application Level Offloading 6
1.5.2 Task Level Offloading . 6

1.6 Offline and Online Offloading Approaches 8
1.6.1 Offline Offloading . 8
1.6.2 Online Offloading . 9

1.7 Objectives of This Thesis . 9
1.8 Contributions . 10
1.9 Organization of This Thesis . 12

2 Related Works 13
2.1 Various Offloading Frameworks . 13

2.1.1 Mirror Server . 13
2.1.2 Cuckoo . 15
2.1.3 MAUI . 15
2.1.4 Cloudlet . 16
2.1.5 MAPCloud . 17

2.2 Various Offloading Strategies . 19
2.2.1 Previous Application Level Offloading Strategies 19
2.2.2 Previous Task Level Offloading Strategies 20

3 Task Level Online Offloading Strategy 21
3.1 System Model . 21

3.1.1 Edge Computing System . 21
3.1.2 Mobile Application . 23

3.2 Offline Offloading Problem . 24

i

3.3 Online Offloading Problem . 30
3.3.1 Optimization Technique based Approach to Obtain an Initial

Offloading Strategy . 32
3.3.2 Heuristic Approach to Obtain an Initial Offloading Strategy . 33
3.3.3 Core Assignment . 40

3.4 Performance Evaluation . 46
3.4.1 Parameter Settings . 47
3.4.2 Effect of Transmission Rate . 49
3.4.3 Effect of Ratio of the Computing Power of Server vs. Mobile

Device . 50
3.4.4 Effect of Application Inter-execution Time 51
3.4.5 Effect of Number of Users . 52

3.5 Conclusion . 53

4 Application Level Offline Offloading Strategy 54
4.1 System Model and Formulation . 54

4.1.1 System Model . 54
4.1.2 Formulation . 58

4.2 Analysis and Algorithm for Application Level Offloading 61
4.2.1 Data Transmission over Uplink and Downlink Channels . . . 61
4.2.2 Remote Execution . 63
4.2.3 Local Execution . 65
4.2.4 Algorithm for Application Level Offloading 70

4.3 Performance Evaluation . 72
4.3.1 Parameter Settings . 75
4.3.2 Effect of Total Transmission Rate 76
4.3.3 Effect of Ratio of the Computing Power of Server vs. Mobile

device . 79
4.3.4 Effect of Number of Mobile Devices 81

4.4 Conclusion . 82

5 Conclusions and Future Work 84
5.1 Conclusions . 84
5.2 Future Work . 85

Acknowledgements 87

Bibliography 88

ii

List of Figures

1.1 Cloud computing. 2
1.2 Mobile cloud computing (without cloud server). 3
1.3 Mobile cloud computing (with a cloud server). 4
1.4 Mobile cloud computing (with an edge server). 4
1.5 Cloud computing layers. 5
1.6 Application level offloading. 7
1.7 Task flow graph. 7
1.8 Task level offloading. 8
1.9 Offline offloading. 9
1.10 Online offloading. 9

2.1 Mirror Server architecture (adapted from [17]). 14
2.2 High-level view of MAUI architecture (adapted from [19]). 16
2.3 Cloudlet illustration (adapted from [20]). 17
2.4 MAPCloud illustration (adapted from [21]). 18

3.1 Edge computing system. 22
3.2 Network model. 22
3.3 Application model. 23
3.4 Task computation at the edge server. 24
3.5 An overview of the determination approach for online offloading

problem. 32
3.6 A chain application. 34
3.7 An example of a task flow graph. 37
3.8 Elimination of interruption to application N′ 39
3.9 Generating an initial offloading strategy. 42
3.10 Core assignment for a task of a newly executed application. 43
3.11 Multiple discrete assignment. 43
3.12 Task flow graphs. 48
3.13 Effect of transmission rate. 49
3.14 Effect of ratio of the computing power of server vs. mobile device . . 50
3.15 Effect of application inter-execution time. 51

iii

3.16 Effect of number of users. 52

4.1 The model of a three-tier cloud computing system. 55
4.2 Network model. 56
4.3 An example for the application execution. 57
4.4 Original state. 66
4.5 Intermediate states 1. 66
4.6 Intermediate states 2. 67
4.7 Final state. 67
4.8 Nondifferentiable points for one mobile device. 69
4.9 Nondifferentiable points for two mobile devices. 70
4.10 Effect of total transmission rate. 77
4.11 Effect of total transmission rate (service rates of mobile devices are

different). 78
4.12 Randomly fluctuating total transmission rate. 79
4.13 Continuously fluctuating total transmission rate. 80
4.14 Effect of computing power ratio. 81
4.15 Effect of the number of users. 82

iv

List of Tables

3.1 Parameters used in task level offloading problem. 25
3.2 Decision variables used in task level offloading problem. 26
3.3 Intermediate variables used in task level offloading problem. 26
3.4 Notations used in online offloading problem. 30
3.5 Parameter settings in experiments. 48

4.1 Parameters used in application level offloading problem. 58
4.2 Decision variables used in application level offloading problem. . . . 58
4.3 Intermediate variables used in application level offloading problem. 59
4.4 Parameter settings in experiments. 76

v

Chapter 1

Introduction

In this chapter, we make an overview on computation offloading technology in
mobile cloud computing from the origin of the mobile cloud computing paradigm
to the detail of the computation offloading technology. We firstly discuss mo-
bile computing and cloud computing, respectively. Then, we show the combi-
nation of cloud computing and mobile computing, i.e., mobile cloud computing
paradigm. Thirdly, the computation offloading technology in mobile cloud com-
puting paradigm is explained. After that, we introduce different kinds of compu-
tation offloading strategies and strategy-making processes. At last, the objectives
and contributions of this thesis are shown.

1.1 Mobile Computing

Mobile computing involves mobile communication, mobile hardware, and mobile
software, which allows data processing and transmission on mobile devices. With
the development of IoT technology, mobile devices have become an indispensable
part of daily life, as they provide data processing ability to mobile users anytime
and anywhere. However, it is difficult for the limited resources of mobile devices,
such as processing power, storage capacity and battery life, to satisfy the demands
of computationally intensive applications. The power of a mobile device is usually
limited due to its physical size so that the performance improvement brought by
the hardware upgrade has been hard to meet the demands of people [1, 2]. Cloud
computing technology has been proposed to alleviate the problem of limited re-
sources for mobile devices.

1

1.2 Cloud Computing

Cloud computing is a style of easily scalable computing which is based on In-
ternet and provides virtual resources as services over the Internet, such as com-
putation, storage and applications [3]. These services can be rapidly provisioned
and released in low cost, so that cloud computing can help users get the resources
from the Internet easily without up-front infrastructure costs. The cloud comput-
ing paradigm is shown in Figure 1.1 and the advantages of cloud computing can
be summarized as follows.

• Super-large scale. A cloud has a large number of servers, and can give users
unprecedented computing power.

• Virtualization features. The services come from cloud are virtual. Thus, users
can use these services anytime and anywhere.

• Generality. The same cloud can provide many different services and reply
the different demands from different users.

• High scalability. A cloud can easily adjust servers to adapt to the different
services.

• Cheapness. Users can use the cloud service without up-front infrastructure,
and do not need to maintain and manage the cloud server.

Figure 1.1. Cloud computing.

2

Infrastructure Software

Cloud

1.3 Mobile Cloud Computing

With the increase of mobile applications and the support of cloud computing for
mobile users, mobile cloud computing was proposed as the extension of cloud
computing in mobile scenarios which inherits the merits of the cloud computing
and breaks through the limit of hardware. The mobile cloud computing paradigm
as the combination of cloud computing and mobile computing extends the com-
putation and storage capabilities of mobile devices and furthermore reduces the
energy consumptions at mobile devices [4, 5].

We show two types of mobile cloud computing network in Figure 1.2 and 1.3,
respectively. In Figure 1.2, we show an example of mobile cloud computing net-
work without cloud server. In this type, there is no cloud server in a mobile cloud
computing system. Mobile devices are connected to each other via wireless chan-
nels [6]. An application executed at mobile device can be migrated to another
device for saving energy consumption. However, it will increase total energy con-
sumption of all of devices. For a device with relatively low computing power, ex-
ecuting its applications in other devices may reduce the response time. However,
for a device with high computing power, executing its applications will delay the
response time. In Figure 1.3, we show an example of mobile cloud computing
network with a cloud server. In this type, there is a specialized cloud server for
mobile cloud computing. Mobile devices connect to an access point (AP) via wire-
less channel, and the AP connects to a cloud server via high speed link. Because of
the high processing speed of cloud server, it can be used for executing the mobile
application remotely to reduce the response time of application.

Figure 1.2. Mobile cloud computing (without cloud server).

Compared with the first type, the second type has lower total energy consump-
tion and shorter application response time. Thus, we focus on the second type of

3

Figure 1.3. Mobile cloud computing (with a cloud server).

mobile cloud computing network in this thesis and study how to use the mobile
cloud computing to reduce mobile application response time. However, since the
remote cloud server is located on the Internet and far from mobile users in tra-
ditional mobile cloud computing paradigms, the communication delay between
users and the cloud server is long, which degrades the performance of mobile
cloud computing. A promising way is deploying a small-scale server, called an
edge server, near by the AP as Figure 1.4 for reducing the communication delay in
traditional mobile cloud computing [7, 8]. The resources of the edge server will be
preferentially provided for mobile users and that of the remote cloud server will
also be provided for mobile users if necessary. How to efficiently use the resources
of edge and cloud servers is a difficult but important problem in mobile cloud com-
puting. In this thesis, we study how to use the resources of edge and cloud servers
to reduce mobile application response time in mobile cloud computing.

Figure 1.4. Mobile cloud computing (with an edge server).

1.4 Computation Offloading

Cloud computing paradigms can extend the end devices by offering “as a Ser-
vice” frameworks. The core of cloud computing technologies is the the concept

4

ci) ~ igh speed Ii

- AP
Cloud server

Cloud server

Edge server

of hardware virtualization – many virtual servers deployed in the same physi-
cal layer have independent operating environments to provide various services.
Based on the specialities of services, cloud computing paradigms are presented in
three cloud delivery models [9]: Infrastructure as a Service (IaaS) [10], Platform as
a Service (PaaS) [11], and Software as a Service (SaaS) [12] as shown in Figure 1.5.

Figure 1.5. Cloud computing layers.

• IaaS. Only the infrastructures are provided for users. On the other word,
users can have their own main frames which are located the Internet by IaaS.
However, users have to manage the operating systems and software on the
main frames.

• PaaS. The infrastructures and the operating systems are packaged as a plat-
form and provided for users. It allows customers to develop, run, and man-
age applications without the complexity of building and maintaining the in-
frastructure.

• SaaS. Various software are provided for users under their demands. The soft-
ware can be used without downloading and preinstallation. Certainly, in
order to provide the software, services providers need to manage the infras-
tructures and the operating systems.

For users, IaaS has the highest freedom and SaaS has the highest convenience.
For service providers, the infrastructures need to be managed no matter in IaaS,
PaaS or SaaS. Thus, how to use the infrastructures effectively is extremely impor-
tant.

The utilization of the infrastructures in mobile cloud computing is mainly di-
vided into two categories: the utilization of storage capacity and the utilization of
computing power. The former allows users to store their data on the servers and
download them whenever and wherever. The latter allows users to offload their

5

Saas

Paas

computations from the mobile devices to the servers, which is also called compu-
tation offloading, in order to lighten the work of computing for mobile devices and
reduce the response time of mobile applications [13, 14].

In thesis, we focus on the computation offloading problem in mobile cloud
computing and study how to effectively use the resources of servers to reduce the
response time of mobile applications.

1.5 Application Level and Task Level Offloading Strate-
gies

In order to speed up the computing of applications, a part of computation needs to
be offloaded from mobile devices to servers. Offloading strategies can be mainly
divided into two categories, i.e., application level offloading strategies and task
level offloading strategies, which depend on the offloading granularity. Applica-
tion level offloading is also called complete offloading. An application is consid-
ered to be an inseparable job that can be integrally offloaded from a mobile device
to a server. Task level offloading is also called class level offloading, method level
offloading, thread level offloading or partial offloading. An application is divided
into a set of inseparable tasks each of which can be offloaded independently.

1.5.1 Application Level Offloading

We show an example of the application level offloading strategy in Figure 1.6.
When an application is decided to be offloaded, the input data of the application
will be transmitted to the server. Then, the server will executed the application
and transmit the output data of the application back to the mobile device.

Since different applications are treated as independent parts, the performance
of the system can be analysed and then find the optimal offloading strategies for
application level offloading. However, the offloading problem is considered from
a macro perspective in the application level offloading strategy, so that the optimal
offloading performance of the application level offloading strategies may be lower
than that of the task level offloading strategies.

1.5.2 Task Level Offloading

We show an example of an application which is divided into tasks in Figure 1.7,
called as task flow graph. In Figure 1.7, there are 6 tasks, and the arrows mean
execution sequence between two tasks. For example, task 1 cannot be executed

6

Figure 1.6. Application level offloading.

before the ending of execution of task 0, and task 3 cannot be executed before the
ending of both tasks 1 and 2.

Figure 1.7. Task flow graph.

After the partition of application, we show an example of task level offloading
in Figure 1.8. In this example, task 1 is decided to be offloaded to the server. After
the execution of task 0, the input data of task 1 has been transmitted to the server.
Then, task 1 is executed at the server and the output data will be transmitted back
to the mobile device after the execution of task 1.

Since the offloading problem is considered from a micro perspective in the task
level offloading strategy, the optimal offloading performance of task level offload-
ing strategy may be better than that of the application level offloading strategies.
However, an application is divided into a set of interrelated tasks, so that the op-
timal offloading strategy for task level offloading cannot be found in a short time.

7

Serv. --=e;;;r _ __,,,

I
,,, ... --....... ,

, ' , \
I \

--..I App '----
Input data \ · / Output data

', __ ... ,,'
Mobile device

Figure 1.8. Task level offloading.

1.6 Offline and Online Offloading Approaches

In order to obtain the optimal offloading performance, we need to find the optimal
offloading strategy. Strategy-making processes can be mainly divided into two
categories, i.e., offline offloading approaches and online offloading approaches,
which depend on the information of applications and system can be obtained in
advance or not.

1.6.1 Offline Offloading

If the information of applications and the system including the arrival time and the
workload of applications, the transmission rate of wireless communication chan-
nels and the computing power of mobile devices and servers can be obtained in
advance, which is called offline scenario, an offline offloading approach can be used
to determine the offloading strategy. An offline offloading approach determines
the offloading strategy for all applications before the application arrivals such as
Figure 1.9. When an application is arrived, the mobile device executes the applica-
tion under the determined strategy.

It is possible to know the workload of an application, the transmission rate of
wireless communication channels and the computing power of mobile devices and
servers in advance. However, the arrival process of applications generally follows
a stochastic process, and the offline approaches may become inefficient if we do
not know the exact arrival time of each application in advance.

8

Server

I

Figure 1.9. Offline offloading.

1.6.2 Online Offloading

If the information of applications and the system is unknown in advance, which
is called online scenario, the offloading strategy is usually determined by an online
offloading approach. The online approaches determine the offloading for each
application after it arrives at the system such as Figure 1.10. When an application
is newly executed, the information of the application are sent to the edge server,
and the offloading strategy is determined and sent back to the mobile device. Then,
the mobile device executes the application under the determined strategy.

Figure 1.10. Online offloading.

In an online offloading approach, the offloading strategy of an application is
determined when the applications is arrived, so that the application can be exe-
cuted at any time. However, the extra latency, such as extra communication time
and strategy determining time, may delay the response time of the application.

1.7 Objectives of This Thesis

In this thesis, we focus on the computation offloading problem in mobile cloud
computing and aim at minimizing the average response time of applications. Two
efficient offloading approaches in different offloading granularities are proposed
and summarized as follows.

9

Arrival of an
l. t' Execution app 1ca 10n Response k::: _ _;___ __ :::d
I

Offioading strategy
determining

Arrival of an
l. t· Execution app 1ca 10n Response lf __ _;___ __ :::d

Offioading strategy
determining

Arrival of an
Execution application Response

k:-_.,l__--:::d

Arrival of an
· · Execution application Response lc: __ _;.__ __ :::d
I

Offioading strategy
determining

1111

time

1111

time

1. We propose an efficient heuristic task level online offloading approach. An
application is divided into a set of inseparable and interrelated tasks which
can be freely offloaded to an edge server via a wireless shared communi-
cation channel. Following this approach, the optimal offloading strategy of
each task is found to minimize the average response time of applications for
task level offloading. The main contents of this approach need to include: the
construction of the edge computing model, the analysis of task flow graph,
the assignment strategy of communication resources of the shared channel
and computation resources of the edge server, and the scheduling of applica-
tion execution.

2. We propose an application level offline offloading approach. An application
is treated as an inseparable job and can be offloaded to either edge servers or
remote cloud servers. Following this approach, the optimal application of-
floading ratio is found to minimize the average response time of applications
for application level offloading. The main contents of this approach need to
include: the construction of the cloud-assisted edge computing model, the
analysis of the data transmission processes at the uplink channel and the
downlink channel, the application execution processes at mobile devices and
servers, and the concatenation of all these processes.

1.8 Contributions

Firstly, a task level online offloading approach is proposed to minimize the av-
erage response time of applications in mobile edge computing. We construct a
mobile edge computing model where a set of mobile devices are connected with
an edge server via a shared wireless communication channel. System character-
istics such as the parallel processing of parallel tasks, the capacity limitation of
the shared communication channel and the computation resource limitation of the
edge server are considered. The main contributions of proposed approach can be
summarized as follows.

1. We solve the offloading problem, in which the capacity limitation of the
shared communication channel is considered and the edge server is no com-
putation resource limitation. The problem can be solved by two proposed
approaches, i.e., multi-user general-application (MUGA) algorithm and ap-
proach based on optimization technique (Opt. approach), respectively.

• MUGA. We firstly solve the single-user chain-application (SUCA) prob-
lem. Then, the single-user general-application (SUGA) problem is solved

10

based on the solution of SUCA problem. At last, we consider the multi-
user general-application (MUGA) problem which is solved based on the
solution of SUGA problem.

• Opt. approach. We firstly formulate the offline offloading problem as the
mixed-integer linear programming (MILP) problem [15] and extend the
offline offloading problem to an online offloading problem for adapta-
tion to online scenarios wherein an application can be executed at any
time. Then, we use an appropriate software package such as Gurobi
Optimizer [16] to solve the dynamic problem for each newly executed
application in which the offloading decisions of the previously executed
applications are not changed.

2. We solve the offloading problem, in which limitations of both the capacity
of the shared channel and the computation resources of the edge server are
considered. The initial solution is obtained by either the MUGA algorithm
or the Opt. approach which depends on the degree of system congestion.
Then, we adjust the obtained initial solution in order to meet the computation
resources limitation of the edge server. As seen from simulation experiments,
our proposed task level online offloading approach significantly outperforms
previous task level offloading approaches.

Secondly, an application level offline offloading approach is proposed to mini-
mize the average response time of applications. We construct a cloud-assisted edge
computing model where a set of mobile devices are connected with an edge server
wireless communication channels and the edge server is connected with a cloud
server via a wired connection. The problems of both computation offloading and
transmission rate determination are jointly studied. System characteristics such as
the total bandwidth limitation of the communication channels and the computa-
tion resource limitation of the mobile devices and the edge server are considered.
The main contributions of proposed approach can be summarized as follows.

1. We analyse the cloud-assisted edge computing model and formulate the joint
problem as a multi-variable non-convex optimization problem in which the
system characteristics are considered.

2. The formulated problem is transformed into a single-variable piecewise con-
vex optimization problem based on our analysis.

3. An algorithm is proposed to efficiently find the optimal offloading ratios for
each mobile decide and the edge server in order to minimize the average
response of applications. Through experiments, we demonstrate that our
proposed algorithm outperforms previous algorithms and the performance
of our algorithm is highly robust.

11

1.9 Organization of This Thesis

The remainder of this thesis is organized as follows. In chapter 2, we review the
related works on computation offloading. Chapter 3 presents the task level offload-
ing problem in mobile edge computing. The corresponding model, optimization
formulation, algorithms for task level offloading, performance evaluation and dis-
cussion are also given in this chapter. Then, Chapter 4 presents the application
level offloading problem in cloud-assisted edge computing. The system model,
optimization formulation, approach for application level offloading, performance
evaluation and discussion are also given in chapter 4. Finally, chapter 5 concludes
this thesis with a summary and gives the future work.

12

Chapter 2

Related Works

Many researchers have studied the offloading problem in mobile cloud comput-
ing. In this chapter, we firstly introduce some classical offloading frameworks to
show the evolution of the studies on the computation offloading problem. Then,
we summarize the offloading strategies proposed by previous works in order to
explain the necessity of our works.

2.1 Various Offloading Frameworks

The studies of the computation offloading problem mainly focus on two issues:
which computations need to be offloaded and where the computations need to be
offloaded to. We show 5 offloading frameworks to explain the evolution of the
consideration on these two issues.

2.1.1 Mirror Server

For a new technology, researchers tend to focus on how to implement the technol-
ogy, rather than optimizing the details of the technology to obtain more benefits.
Mirror Server is a classic example which is proposed in [17]. The authors focused
on developing a framework that used remote services based on Telecommunica-
tion Service Provider to offload the computation from mobile devices to the server.
For each mobile device, an unique mirror virtual-machine (VM) is created on the
mirror server. An application is integrally offloaded and remotely executed in the
mirror VM. After the remote execution, mirror server will return the result to the
mobile device.

The Mirror Server architecture is presented in Figure 2.1. On each mobile de-
vice, a client synchronization module (Syn-client) is deployed within the device
operating system (OS) to collect smartphone input data and transmit them to the

13

mirror server for synchronization. On the mirror server, in order to keep mirrors
and mobile devices synchronized, the server synchronization module (Syn-server)
updates mirrors using the data provided by Syn-client and the traffic monitor mod-
ule which is deployed for collecting the network traffic between mobile devices
and the IP network.

Figure 2.1. Mirror Server architecture (adapted from [17]).

This work showed the advantages of computation offloading as follows.

• The energy consumption of mobile devices can be saved.

• The execution of applications on the mirror will be much faster than on the
mobile device because the mirror is much powerful than the mobile device.

Such work validated the feasibility of computation offloading and laid a solid
foundation for later studies on computation offloading. In this thesis, we study
how to efficiently implement the computation offloading in mobile cloud comput-
ing.

14

Mirror server

Apps & Services Mirrors (VMs) for mobile devices

Mirror A MirrorB Mirror k

I Apps & Data I I I I I
Cache Firewall

Device OS [a ca ■■■ I S~n-client I ■ ■ ■

Host OS

I I Syn-server Traffic monitor I
:r

i
""' I~e;o9 Access network

~ ...
I a ... -...
I I ...

Mobile device A !- Mobile device B !- ... Mobile device k ... ~ :-.....

I Apps & Data I I Apps & Data I I Apps & Data I
•• ■ ■ ■

Device OS Device OS Device OS

I Syn-client I I Syn-client I I Syn-client I

2.1.2 Cuckoo

After the implementation of computation offloading technology, some researchers
considered the problem of that how to selectively offload part of applications or the
part of an application under an offloading strategy instead of blindly offloading all
applications from mobile devices to servers. Cuckoo as a classic framework was
proposed in [18] and focus on selectively offloading a part of an application.

Cuckoo framework offloads an application to the cloud server using the Java
stub/proxy model. This framework pre-partitioned an application into computa-
tion intensive and non-intensive methods using the existing activity model in An-
droid when the application was developed. The computation intensive methods
can be offloaded to the cloud server. When the application was executed, Cuckoo
framework would check the networking environment and offload computation in-
tensive methods to the cloud server if remote resource was reachable.

The main contribution of their work can be summarized as follows.

• They revealed that the computations can be selectively offloaded. In Cuckoo
framework, a partial offloading strategy was determined.

• In order to partially offload an application, a pre-partition method was real-
ized in Cuckoo framework.

Although the offloading strategy determinations in the works such as Cuckoo
framework are very simple, such works enabled the selective offloading and pro-
moted the maturity of the offloading strategy determination. In this thesis, we
attempt to find efficient offloading strategies in order to minimize the average re-
sponse time of applications.

2.1.3 MAUI

With the emergence of offloading strategy determination, some researchers fo-
cused on the problem of that how to determine an effective offloading strategy
to minimize the energy consumption of a mobile device and the response time of
an application. MAUI framework was proposed in [19] to minimize the energy
consumption of the mobile device.

The MAUI architecture is presented in Figure 2.2. In the preparation step, the
application was divided into a set of dependent methods and the code of the ap-
plication must be installed into both mobile device and MAUI server. The profiler
on mobile device measured and updated the characteristics of the device and the
application. The profiler on MAUI server kept monitoring characteristics of the
server and the network. Once an application was executed, MAUI server had to
found an offloading strategy and send back to mobile device. Then, the application

15

was executed under the determined offloading strategy. In order to find the opti-
mal offloading strategy, the offloading problem was formulated as an ILP problem
and solved by a solver on the MAUI server. Client proxy and server proxy were
responsible for control and data transmission between the mobile device and the
MAUI server. MAUI controller was responsible for authentication and control of
execution.

Figure 2.2. High-level view of MAUI architecture (adapted from [19]).

The main contribution of their work can be summarized as follows.

• A specific object, i.e., the optimization of energy consumption, was set for
computation offloading and an online determining mechanism was proposed
to achieve the object.

• A real-time feedback mechanism was proposed to enable the online deter-
mining.

Although the authors in [19] only focused on the computation offloading prob-
lem for few simple applications in a single-user system, the mechanism they pro-
posed enabled the computation offloading in the online scenarios. In this thesis,
we study the offloading problem and propose offloading strategies which can be
used in the online scenarios.

2.1.4 Cloudlet

At the same time, there were also some researchers focused on an other problem
of where the computations can be offloaded to. It is not always a wise way that
offloading applications to the cloud server because of the high WAN latencies, es-
pecially for latency-intolerant applications. Authors in [20] suggested a promising

16

App

MAU1
runtime

Client
proxy

Profiler
,-----,
I Solver \ ____ .,

Mobile device

MAU1
runtime

App

MAUI controller

MAUI server

way of moving the server from remote Internet to the vicinity of the mobile device.
They proposed the vm-based cloudlet framework to reduce the communication
delay in computation offloading. The server was deployed in single-hop nearness
to mobile devices and connected with mobile devices via wireless communication
channels.

The Cloudlet illustration is shown in Figure 2.3. The environment of the mo-
bile device was cloned and stored at the cloudlet server. When a mobile device
executed, the whole application was offloaded to the server. After the execution,
output of the application was transmitted back to the mobile device. The mobile
device only served as a thin client to provide the user interface.

Figure 2.3. Cloudlet illustration (adapted from [20]).

The main contribution of their work can be summarized as follows.

• Cloudlet framework is proposed and deployed in this work to offload the
computation from mobile devices with low latencies.

Such work provided a new way for computation offloading and evolved into
the mobile edge computing paradigm in following studies. In chapter 3, we study
the problem of how to efficiently offload tasks of applications from mobile devices
to the edge server.

2.1.5 MAPCloud

Since the computing power of the edge server is limited, there were also some re-
searchers considered that the computations can be offloaded to not only the edge

17

Olympus Mobile Eye Trek
wearable computer

Handtalk wearable glove

server but also the remote cloud server. A three-tier cloud computing framework,
called MAPCloud, was suggested in [21–23]. In MAPCloud framework, the com-
putations of an application was decided to be executed at the mobile device or
offloaded to either the edge server or the remote cloud server in order to maximize
the benefit of offloading.

The MAPCloud illustration is presented in Figure 2.4. An application was con-
sidered as a simple task-chain with a set of serial tasks. The benefit of offload-
ing depended on where the tasks were executed and the offloading problem was
formulated as an optimization problem. Since formulated problem is NP-hard, a
heuristic algorithm was proposed to solve this problem.

Figure 2.4. MAPCloud illustration (adapted from [21]).

The main contribution can be summarized as follows.

• The advantages of computation offloading in three-tier cloud computing was
shown in these works. Comparing to the public cloud, three-tier cloud com-
puting decreases energy consumption and execution delay. Comparing to
the local cloud, they showed that three-tier cloud computing increases the
scalability.

These works provided a new consideration of the joint utilization of the edge
server and the remote cloud server in mobile cloud computing, which has become
a hot issue in current studies on computation offloading [24]. In chapter 4, we
study the problem of how to efficiently offload applications from mobile devices
to either the edge server or the cloud server.

18

Public cloud
ogle (Scalable and elastic)

2.2 Various Offloading Strategies

Various offloading strategies for the computation offloading problem were pro-
posed in previous works. These works are classified depending on the offloading
granularity and summarized as follows.

2.2.1 Previous Application Level Offloading Strategies

Authors in [25–35] focused on the application level offloading problem. These
studies can be mainly divided into two categories: one analysed the mobile cloud
computing system from the viewpoint of game theory as [25–31] and the other
one analysed the system from the viewpoint of queuing theory as [32–36]. The
former formulated the offloading problem as a competitive game and found the
Nash equilibrium in their formulated problem. Each mobile device was treated as
a competitor that considered only its gain.Thus, fairness between users was fully
considered in this kind of studies. However, the total gain of all of the mobile de-
vices may not be appropriate when the Nash equilibrium is achieved. Moreover,
they considered that all of the applications were arrived in the same time, which is
almost impossible in a real system. To deal with the offloading problem in which
an application can be executed at any time, the latter treated application executions
and data transmissions as queues and analysed the offloading problem based on
queuing theory. Offline determination approaches in their works that can adapt to
the online scenario. However, authors in [32, 33] did not consider the limitation of
the communication channels, and authors in [34] did not consider the limitation
of the server. Authors in [35] considered the limitations of both of the communi-
cation channels and the server but offloaded all applications from mobile devices
to servers, which may cause low scalability of their approach. Authors in [36] at-
tempted to minimize the sum of computation and communication cost where the
computation on a mobile device can be vertically offloaded to other mobile devices
and horizontally offloaded to edge servers and cloud servers. However, they con-
sidered that there an unique communication channel between a mobile device and
an edge server, which may cause low utilization of total communication resource.

Thus, in this thesis, we consider the application level offloading problem from
the viewpoint of queuing theory in which each application can be freely offloaded
from a mobile device to a server and propose an offline offloading determina-
tion approach to find the optimal offloading strategy in chapter 4. Different with
[32–35], we account for all of the resource limitations on the mobile devices, the
communications channels and the edge server. Additionally, different with [36],
we consider that the communication resource can be shared by multiple mobile
devices.

19

2.2.2 Previous Task Level Offloading Strategies

Authors in [37–49] considered the task level offloading problem, in which each
application is segmented into a number of dependent or independent tasks. Au-
thors in [37–45] considered the offloading problem in a single-user mobile cloud
computing system. Authors in [37–40] focused on reducing the application re-
sponse time. Authors in [41] tried to jointly reduce both the energy consumption
and application response time. Authors in [42–45] attempted to reduce the energy
consumption of an application. Authors in [37] attempted to find the optimal of-
floading strategy before executing each application on a mobile device. Authors
in [38] proposed a heuristic offloading algorithm for applications with serial tasks
to reduce the application response time. Authors in [39] considered that an appli-
cation consists of purely parallel or purely serial tasks and proposed a heuristic
offloading algorithm to balance the load between the mobile and the server. Au-
thors in [40, 42] considered both parallel and serial tasks in the same application
and attempted to find an offloading strategy for reducing either the application
response time or the energy consumption. The parallel tasks were considered to
be processed serially in their works. Authors in [41,43] considered multiple server
sites for offloading the computation from mobile devices. Authors in [46–49] con-
sidered the offloading problem in a multi-user mobile cloud computing system.
Authors in [46, 47] segmented an application into a set of independent tasks and
tried to reduce the application response time in which the limitations of the shared
channel and the server were considered. Authors in [48, 49] focused on the serial
tasks offloading problem and aimed at reducing the application response time.
The former considered the limitation of the server and the latter considered the
limitations of both of the shared channel and the server.

All of above studies made their contribution for task level offloading problem
from various aspects. However, non of them focused on the general application,
i.e., consisting of parallel and serial tasks, task level offloading problem in an on-
line scenarios while jointly considered the limitations of both the shared channel
and the server. Thus, we study it in chapter 3 and aim at finding an offloading
strategy to reduce the application response time.

20

Chapter 3

Task Level Online Offloading
Strategy

In this chapter, we study the task level offloading problem in online scenarios
while jointly considering the limitations of the resources of the shared channel
and the server, and propose a task level online offloading strategy to minimize the
average response time of applications. In this chapter, we firstly show the system
model and formulate the offline offloading problem as a MILP problem. Then, we
extend the offline problem to an online problem and formulate the problem for the
case in which the execution times of applications are not known in advance. Fur-
thermore, we propose a set of algorithms to solve the online offloading problem.
After that, the results of simulation experiments are shown for examining our pro-
posed algorithms. At last, we present the conclusions of our study on task level
offloading problem. The findings in this chapter has been published in [50–52].

3.1 System Model

3.1.1 Edge Computing System

In this study, we consider the edge computing system shown in Figure 3.1. A set
of mobile devices, denoted by N = {1, 2, ..., N}, are connected to an edge server
that is deployed in the access network near the mobile devices and serves as a
small-scale cloud server for the mobile devices. The mobile devices are connected
to an AP via a shared wireless communication channel and the AP is connected
to the edge server via a high-speed link. Because the edge server is near by the
AP, the transmission delay between the AP and the edge server can be neglected.
We assume that there is only one application at most that is executed on a mobile
device at a time. Some current mobile devices are equipped with muticore CPUs,

21

such as the Qualcomm Snapdragon 835 (8-core CPU) [53] and the MediaTek Helio
X20 (10-core CPU) [54]. Thus, in this study, we assume that each mobile device has
sufficient CPU cores to execute an application, meaning that no task needs to wait
for execution once all of its input data are ready. To clearly describe the system, we
denote the core of a mobile device that can process multiple tasks simultaneously
as the core 0, and its processing rate is denoted by f0. We assume that the server
has a set of homogeneous CPU cores denoted by {1, 2, ..., L}, and their processing
rates are denoted by { f1, f2, ..., fL}. Furthermore, all the cores of the mobile devices
and server are denoted as L = {0, 1, 2, ..., L}.

Figure 3.1. Edge computing system.

The network model considered in this study is shown in Figure 3.2. In this
model, a set of mobile devices are connected to the edge server via a shared com-
munication channel. Because of the shared channel, mobile devices may compete
with each other for data transmission if they transmit data simultaneously. We as-
sume that an ongoing data transmission cannot be interrupted by any other trans-
mission, and we denote the transmission rate as s.

Figure 3.2. Network model.

22

Shared channel

Edge network

Shared channel Edge server

Mobile devices

3.1.2 Mobile Application

The general application executed at mobile device i ∈ N , denoted simply as ap-
plication i, or user i, mobile device i, constitutes a set of parallel and serial tasks,
denoted as Mi = {0, 1, 2, ..., Mi}, as shown in Figure 3.3, and the computation
workload of task j is denoted as Ci

j. If necessary, a task computation can be inter-
rupted. Only the tasks 0 and Mi of application i are un-offloadable, which means
that the other tasks can be offloaded to the edge server for remote computing. We
represent the relationship between tasks by a directed task flow graph as Figure
3.3. The directed arcs between nodes, denoted by E i, indicate data flows between
tasks, and the directed arc from task j to task k, denoted by ei

j,k ∈ E
i, indicates that

the output data of task j is sent to task k. The quantity of data transmitted from
task j to k of application i is denoted as di

j,k, and the transmission delay of this data

over the shared channel is di
j,k/s. However, if the two connected tasks j and k of

the application i are calculated on the same side, i.e., at either the mobile device
or the edge server, we assume that the delay of the data transmission from j to k
can be ignored. We assume that the outputs of a task to its subsequent tasks are
generated simultaneously and that these tasks, such as task 1 and task 2 shown in
Figure 3.3, can be processed in parallel if there are enough CPU cores at the server.
We also assume that a task can be computed only if all of the input data from its
previous tasks have been received. For example, task 4 can only be computed after
the output data from tasks 1 and 2 are received.

Figure 3.3. Application model.

We also assume that a task computation can be interrupted and that the core
computing the task at the edge server can be switched to another if necessary. For
example, as shown in Figure 3.4, the computation of a task can be divided into two
segments that are processed by two different cores.

In this study, we focus on how to offload the tasks of mobile applications such
that the average response of applications is minimized. The response time of an
application is the time elapsed from the instant when the application is executed on
a mobile device to the instant when the mobile device receives the execution result
of the application. Information of an application, such as the relationship between

23

:~✓M'-2 . output data
M'

...
M' -1

.•·

Figure 3.4. Task computation at the edge server.

tasks, the size of data transmitted between tasks and the computation workload of
each task, can be obtained by the mobile device and sent to the server. The code of
each application is pre-installed at both of the mobile device and the edge server.
The server also has the knowledges of the transmission rate of the shared channel
and the processing rates of the cores on the mobile devices and the server. Thus, the
server can decide which tasks should be offloaded and send the offloading strategy
back to the mobile device. This offloading strategy includes the offloading decision
of each task, the task computing schedule and the data transmission schedule.
Then, the mobile device can execute the application under the decided offloading
strategy. Since the data size of the relevant information of an application and its
offloading strategy is negligible compared with the size of data sent between tasks,
we only consider the delays of data transmissions between tasks in this study.

3.2 Offline Offloading Problem

In offline offloading problem, the information of all application is sent to the server
in advance and the offloading strategy is decided before the start of application
executions.

A set of variables {xi,0
j , xi,1

j , ..., xi,L
j } are used to represent the proportions that

how much of task j of application i is computed, i.e., xi,l
j (l ∈ L) denotes the pro-

portion of task j of application i is processed by core l. Since the mobile device has
enough CPU cores as described above, a task is computed either the whole task or
none of the task on the mobile device, i.e., xi,0

j ∈ {0, 1}. Inversely, for the server

shared by multiple users, we have xi,l
j ∈ [0, 1](l ∈ L \ {0}). We assume that for

a task, the processing cannot be split between the mobile device and the server.
The beginning and the ending times of the processing of the partial workload of

24

/i different part of a task

• I 1
Core 1: :

:, 1.................
Core 2 j I I :

time slice 1 interrupt I time slice 2 I time

task j of application i processed by core l are denoted as τi,l
j and Ti,l

j , respectively.

The beginning and ending times of task j of application i is denoted as τi
j and Ti

j ,

respectively, where τi
j = min{τi,l

j }(l ∈ L) and Ti
j = max{Ti,l

j }(l ∈ L). For example
in Figure 3.4, task j of application i is divided into two segments that are separately
processed by cores 1 and 2 of the server, and we have τi,1

j = t1, Ti,1
j = t2, τi,2

j = t3,

Ti,2
j = t4, τi

j = t1, and Ti
j = t4. An integer variable yi

j,k is used to represent the

whether two tasks j and k of application i are executed on the same side. yi
j,k = 0 if

tasks j and k are executed on the same side, i.e., either on the mobile device or the
server, and yi

j,k = 1 otherwise. ωi
j,k and W i

j,k represent the beginning and ending
times of the data transmission from task j to k, respectively. The beginning time of
the execution of application i is denoted as δi. The notation used in this study is
summarized in Table 3.1, 3.2 and 3.3.

Table 3.1. Parameters used in task level offloading problem.

Symbol Meaning
N set of all applications in the system
L set of cores, L = {0, 1, ..., L}
Mi set of tasks of application i
Mi number of tasks of application i, Mi =

∣∣Mi
∣∣

E i set of directed links connecting two tasks of application i
ei

j,k link from task k to task j in the task flow graph of application i
Ci

j workload of task j of application i
di

j,k data size of the transmission from task j to task k of application i
fl processing rate of core l
s channel transmission rate
I a positive integer constant that is larger than any value we consider

for a variable in this study
δi beginning time of the execution of application i

Then, the task level offline offloading problem can be formulated as the follow-
ing optimization problem.

min T =
1
N ∑

i∈N

(
Ti,0

Mi − τi,0
0
)
, (3.1)

subject to

∑
l∈L

xi,l
j = 1, j ∈ Mi, i ∈ M, (3.2)

25

Table 3.2. Decision variables used in task level offloading problem.

Symbol Meaning
xi,l

j representing the proportion of the workload of task j of application
i that is processed by core l, xi,0

j ∈ {0, 1}, xi,l
j (l > 0) ∈ [0, 1]

τi,l
j representing the beginning time of the processing of a segment of

task j of application i on core l
ωi

j,k representing the beginning time of data transmission from task j to
task k of application i

Table 3.3. Intermediate variables used in task level offloading problem.

Symbol Meaning
τi

j beginning time of the computation of task j of application i, τi
j =

min{τi,l
j }(l ∈ L)

Ti
j ending time of the computation of task j of application i, Ti

j =

max{Ti,l
j }(l ∈ L)

Ti,l
j ending time of the processing of a segment of task j of application i

on core l
W i

j,k ending time of data transmission from task j to task k of application
i

yi
j,k a binary integer variable indicating whether two consecutive tasks

j and k of application i are executed on different sides, i.e., either on
the mobile device or on the server

zi,l
j a binary integer variable indicating whether a segment of task j of

application i is processed by core l
αi,l,l′

j a binary integer variable indicating whether the processing of a seg-
ment of task j of application i on core l precedes the processing of
another segment of this task on core l′

βi,i′,l
j,j′ a binary integer variable indicating whether the processing of a seg-

ment of task j of application i on core l precedes the processing of a
segment of another task, i.e., task j′ of application i′, on core l

γi,i′
j,k,j′,k′ a binary integer variable indicating whether the data transmission

from task j to task k of application i precedes another data transmis-
sion from task j′ to task k′ of application i′

Ti,l
j − τi,l

j = xi,l
j Ci

j/ fl, j ∈ Mi, i ∈ N , l ∈ L, (3.3)

26

∣∣∣Ti,l
j − Ti,l′

j

∣∣∣+ ∣∣∣τi,l
j − τi,l′

j

∣∣∣ ≥ xi,l
j Ci

j/ fl + xi,l′
j Ci

j/ fl′ ,

j ∈ Mi, i ∈ N , l, l′ ∈ L, l 6= l′, (3.4)∣∣∣Ti,l
j − Ti′,l

j′

∣∣∣+ ∣∣∣τi,l
j − τi′,l

j′

∣∣∣ ≥ xi,l
j Ci

j/ fl + xi′,l
j′ Ci′

j′/ fl,

j ∈ Mi, j′ ∈ Mi′ , i, i′ ∈ N , (i, j) 6= (i′, j′), l ∈ L \ {0}, (3.5)

yi
j,k =

∣∣∣xi,0
j − xi,0

k

∣∣∣ , j, k ∈ Mi, ei
j,k ∈ E

i, i ∈ N , (3.6)

W i
j,k −ωi

j,k = yi
j,kdi

j,k/s, j, k ∈ Mi, ei
j,k ∈ E

i, i ∈ N , (3.7)∣∣∣W i
j,k −W i′

j′,k′

∣∣∣+ ∣∣∣ωi
j,k −ωi′

j′,k′

∣∣∣ ≥ yi
j,kdi

j,k/s + yi′
j′,k′d

i′
j′,k′/s, j, k ∈ Mi,

j′, k′ ∈ Mi′ , ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ , i, i′ ∈ N , (i, j, k) 6= (i′, j′, k′), (3.8)

ωi
j,k ≥ Ti,l

j , j, k ∈ Mi, ei
j,k ∈ E

i, i ∈ N , l ∈ L, (3.9)

τi,l
k ≥W i

j,k, j, k ∈ Mi, ei
j,k ∈ E

i, i ∈ N , l ∈ L, (3.10)

xi,0
0 = 1, xi,0

Mi = 1, τi,0
0 = δi, i ∈ N . (3.11)

Constraint (3.2) holds that a task can be computed on either a mobile device or
the server. If task j of application i is decided to be computed on mobile device i,
xi,0

j = 1. Otherwise, if task j of application i is decided to be offloaded to the server,

xi,0
j = 0 and ∑l∈L\{0} xi,l

j = 1. Constraint (3.3) shows the relationship between
the beginning and the ending times of the processing of a segment of task j of
application on core l, where xi,l

j Ci
j/ fl is the processing time on core l. Constraint

(3.4) states that task j of application i can be sequentially processed on various
cores if necessary, i.e., different segments of the task must be processed in different
time slices. Constraint (3.5) holds that a core on the server can process only one
task at most at a time. Constraint (3.6) shows that yi

j,k is determined by xi,0
j and

xi,0
k . Constraint (3.7) shows the relationship between the beginning and the ending

times of the data transmission from task j to task k of application i where di
j,k/s is

the time consumption for data transmission from task j to task k of application i
via the shared channel. Constraint (3.8) guarantees that no transmission collision
occurs over the shared channel. Constraint (3.9) indicates that the data from task
j to its subsequent task k should be transmitted only after the computation of task
j is complete. Similarly, Constraint (3.10) indicates that the processing of task k
should be after than all input data from its preceding tasks j(ei

j,k ∈ E
i) have been

received. Constraint (3.11) shows that the first and the last tasks of an application
are un-offloadedable and the execution beginning time of application i is δi.

Since problem (1) is a mixed-integer nonlinear programming (MINLP) prob-

27

lem, we rewrite problem (3.1) as a MILP problem as follows.

min T =
1
N ∑

i∈N

(
Ti,0

Mi − τi,0
0
)
, (3.12)

subject to
(3.2),(3.3),(3.7),(3.9)–(3.11),

αi,l,l′
j ≥ (τi,l′

j − τi,l
j)/I, j ∈ Mi, i ∈ N , l, l′ ∈ L, l 6= l′, (3.13)

1− αi,l,l′
j ≥ (τi,l

j − τi,l′
j)/I, j ∈ Mi, i ∈ N , l, l′ ∈ L, l 6= l′, (3.14)

αi,l′,l
j + αi,l,l′

j = 1, j ∈ Mi, i ∈ N , l, l′ ∈ L, l 6= l′, (3.15)

zi,l
j ≥ xi,l

j , j ∈ Mi, i ∈ N , l ∈ L, (3.16)

τi,l′
j ≥ Ti,l

j − I(3− αi,l,l′
j − zi,l′

j − zi,l
j),

j ∈ Mi, i ∈ N , l, l′ ∈ L, l 6= l′, (3.17)

βi,i′,l
j,j′ ≥ (τi′,l

j′ − τi,l
j)/I,

j ∈ Mi, j′ ∈ Mi′ , i, i′ ∈ N , (i, j) 6= (i′, j′), l ∈ L \ {0}, (3.18)

1− βi,i′,l
j,j′ ≥ (τi,l

j − τi′,l
j′)/I,

j ∈ Mi, j′ ∈ Mi′ , i, i′ ∈ N , (i, j) 6= (i′, j′), l ∈ L \ {0}, (3.19)

1 = βi,i′,l
j,j′ + βi′,i,l

j′,j ,

j ∈ Mi, j′ ∈ Mi′ , i, i′ ∈ N , (i, j) 6= (i′, j′), l ∈ L \ {0}, (3.20)

τi′,l
j′ ≥ Ti,l

j − I(3− βi,i′,l
j,j′ − zi′,l

j′ − zi,l
j),

j ∈ Mi, j′ ∈ Mi′ , i, i′ ∈ N , (i, j) 6= (i′, j′), l ∈ L \ {0}, (3.21)

yi
j,k ≥ xi,0

j − xi,0
k , j, k ∈ Mi, ei

j,k ∈ E
i, i ∈ N , (3.22)

yi
j,k ≥ xi,0

k − xi,0
j , j, k ∈ Mi, ei

j,k ∈ E
i, i ∈ N , (3.23)

yi
j,k ≤ xi,0

j + xi,0
k , j, k ∈ Mi, ei

j,k ∈ E
i, i ∈ N , (3.24)

yi
j,k ≤ 2− xi,0

j − xi,0
k , j, k ∈ Mi, ei

j,k ∈ E
i, i ∈ N , (3.25)

γi,i′
j,k,j′,k′ ≥ (ωi′

j′,k′ −ωi
j,k)/I, j, k ∈ Mi, j′, k′ ∈ Mi′ ,

ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ , i, i′ ∈ N , (i, j, k) 6= (i′, j′, k′), (3.26)

1− γi,i′
j,k,j′,k′ ≥ (ωi

j,k −ωi′
j′,k′)/I, j, k ∈ Mi, j′, k′ ∈ Mi′ ,

ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ , i, i′ ∈ N , (i, j, k) 6= (i′, j′, k′), (3.27)

28

-

1 = γi,i′
j,k,j′,k′ + γi′,i

j′,k′,j,k, j, k ∈ Mi, j′, k′ ∈ Mi′ ,

ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ , i, i′ ∈ N , (i, j, k) 6= (i′, j′, k′), (3.28)

ωi′
j′,k′ ≥W i

j,k − I(3− γi,i′
j,k,j′,k′ − yi′

j′,k′ − yi
j,k), j, k ∈ Mi, j′, k′ ∈ Mi′ ,

ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ , i, i′ ∈ N , (i, j, k) 6= (i′, j′, k′). (3.29)

Proposition 1 Problem (3.1) and problem (3.12) are equivalent.

Proof Note that constraints (3.4), (3.5), (3.6) and (3.8) are nonlinear; we rewrite these
constraints as linear constraints to formulate problem (3.1) as a linear optimization prob-
lem as (3.12).

For this purpose, we introduce three new binary integer variables, zi,l
j , αi,l,l′

j and βi,i′,l
j,j′

to help us rewrite constraints (3.4) and (3.5). zi,l
j represents whether a segment of task j of

application i is processed by core l: zi,l
j is 1 if a segment of task j is processed by core l, and

is 0 otherwise. αi,l,l′
j represents the processing order of two segments of task j of application

i: αi,l,l′
j is 1 if τi,l

j ≤ τi,l′
j and is 0 otherwise. βi,i′,l

j,j′ represents the processing order of the

segments of two different tasks, task j of application i and task j′ of application i′: βi,i′,l
j,j′ is

1 if τi,l
j ≤ τi′,l

j′ and 0 otherwise. Additionally, we also introduce a positive constant I that
is greater than any other variable used in this study.

Then, we can rewrite constraint (3.4) as constraints (3.13)–(3.17). Constraints (3.13)
and (3.14) indicate that αi,l,l′

j must be 1 if τi,l
j ≤ τi,l′

j and 0 if τi,l
j ≥ τi,l′

j . Constraint (3.15)

holds that two computations should have a sequential order, i.e., αi,l,l′
j 6= αi,l′,l

j . Constraint

(3.16) indicates that zi,l
j = 1 if a segment of task j of application i is processed by core l,

i.e., xi,l
j > 0. Constraint (3.17) indicates that if two segments of task j of application i are

processed at cores l and l′, i.e., zi,l
j = zi,l′

j = 1, and the computation of the segment of this

task at core l is earlier than the processing at core l′, i.e., αi,l,l′
j = 1, then the beginning

time of processing at core l′ must be later than the ending time of processing at core l, i.e.,
τi,l′

j ≥ Ti,l
j . Constraints (3.13)–(3.15) and (3.17) guarantee that when problem (3.12) is

minimized, zi,l
j = 0 if xi,l

j = 0.
We can rewrite constraint (3.5) similarly to constraint (3.4) as constraints (3.18)–

(3.21). Note that constraints (3.18)–(3.21) do not hold for a mobile device since it has
enough CPU cores.

Constraint (3.6) can be rewritten as constraints (3.22)–(3.25). These constraints en-
sure that yi

j,k is 0 if xi,0
j = xi,0

k and is 1 otherwise.

29

For rewriting constraint (3.8), we need to introduce another new binary integer vari-
able γi,i′

j,k,j′,k′ , which indicates whether the data transmission from tasks j to k of application

i is faster than another data transmission from task j′ to k′ of application i′. γi,i′
j,k,j′,k′ is 1 if

ωi
j,k ≤ ωi′

j′,k′ and is 0 otherwise. Following the idea of rewriting constraint (3.5), we can
linearly rewrite constraint (3.8) as constraints (3.26)–(3.29). �

Problem (3.12) can be solved using an optimization solver such as Gurobi Op-
timizer. However, on one hand, it is extremely hard to find the optimal solution
in a short time. On the other hand, in reality, the exact execution beginning time
and information of an application are difficult to obtain in advance, which makes
the problem even more challenging to solve. In next section, we will study how to
offload applications in an online scenario.

3.3 Online Offloading Problem

Generally, an application is executed repeatedly but without any exact information
about when it is executed and how much data it has to process. In this section, we
consider an online scenario in which each application can be executed at any time
at a mobile device. After the start of execution of an application, the mobile device
firstly sends the information about the application to the edge server to obtain
the offloading strategy. The server then determines the offloading strategy for the
application depending on its current workload state and sends the strategy back to
the mobile device. At last, the mobile device can execute the application following
the determined offloading strategy. The notations used in this section is shown in
Table 3.4.

Table 3.4. Notations used in online offloading problem.

Symbol Meaning
N ′ set of applications including those currently under execution and

the current newly executed application
N′ current newly executed application
S i offloading strategy for application i
η degree of system congestion

H congestion threshold of system
C occupation of cores at the server

In the online scenario, when an application is newly executed, we attempt to
minimize the response time for the application while simultaneously avoiding the

30

disturbance of the tasks under processing. Therefore, we record the offloading
strategy of the applications under execution as equations (3.30) and (3.31). The
newly executed application is denoted as N′, the under execution applications are
denoted by {1, 2, ..., N′ − 1} and the set of these applications is denoted as N ′ =
{1, 2, ..., N′}. InN ′, the applications are ordered by their execution beginning time.

x′i,lj = xi,l
j , τ′i,lj = τi,l

j , T′i,lj = Ti,l
j , j ∈ Mi, i < N′, l ∈ L, (3.30)

y′ij,k = yi
j,k, ω′ij,k = ωi

j,k, W ′ij,k = W i
j,k, ei

j,k ∈ E
i, j, k ∈ Mi, i < N′. (3.31)

The offloading strategies of the applications under execution are treated as con-
straints for the online offloading problem to minimize the response time of appli-
cation N′. Then, the online offloading problem can be formulated as problem (3.32)
for each newly executed application N′ by extending problem (3.12) as follows.

min
1

N′ ∑
i∈N ′

(
Ti,0

Mi − τi,0
0
)
, (3.32)

subject to
(3.2),(3.3),(3.7),(3.9)–(3.11),(3.13)–(3.29),

xi,l
j = x′i,lj , τi,l

j = τ′i,lj , Ti,l
j = T′i,lj ,

j ∈ Mi, i < N′, l ∈ L, τi,l
j < δN′ , (3.33)

yi
j,k = y′ij,k, ωi

j,k = ω′ij,k, W i
j,k = W ′ij,k,

ei
j,k ∈ E

i, j, k ∈ Mi, i < N′, ωi
j,k < δN′ . (3.34)

Correspondingly,N ′ is used to replaceN in constraints (3.2),(3.3),(3.7), (3.9)–(3.11)
and (3.13)–(3.29).

Now, the online offloading problem can be solved by solving problem (3.32).
Unfortunately, it is still extremely hard to solve problem (3.32) in a short time.
Hence, we propose an offloading strategy determination approach that solves the
online offloading problem more efficiently. The overview of the determination ap-
proach is shown in Figure 3.5. We firstly find an initial offloading strategy without
the considering of the limitation of the CPU cores on the server. Then, we adjust
the initial offloading strategy while considering the limitation of the CPU cores
to obtain the an offloading strategy. In order to obtain an initial offloading strat-
egy, we propose two determination approach: one is based on the optimization
technique (Opt. approach), and the other one is a heuristic approach.

31

--

Figure 3.5. An overview of the determination approach for online offloading prob-
lem.

3.3.1 Optimization Technique based Approach to Obtain an Ini-
tial Offloading Strategy

Since the limitation of CPU cores on the server is not considered in initial offload-
ing strategy obtainment, constraints (3.2), (3.13)–(3.21) and (3.33) can be removed.
Additionally, all of offloading decisions of tasks xi,l

j are replaced by xi
j, where

xi
j = xi,0

j , and τi,l
j and Ti,l

j can be simplified as τi
j and Ti

j , respectively. Further-

more, constraint (3.3) is replaced by Ti
j − τi

j = xi
jC

i
j/ f0 + (1− xi

j)C
i
j/ f1, j ∈ MN′ ,

where f1 denotes the processing rate of the server. To accelerate the convergence
when solving problem, we focus only on the minimization of the response time
of application N′ and avoid the disturbance of the applications under execution at
that time. Then, the problem is transformed into problem (3.35).

min T = TN′
Mi − τN′

0 , (3.35)

subject to

TN′
j − τN′

j = xN′
j CN′

j / f0 + (1− xN′
j)CN′

j / f1, j ∈ MN′ , (3.36)

32

an application is newly executed

solve the offloading problem without the consideration of

limitation of server

obtain the initial offloading strategy

solve the offloading problem with the consideration of

limitation of server

obtain the final offloading strategy

yN′
j,k =

∣∣∣xN′
j − xN′

k

∣∣∣ , j, k ∈ MN′ , eN′
j,k ∈ E

N′ , (3.37)

WN′
j,k −ωN′

j,k = yN′
j,k dN′

j,k /s, j, k ∈ MN′ , ei
j,k ∈ E

N′ , (3.38)∣∣∣W i
j,k −W i′

j′,k′

∣∣∣+ ∣∣∣ωi
j,k −ωi′

j′,k′

∣∣∣ ≥ yi
j,kdi

j,k/s + yi′
j′,k′d

i′
j′,k′/s,

j, k ∈ Mi, j′, k′ ∈ Mi′ , ei
j,k ∈ E

i, ei′
j′,k′ ∈ E

i′ ,

N′ ∈ {i, i′} ∈ N ′, (i, j, k) 6= (i′, j′, k′), (3.39)

ωN′
j,k ≥ TN′

j , j, k ∈ MN′ , eN′
j,k ∈ E

N′ , (3.40)

τN′
k ≥WN′

j,k , j, k ∈ MN′ , eN′
j,k ∈ E

N′ , (3.41)

yi
j,k = y′ij,k, ωi

j,k = ω′ij,k, W i
j,k = W ′ij,k, ei

j,k ∈ E
i, j, k ∈ Mi, i < N′, (3.42)

xN′
0 = xN′

MN′ = 1, τN′
0 = δN′ . (3.43)

Constraint (3.39) can be linear rewritten similarly as Proposition 1 and problem
(3.35) can be solved using an optimization solver. However, the solving time of
problem (3.35) may be long when the system is congested. Thus, we also propose
a heuristic approach to obtain an initial offloading strategy.

3.3.2 Heuristic Approach to Obtain an Initial Offloading Strategy

Our proposed heuristic approach consists of three sub-algorithms: a single-user
chain-application (SUCA) offloading algorithm that determines the optimal of-
floading tasks for an application with a simple task chain, a single-user general-
application (SUGA) offloading algorithm that considers only one application in
the system and makes the optimal offloading decision for each task on the task
flow graph shown in Figure 3.3, and a multi-user general-application (MUGA) of-
floading algorithm that considers multiple applications and an application may
compete with another application for data transmission via the shared communi-
cation channel.

In SUCA offloading problem, we consider a simple scenario here where there
is only one application in the system and the application consists of a simple task
chain as shown in Figure 3.6. For the sake of simplicity, we omit i from the su-
perscripts of the variables. That is, xi

j, Ci
j,d

i
j,k, ei

j,k and Mi are simply denoted by
xj, dj,k, ej,k,M. The SUCA offloading problem satisfies the constraints (3.3), (3.6),
(3.7),(3.9)–(3.11).

We see from [55,56] that a chain application can be offloaded at most only once.
Furthermore, we can show that the beginning and the ending offloaded tasks of an
chain application satisfy the following theorem.

33

Figure 3.6. A chain application.

Theorem 1 For a mobile application with a simple task chain from 0 to M, suppose that
there exists an optimal offloading decision, with the beginning and ending tasks j∗ and
k∗, respectively, for offloading and that the offloading decision yields the shortest response
time. Then, the optimal beginning task j∗ remains unchanged no matter the ending task
is k∗ or M − 1. Similarly, the optimal ending task k∗ remains unchanged no matter the
beginning task is j∗ or 1.

Proof We firstly prove that by offloading tasks beginning from task j∗ to M− 1 yields a
shorter response time than that beginning from any other task j. If j ≤ k∗, we have the
following inequality because tasks j∗ and k∗ are the optimal beginning and ending tasks.

j−1

∑
l=0

Cl/ f0 +
k∗

∑
l=j

Cj/ f1 +
M

∑
l=k∗+1

Cl/ f0 +
dj−1,j

s
+

dk∗,k∗+1

s

>
j∗−1

∑
l=0

Cl/ f0 +
k∗

∑
l=j∗

Cl/ f1 +
M

∑
l=k∗+1

Cl/ f0 +
dj∗−1,j∗

s
+

dk∗,k∗+1

s
. (3.44)

That is,

j−1

∑
l=0

Cl/ f0 +
k∗

∑
l=j

Cl/ f1 +
dj−1,j

s
>

j∗−1

∑
l=0

Cl/ f0 +
k∗

∑
l=j∗

Cl/ f1 +
dj∗−1,j∗

s
. (3.45)

Then, by adding
M−1

∑
l=k∗+1

Cl/ f1 + CM/ f0 +
dM−1,M

s
to the two sides of inequality (3.45),

we have
j−1

∑
l=0

Cl/ f0 +
M−1

∑
l=j

Cl/ f1 + CM/ f0 +
dj−1,j

s
+

dM−1,M

s

>
j∗−1

∑
l=0

Cl/ f0 +
M−1

∑
l=j∗

Cl/ f1 + CM/ f0 +
dj∗−1,j∗

s
+

dM−1,M

s
. (3.46)

34

;,,
I Offload to server

·· ··· ··· '·· ······· ·· ··· ·· .•··

&·········~···········--Glr&·········--G
············ ············ ······· ·· ········· ······· ··· •'·

From (3.46), we see that the application response time by offloading tasks from task j∗ to
M− 1 is shorter than that by offloading tasks from any task j (j ≤ k∗) to M− 1.

On the other hand, we see from the assumption of Theorem 1 that offloading tasks from
j∗ to k∗ results in a shorter response time than the case without offloading those tasks. That
is, we have the following inequality.

k∗

∑
l=j∗

Cl/ f0 >
k∗

∑
l=j∗

Cl/ f1 +
dj∗−1,j∗

s
+

dk∗,k∗+1

s
.

Therefore, if j > k∗, we have

j−1

∑
l=0

Cl/ f0 +
M−1

∑
l=j

Cl/ f1 + CM/ f0 +
dj−1,j

s
+

dM−1,M

s

>
j∗−1

∑
l=0

Cl/ f0 +
k∗

∑
l=j∗

Cl/ f1 +
dj∗−1,j∗

s
+

dk∗,k∗+1

s

+
j−1

∑
l=k∗+1

Cl/ f0 +
M−1

∑
l=j

Cl/ f1 + CM/ f0 +
dj−1,j

s
+

dM−1,M

s

>
j∗−1

∑
l=0

ml +
M−1

∑
l=j∗

cl + mM +
dj∗−1,j∗

s
+

dM−1,M

s
. (3.47)

Again, we see from (3.47) that the application response time by offloading tasks from task
j∗ to M − 1 is shorter than that by offloading tasks from any task j (j > k∗) to M − 1.
Therefore, we can conclude that the optimal beginning task j∗ remains unchanged even if
the ending task k∗ is moved to M− 1.

Similarly, we can prove that the application response time by offloading tasks from task
1 to k∗ is shorter than that by offloading tasks from task 1 to any other task k. Therefore,
we can conclude that the optimal ending task k∗ remains unchanged even if the beginning
task j∗ is moved to task 1. �

According to Theorem 1, we can find the optimal beginning and ending of-
floaded tasks respectively by scanning the task chain at most twice. The follow-
ing single-user chain-application (SUCA) algorithm leads to the optimal begin-
ning and ending offloaded tasks for an application with a task chain from 0 to M.
In some cases, because there might be some tasks must be offloaded, we add two
variables J0 and K0 that the tasks from J0 to K0 must be offloaded. The input param-
eters of SUCA include Cj (j ∈ M), dj,j+1 (j ∈ M\ {M}), f0, f1, s, J0, and K0. Here,
the beginning and the ending offloaded tasks are chosen from the ranges of [1, J0]

35

and [K0, M − 1], respectively. If there is no tasks must be offloaded, J0 = M − 1
and K0 = 1. The computation complexity of the SUCA algorithm is bounded by

O
(

M
)

, where M is the number of tasks in the application.

Algorithm 1 Single-user chain-application (SUCA) offloading algorithm.

Input: : Cj (j ∈ M), E , dj,j+1 (j ∈ M\ {M}), f0, f1, s
1: calculate the response time of the application, Tmax, without offloading any

task, i.e., Tmax =
M−1

∑
j=1

mj

2: calculate the response time with offloading tasks from j (j ∈ [1, M − 1]) to
M− 1 and determine task j∗ that yields the shortest response time

3: calculate the response time with offloading tasks from 1 to k (k ∈ [1, M − 1])
and determine task k∗ that yields the shortest response time

4: calculate the response time Tj∗,k∗ with the beginning and ending offloaded
tasks j∗ to k∗

5: if Tj∗,k∗ ≥ Tmax then
6: return null
7: else
8: return j∗, k∗

9: end if

After the SUCA offloading problem, we consider the case of only one appli-
cation whose tasks can be processed parallelly and/or sequentially as shown in
Figure 3.3 but the collision of data transmission is not taken into account (SUGA
problem). We also omit i here from the symbols used for the variables. Note that
the constraints (3.3), (3.6), (3.7) and (3.9)–(3.11) are also satisfied here.

The offloading strategy for SUGA are based on the following two considera-
tions.

1. In order to minimize the response time of an application we need to minimize
the path length from task 0 to M on the task flow graph. The length of a path
means the sum of the task execution times and the transmission delays along
the path from task 0 to M on the task flow graph.

2. Since a path from task 0 to M can be considered as a task chain, the tasks
on any path can be offloaded only once and the offloaded tasks should be
consecutive. Therefore, the tasks on any bypass of a path that goes out from
an offloaded task and back to another offloaded task on a path should also
be offloaded. To understand this idea better, let us see an example shown
in Figure 3.7 where the number shown above each node denotes the task

36

execution time. We see that the longest path passes through tasks 0, 1, 4, 8, 10.
To minimize the response time of this application, we need to offload some
tasks on the longest path to the server. Suppose that we determine to offload
tasks 1, 4, and 8 to the server and then we need to examine whether there is
any bypass of the longest path. We can find a bypass along the longest path
that goes out from task 1 to 8 through task 5 and therefore task 5 should also
be offloaded.

Figure 3.7. An example of a task flow graph.

The single-user general-application (SUGA) algorithm is described in Algo-
rithm 2 in details. In each iteration, we decide at least one task that should be of-
floaded, and therefore the computation complexity of SUGA is bounded by O

(
M3
)

,
where M is the number of tasks in the application.

Then, we consider the case of that there are multiple applications in the system,
and only one data transmissions can happen at any time instant (MUGA problem).
The MUGA offloading problem satisfies the constraints (3.3), (3.6)–(3.11). When
the application N′ is newly executed, the MUGA algorithm determines the offload-
ing strategy for application N′ and, if necessary, updates the offloading strategies
for other applications i (i < N′) that have been executed earlier than application
N′.

The MUGA algorithm consists of the following three phases.

1. Initial offloading decision of tasks in application N′.

We determine the initial offloading decisions of tasks in application N′ using
Algorithm 2 and calculate the offloading strategy of application N′ as SN′

without considering the collision over the shared channel.

2. Elimination of interruption to existing application.

37

Algorithm 2 Single-user general-application (SUGA) offloading algorithm.

Input: : Cj (j ∈ M), E , dj,k (j, k ∈ M, ej,k ∈ E), f0, f1, s
1: let L = {M}, C = ∅ and xj = 1 (j ∈ M)
2: calculate the response time of the application as Tmax
3: repeat
4: find the current longest path p from task 0 to M
5: if xj = 0 such that task j is on path p then
6: set the first and the last offloaded tasks along p to be J0 and K0, respectively
7: else
8: set J0 = 0 and K0 = the previous task to M along p
9: end if

10: determine the beginning and ending tasks for offloading on path p by Algo-
rithm 1

11: set xj = 0 for each task on the bypass of path p from j∗ to k∗ and let C =
C ∪ j, L = L \ j

12: calculate the current response time as Tp
13: if Tp > Tmax then
14: Let xj = 1 (j ∈ M) and break
15: end if
16: for each bypass pij from an offloaded task i to j (i, j ∈ C) do
17: if task k on path pij and k ∈ L then
18: Let xk = 0 and C = C ∪ k, L = L \ k
19: end if
20: end for
21: until no new offloading task can be found
22: return x0, x1, · · · , xM

We consider the collision over the shared channel that a data transmission
of application N′ may collide with another transmission of existing appli-
cations i (i < N′). Therefore, we need to determine whether to postpone
the collided data transmissions of application N′ or change the offloading
decisions. If a data transmission of application N′ from task j to k with the
earliest data transmission time ωN′

j,k collides with another data transmission
of existing application i from task j′ to k′, we compare the response time
when offloading task k, denoted as T + W i

j′,k′ − ωN′
j,k where T is the response

time of application N′ without considering the collision of data transmission
from task j to task k, with that when not offloading task k, denoted as T′.
If T′ ≥ T + W i

j′,k′ − ωN′
j,k , the offloading decision will not be changed; other-

38

wise, task k will be processed locally and schedule S i will be updated. See an
example as shown in Figure 3.8(a) where all the tasks except task 0 of applica-
tion N′ are determined to be offloaded. Suppose that the data transmissions
from task 0 to tasks 1 and 2 collide with other existing applications, and that
the transmission from task 0 to 2 can be postponed but the transmission to
task 1 cannot. Then, task 1 will be changed to process locally but the offload-
ing decision of task 2 is not changed as Figure 3.8(b). Once we find a data
transmission can be postponed, adjustment will be terminated. We describe
the algorithm of offloading decision adjustment in Algorithm 3 in detail. The

computation complexity is bound by O
(

M3
)

where M is the number of tasks

of application N′.

(a) Initial offloading decision (b) Adjusted offloading decision

Figure 3.8. Elimination of interruption to application N′

3. Scheduling colliding transmissions.

The data transmissions of all the applications to and back from the edge
server are examined and scheduled based on a first-in-first-out (FIFO) basis.
Furthermore, the data transmission of under execution applications (N ′ \
{N′}) from mobile devices to the edge server should be unchanged. Ad-
ditionally, if a task needs to transmit data to more than one child task via
the shared channel, we need to determine to which child the data should be
transmitted first. For example, if task j of application i needs to send data to
two child tasks k and k′, we need to determine to which child the data should
be transmitted first. In our consideration, the longer one in two paths from
task j to Mi via tasks k and k′ respectively will be chosen to transmit data
first. The algorithm of colliding transmissions scheduling is described in Al-

gorithm 4 in detail. The computation complexity is bounded by O
(

M1
2M2

)
,

where M1 is the largest number of tasks of an application in N ′, and M2 is

39

2

~5

Algorithm 3 Offloading decision adjustment algorithm.

Input: : Ci
j (j ∈ MN′), EN′ , EN′ , di

j,k (j, k ∈ MN′ , ei
j,k ∈ E

N′), f0, f1, s,S i (i ∈ N ′)
1: while any xN′

l = 0 (l ∈ MN′) do
2: calculate the response time of application N′ as T
3: find the earliest beginning time of data transmission for application N′, de-

noted as ωN′
j,k .

4: find the last ending time for data transmission from task j′ to k′, W i
j′,k′ , for

application i (i < N′) such that τi
j,k ≤ ωN′

j,k < W i
j′,k′

5: if application i exists then
6: calculate the response time of application i, denoted by T′, with xN′

k = 1
7: if T′ ≥ T + W i

j′,k′ −ωN′
j,k then

8: break from while loop
9: else

10: xi
k = 1 and update S i

11: end if
12: else
13: break from while loop
14: end if
15: end while
16: return SN′

the number of data transmissions over the channel of the applications in N ′.

In summary, MUGA algorithm is shown in Algorithm 5.

3.3.3 Core Assignment

The initial offloading strategy is obtained by means of either the Opt. approach
or the MUGA algorithm without considering the limitation of CPU cores of the
server, as shown in Figure 3.9. We assume that the server monitors each execu-
tion of an application and records the time for each data transmission between two
tasks. The congestion degree η = t′/t is used to select the MUGA or Opt. approach
to determine the initial offloading strategy, where t denotes the estimated response
time of the new application N′ executed locally, and t′ denotes the estimated to-
tal transmission time during the time period of the execution of application N′ at
the mobile device. We set the congestion threshold as H, which is a constant pa-
rameter. Therefore, the MUGA algorithm is chosen if the system is congested, i.e.,
η > H, and the Opt. approach is selected otherwise.

40

Algorithm 4 Colliding transmissions scheduling algorithm.

Input: : EN′ ,S i (i ∈ N ′)
1: while ωi

j,k ≤ ωi′
j′,k′ < W i

j,k (i, i′ ∈ N ′, (i, j, k) 6= (i′, j′, k′)) and ωi′
j′,k′ 6= W i′

j′,k′ do

2: if xi
k = 1 and i < N′ then

3: set ωi′
j′,k′ = W i

j,k and update S i′

4: else if xi′
k′ = 1 and i′ < N′ then

5: set ωi
j,k = W i′

j′,k′ and update S i

6: else
7: if Ti

j < Ti′
j′ then

8: set ωi′
j′,k′ = W i

j,k and update S i′

9: else if Ti′
j′ < Ti

j then

10: set ωi
j,k = W i′

j′,k′ and update S i

11: else
12: calculate the response times of applications i and i′ from task j to Mi via

k (denoted by T) and from task j′ to Mi′ via k′ (denoted by T′)
13: if T < T′ then
14: set ωi′

j′,k′ = W i
j,k and update S i′

15: else
16: set ωi

j,k = W i′
j′,k′ and update S i

17: end if
18: end if
19: end if
20: end while
21: return S i (i ∈ N ′)

Algorithm 5 MUGA offloading algorithm.

Input: : Ci
j (j ∈ MN′), di

j,k (j, k ∈ MN′ , ei
j,k ∈ E

N′), f0, f1, s,S i (i ∈ N ′)
1: run Algorithm 2 to obtain the initial offloading decision for application N′ and

update SN′

2: run Algorithm 3 to adjust the offloading decision for application N′ and up-
date SN′

3: run Algorithm 4 to schedule the data transmission for applications N ′ and
update S i (i ∈ N ′)

4: return S i (i ∈ N ′)

41

Figure 3.9. Generating an initial offloading strategy.

After obtaining the initial offloading strategy for application N′, we assign the
server CPU core for each of its offloaded tasks. However, it is important not to
allow this assignment disturb any task processing of applications already under
execution i (i ∈ N ′ \ {N′}). That is, an offloaded task of application N′ will be
assigned to the unoccupied time slices on the server cores, as shown in Figure 3.10.
For example, as shown in Figure 3.10(a), core 1 is occupied only from time t1 to t2
and task j of application N′ can be assigned from time t3 to t4. In this case, because
the whole task j is processed at core 1, the values of offloading decision of this
task, i.e., {xN′,0

j , xN′,1
j , xN′,2

j }, are {0, 1, 0}. By contrast, if task j of application N′ is
offloaded and the computation is from t1 to t3, as shown in Figure 3.10(b), task j has
to be assigned to multiple unoccupied time slices. In this case, the segment of task j
from t1 to t2 is assigned to core 1, and the remaining task from t2 to t3 is assigned to
core 2. Therefore, {xN′,0

j , xN′,1
j , xN′,2

j } are {0, (t2− t1)/(t3− t1), (t3− t2)/(t3− t1)}.

When no free core is available at the server, task j of the newly executed applica-
tion N′ may be postponed, as shown in Figure3.11. There are only two cores on the
server, and task j of application N′ needs to be computed from t1 to t4 determined
by initial offloading strategy. However, both of these two cores are occupied from
t2 to t3, which means the server is overloaded. Therefore, beginning time of the
residual segment of the task need to be postponed from t2 to t3 and the processing
time becomes t5 − t3. This process leads to an additional delay in the task pro-
cessing and may further postpone the processing of descendant tasks and eventu-
ally postpone the response time of the newly executed application N′. Therefore,

42

send the information of application N' to server

calculate the congestion degree 17

no
if17 ~ H run MUGA algorithm

run Opt. approach

obtain the initial offloading strategy

(a) Single assignment.

(b) Multiple successive assignment.

Figure 3.10. Core assignment for a task of a newly executed application.

Figure 3.11. Multiple discrete assignment.

if no free cores are available for task j, we need to iteratively recalculate the be-
ginning and ending times of the descendant tasks of task j. Moreover, since the
postponement of descendant tasks of task j may affect the transmission time from
the server back to the mobile device, the transmission time need to be updated
and the application response time is recalculated as T′. For example in Figure 3.11,
the offloading decision of task j is {0, (t5 − t3)/(t4 − t1), (t2 − t1)/(t4 − t1)}, the

43

t·················~
offloaded task

t--- ---
.~ ■ ■ ■ ■ ■ ••••••••• •I- ••• • 1 J ••••••••••••••• ••

: I I I
Core 1 : 1 occupied 1 •

•--------- I •
·.~ •••••••••••••• -~-■-■-■--~:·:::. :-:::-:::.■--.-:::::~■-■-::::::::::::::.
~ I I • :

Core 2 : 1 1 1 occupied :
• I I •
• .~ • " " • • " " • " " • " " • •1• "" "·1 " " " " • • 1 • " " " " " " " " " • " " • " • •)

I I I I

t1 t 2 t 3 t4 time

offloaded task

= ••••••••••••••••••••• , ... 1 -----r,-------1----------- r·············
Core 1 : occupied I ocdupied

--·:::::::::::::::::::.■{ ••••••••••••• ;- - - - - - - -~.-.-.-.-.-.-.-.-.-.-.-::::::::::::::.

Core 2 occunied 1

.................... ~ :. i
,t. 1me

I I
I I

_..__.. .. _ ____, _______ _..4____, _______ ~~-----t.---J
Core 1 : occupied

._.____..._,._._._._._._._______,._.___._._._._._._...___~-.--.~-_,_J· ••••••

·············· - ------------- ~------, •••• -4 •••••••• 1 •••••••
I I. d I I :

Core 2 : 1 occup1e 1 1 :

••••••••••••••• 1-·······L······••••• .. ••••••• .. ••••••:

time

beginning time of the processing of task j, i.e., τN′
j , is t1, and the ending time, i.e.,

TN′
j , is t5. The beginning and ending times of the processing of descendant tasks

can be calculated by Equations (3.48) and (3.49), where j′ is the descendant task of
task j descendant task. Since the cores at the server are homogeneous, we use f1 to
represent the processing rate of a core at the server similar to Opt. approach and
MUGA algorithm.

TN′
j′ = xN′,0

j′ ∗ CN′
j′ / f0 + (1− xN′,0

j′ ∗ CN′
j′ / f1) + τN′

j′ , (3.48)

τN′
j′ = max{WN′

k,j′}, k ∈ N ′, eN′
k,j′ ∈ E

N′ . (3.49)

The data transmission time can be calculated by Equations (3.50) and (3.51), where
j′ is either task j or the descendant task of task j.

WN′
j′,k =

∣∣∣xN′,0
j′ − xN′,0

k

∣∣∣ ∗ dN′
j′,k/s + ωN′

j′,k, (3.50)

ωN′
j′,k = TN′

j′ , k ∈ N ′, eN′
j′,k ∈ E

N′ . (3.51)

The execution schedule of task j and its descendant tasks can be iteratively calcu-
lated by Equations (3.48)–(3.51), and the response time of application N′ is denoted
as T′ = TN′

MN′ − τN′
0 .

Note that if the server is overloaded as shown in Figure 3.11, The benefit of
offloading task j may be lower than that of processing it at the mobile device. Fur-
thermore, if the task j is changed to be processed at local, its descendant tasks will
also be processed locally. In this case, we need recalculate the response time of
application N′ without considering the channel bandwidth limitation. We change
the offloading decision of task j as {1, 0, 0}, and calculate the beginning and end-
ing times of the processing of its descendant tasks by Equations (3.52) and (3.53),
where j′ represents either task j or the descendant task of task j.

TN′
j′ = CN′

j′ / f0 + τN′
j′ , (3.52)

τN′
j′ = max{WN′

k,j′}, k ∈ N ′, eN′
k,j′ ∈ E

N′ (3.53)

We calculate the data transmission time by Equations (3.54) and (3.55), where j′ is
either task j or the descendant task of task j.

WN′
k,j′ = (xN′,0

k − xN′,0
j′) ∗ dN′

k,j′/s + ωN′
k,j′ , (3.54)

ωN′
k,j′ = TN′

k , k ∈ N ′, eN′
k,j′ ∈ E

N′ (3.55)

The execution schedule of task j and its descendant tasks in this case can be itera-
tively calculated by Equations (3.52)–(3.55), and the computation time of applica-
tion N′ in this case is denoted as T′′ = TN′

Mi − τN′
0 .

44

If T′′ < T′, it is beneficial to process task j and its descendant tasks locally
rather than offload them. We iteratively check each offloaded task and try to assign
the required cores determined by the initial offloading strategy for application N′.
The algorithm of core assignment is shown in Algorithm 6 in detail. Note that the
core occupation information, C, is update every the execution of core assignment
algorithm. Flag represents whether the data transmission times in the initial of-
floading strategy should be updated due to the core assignment. The computation

complexity is bounded by O
(

M3
)

, where M is the number of tasks of application

N′.

Algorithm 6 Core assignment algorithm.

Input: : CN′
j , EN′ , dN′

j,k (j, k ∈ N N′ , eN′
j,k ∈ E

N′), fl (l ∈ L), s, C,SN′

1: let CA = ∅, Flag = 0
2: add the tasks of application N′ that are offloaded to CA
3: while CA 6= ∅ do
4: sort CA based on the beginning time of the processing of each task in CA
5: assign the computation workload of the first element of CA, task j∗, to cores

at the server
6: for j′ ∈ {descendant tasks of j∗} and xN′,0

j′ = 0 do

7: recalculate τN′
j′ and TN′

j′ by Equations (3.48) and (3.49), and update the
execution schedule of task j′

8: end for
9: while TN′

j′ > ωN′
j′,k, WN′

j′,k 6= ωN′
j′,k (e

N′
j′,k ∈ E

N′) do
10: set Flag = 1
11: recalculate the execution schedule as S ′N′ and application response time

T′ by Equations (3.48)–(3.51)
12: set xN′,0

j′ = 1 (j′ ∈ {j∗and its descendant tasks})
13: recalculate the execution schedule as S ′′N′ and the application response

time T′′ by Equations (3.52)–(3.55)
14: if T′′ < T′ then
15: remove descendant tasks of j∗ from CA and update SN′ to S ′′N′

16: else
17: update SN′ to S ′N′

18: end if
19: end while
20: CA = CA \ {j∗} and update C
21: end while
22: return C, SN′ and Flag

45

If the data transmission time has been changed by the core-assignment algo-
rithm (Flag = 1), the transmission order should be rescheduled. We need to recal-
culate the transmission times of the data transmitted from the server to the mobile
devices (also called down-going data) for applications N ′ \ {N′} by Equations
(3.54) and (3.55), and update S i (i ∈ N ′ \ {N′}) by Equations (3.52) and (3.53).
Then, we use algorithm 4 to reschedule the data transmission time. However, it
is important not to change the data transmission time of newly executed applica-
tion N′ from mobile devices to the edge server. Thus, we remove the judgement of
i < N′ from steps 2 and 4 in algorithm 4.

In summary, our proposed task level offloading algorithm is shown in algo-
rithm 7.

Algorithm 7 MUGA offloading algorithm.

Input: : Ci
j (j ∈ MN′), EN′ , di

j,k (j, k ∈ MN′ , ei
j,k ∈ E

N′), f0, f1, s,S i (i ∈ N ′), H
1: calculate the degree of system congestion η
2: if η ≤ H then
3: obtain the initial offloading strategy using Opt. approach
4: else
5: obtain the initial offloading strategy using MUGA algorithm (Algorithm 5)
6: end if
7: run Algorithm 6 to assign the core for offloaded tasks and adjust the offloading

strategy if necessary
8: if Flag = 1 then
9: recalculate the transmission times of down-going data for applications N ′ \

{N′} by Equations (3.54) and (3.55), and update S i (i ∈ N ′ \ {N′}) by Equa-
tions (3.52) and (3.53)

10: reschedule the data transmission time by running Algorithm 4 (remove i <
N′ from steps 2 and 4)

11: end if
12: return S i (i ∈ N ′)

3.4 Performance Evaluation

In this section, we present the performance evaluation of our proposed task level
offloading algorithm, denoted by TLO in figures. An extreme case in which no
application is offloaded, denoted by None offloaded in figures, is also simulated for
comparison. Two previous algorithms proposed in [40] and [46], denoted by Par-
tial offloaded and Collision adjustment in figures, are compared with our proposed

46

algorithm. In Partial offloaded algorithm [40], the tasks of an application are par-
titioned into two sets, the offloaded task set and the locally executed task set, and
attempts to find the optimal partition for which the sum of the total task comput-
ing time and data transmission time is minimized. However, they do not consider
the interplay between two applications so that their algorithm is hard to be used
in an online scenario. To avoid causing any bias in the Partial offloaded algorithm,
we assume that the exact transmission rate and the core processing rate at each
time instant are known in order to make Partial offloaded algorithm adapt the on-
line scenario. In Collision adjustment algorithm [46], an application is segmented
into a set of independent tasks that can be independently offloaded to the server
and formulates the problem as a MINLP problem. A suboptimal solution is found
based on the optimal solution to a relaxed version of the original problem. How-
ever, an application is usually segmented into a set of dependent tasks as [40] so
that their algorithm may become failure in our task level offloading problem. In or-
der to ensure the effectiveness of Collision adjustment algorithm, each application
is treated as an inseparable job in our experiments.

3.4.1 Parameter Settings

The setting of parameters is shown in Table 3.5. We assumed that each mobile de-
vice has the same computation power and randomly executes either a face recogni-
tion application [40] or an augmented reality application [57].The task flow graphs
of these two applications are shown in Figure 3.12 and all the tasks, except tasks 0
and 23, are offloadable.

The ratio of the computing power of the server to that of a mobile device,
fl/ f0 (l ∈ L), is fixed at 14, which is verified in [58]. We have tested the applica-
tions by inputting various pictures with 512× 512 pixels using a computer and the
average response time is approximately 115ms. Therefore, the computation time
of a task on the mobile device, Ci

j/ f0 (j ∈ {1, 22}), is generated randomly from the
range [80,240]ms, except of those of the input and tasks, Ci

j/ f0 (j ∈ {0, 23}), which
are set to 0. Then, the data size sent between two tasks is generated randomly
from the range [50,200]kB. The transmission rate, s, is set as 80Mbps. The num-
ber of mobile devices is set as 100 and each mobile device execute its application
10 times. In each mobile device, the execution of applications follows a Poisson
process, i.e., the time between consecutive executions of applications on a mobile
device (the inter-execution time) follows an exponential distribution. The inter-
execution time of on a mobile device is set as 10s. The congestion threshold H is
set as 0.4 and the number of cores of the server is set as 8. The simulation program
was developed using Python 3.6, and the optimization problem was solved using
the Gurobi Optimizer 8.0 on a computer running Microsoft Windows 10 with an

47

(a) Face recognition application.

(b) Augmented reality application.

Figure 3.12. Task flow graphs.

Intel E3 3.0 GHz CPU and 24 GB of memory.

Table 3.5. Parameter settings in experiments.

Setting Description
100 number of mobile devices
10 application execution times on a mobile device
10s inter-execution time of applications on a mobile de-

vice
refer to Figure 3.12 task flow of an application

[80, 240]ms computation time of a task on a mobile device
[50, 200]kB data size transmitted between two tasks

80Mbps transmission rate
14 ratio of the computing power of server vs. mobile de-

vice
0.4 congestion threshold of system
8 number of cores on the server

48

3.4.2 Effect of Transmission Rate

Figure 3.13 shows the average application response times achieved with the differ-
ent approaches for various transmission rates of the shared channel. The transmis-
sion rates are set as 0, 20, 40, 60, 80, 100, 120,140 and 160 Mbps in each experiment,
respectively. Figure 3.13 shows that our proposed algorithm outperforms the other
algorithms for a wide range of transmission rates. When the transmission rate is

Figure 3.13. Effect of transmission rate.

low, there are few tasks which are decided to be offloaded. As the transmission rate
increases, more and more tasks will be decided to be offloaded to the server. We
find that when the transmission rate is low, being different with Collision adjust-
ment algorithm and our proposed algorithm, Partial offloaded algorithm yields
worse results than None offloaded. The main reason for this finding is that Partial
offloaded algorithm does not consider the collisions between different data trans-
mission over the shared channel. Therefore, the offloading strategy determined by
Partial offloaded algorithm become incorrect. As the transmission rate increases,

49

1600

1400 - TLO

-r,i
1200 e

'-"

-• - Collision adjustment

-+--Partial offloaded
Q,j

e 1000 ·-......
Q,j
r,i

= 800
0
Q.
r,i
Q,j .. 600
Q,j
0J)
~ .. 400 Q,j

~
~

200

()

0 20 40 60 80 100 120 140 160

Transmission rate (Mbps)

the performance of Partial offloaded algorithm approaches that of Collision adjust-
ment algorithm and our proposed algorithm. However, our proposed algorithm
is always better than these previous algorithms because both of Partial offloaded
algorithm and Collision adjustment algorithm do not consider the parallel process-
ing of parallel tasks. Thus, utilization of the cores on the server in our offloading
strategy is more efficient than that in these previous algorithms.

3.4.3 Effect of Ratio of the Computing Power of Server vs. Mobile
Device

Figure 3.14. Effect of ratio of the computing power of server vs. mobile device

Figure 3.14 shows the average application response times for various values
of the ratio of the computing power of the server to that of a mobile device. The
values of the ratio of the computing power are set as 6, 8, 10, 12, 14, 16, 18 and 20
in each experiment, respectively. The average application response time decreases
as the computing power ratio increases. We can find that the gap between our

50

900

800

-e 700 -~
8 600
~
rll
C 500
0
Q.,
rll
~

i.. 400
~
01)
~ ,..
~ 300
;.,.
~

200

100

\
- TLO

♦
-•-Collision adjustment '

' -♦ - Partial offloaded

'
' '
' ' ' ..

' '
' ' •, ' ' '

.. ...
....... . _

. -
...... _. - . -· -

. - .

6 8 10 12 14 16 18 20

ratio of computing power of cloud to mobile device

proposed algorithm and the previous algorithms also decreases as the computing
power ratio increases. It is because of that the core utilization in our offloading
strategy leads to better core utilization efficiency than other algorithms. These
results also show that it is important to utilize the characteristic of parallel tasks.

3.4.4 Effect of Application Inter-execution Time

Figure 3.14 shows the average application response times of the algorithms for
various values of inter-execution time. The values of inter-execution time of appli-
cations on a mobile device are set as 4, 6, 8, 10, 12, 14 s in each experiment, respec-
tively. Figure 3.15 shows that our proposed algorithm outperforms the other algo-
rithms for a wide range of values of inter-execution time. Our proposed algorithm

Figure 3.15. Effect of application inter-execution time.

performs closely to Collision adjustment algorithm when the inter-execution time
is short. This result can be attributed to the fact that when the inter-execution time
is extremely short, parallel processing is only slightly superior to serial process-
ing. In essence, the occupation of the cores by two parallel tasks will not change

51

900
\

\
- TLO

800 \ -• - Collision adjustment
\ -♦ - Partial offloaded

,;;-- 100
\

s ,_.,
\

' \
Q.J

s 600 ' \ ·--Q.J
1'J
C 500
0

~--
' ' ' ' C. ' ' 1'J

t 400
Q.J

' ··-. A . - ·♦ . - - ·- .
~ ...
~
i.. 300 Q.J

·~·-·-·-·• ·-·- ·-·
...
~

200

100
4 6 8 10 12 14

application inter-execution time (s)

regardless of whether parallel processing or serial processing is used. However,
free time slots are better utilized in parallel processing than in serial processing,
and consequently, our algorithm ultimately outperforms the Collision adjustment
algorithm. Since both our algorithm and Collision adjustment algorithm adjust for
collisions, both are significantly superior to Partial offloaded algorithm when the
inter-execution time is short. We also find that Collision adjustment algorithm per-
forms closely to Partial offloaded algorithm when the application inter-execution
time is long because when the inter-execution time is sufficiently long, there are
few collisions.

3.4.5 Effect of Number of Users

Figure 3.16. Effect of number of users.

Figure 3.16 shows the average application response times of the algorithms
with various numbers of users. The numbers of users are set as 1, 50, 100, 150 and
200 in each experiment, respectively. As the number of users increases, the aver-
age application response time becomes longer since the system gradually becomes

52

900
I

~ TLO
I

800 -• - Collision adjustment I

-♦ - Partial offloaded ♦ -- I t:ll e 700 I --Q,l I ,,
e I

,,

·- 600 ,,
I

Q,l
,,

t:ll I ,,
= Jt 0 500 I

0. ,,
t:ll I ,,
Q,l
i.. •• ,,
Q,l 400

,,, ,, ,,,
~ ,,, ,,
~ ,,, ,,
i.. - . - .,,, . . - . -• Q,l

~ 300 ,=:= :- ·-•- ·- ·-
~

200

100
0 50 100 150 200

the number of users

congested. We find that our algorithm still outperforms the others even though the
system becomes congested. These results prove that our algorithm shows better
scalability than the other algorithms do.

3.5 Conclusion

In this chapter, we have studied the problem of offloading computationally in-
tensive tasks of mobile applications to minimize the average application response
time. We consider a number of mobile devices executing general applications con-
nected to an edge server via a shared communication channel. We also consider
the bandwidth limitation of the communication channel and the limited number
of CPU cores at the server. We formulate the offline offloading problem as a MILP
problem. Then, we extend the offline problem to an online offloading problem
in which an application can be executed at any time. Since the online offload-
ing problem cannot be solved in a short time, a three-phase method is proposed
to determine the optimal offloading strategy for each application and the compu-
tational complexity of offloading strategy determination is substantially reduced.
We firstly focus on the offloading problem while only considering the limitation of
communication resource of the shared communication channel to obtain the initial
offloading strategy for a newly executed application. Two effective approaches,
Opt. approach and MUGA algorithm, are proposed in this phase and switched
depending on the degree of system congestion: when the communication chan-
nel is congested, the MUGA algorithm is used; otherwise, the Opt. approach is
chosen. Then, we further consider the limitation of computation resources on the
server and propose an algorithm to assign the tasks of a newly executed applica-
tion to unoccupied server cores to avoid disturbing the applications already under
execution and adjust initial offloading strategy. At last, we reschedule the data
transmission if necessary. The proposed method has been tested via simulation
experiments, and the results show that our proposed algorithm performs signifi-
cantly better than previous algorithms.

53

Chapter 4

Application Level Offline Offloading
Strategy

In this chapter, we focus on the application level offloading problem and propose
an offline offloading strategy to minimize the average response time of all appli-
cations. We study the computation offloading problem in a three-tire offloading
system with multiple mobile devices, edge servers and cloud servers, and con-
sider the limitations of the resources of the shared channels, mobile devices and
edge servers. In this chapter, we firstly show the system model and formulate the
offline offloading problem as a multi-variable non-convex optimization problem.
Then, we transform the multi-variable non-convex optimization problem into a
single-variable piecewise convex optimization problem. According to the charac-
teristics of transformed problem, we propose an efficient approach based on the
binary search to find the optimal offloading strategy. After that, we show that our
proposed approach outperforms previous algorithms and the performance of our
algorithm is highly robust by experiments. At last, we present the conclusions of
our study on application level offloading problem. The findings in this chapter has
been published in [59].

4.1 System Model and Formulation

4.1.1 System Model

A three-tier cloud computing system model is considered in this study, as shown
in Figure 4.1. For simplicity, we only consider a cloud server and an edge server.
The number of mobile devices is denoted as N. The mobile devices are connected
to an access point (AP) via a wireless communication network. The wireless com-
munication network includes two shared communication channels: one uplink

54

channel for data transmissions from the mobile devices to the AP and one down-
link channel for data transmissions from the AP to the mobile devices. Since the
AP is close to and connected to the edge server via a high-speed link, we assume
that the transmission delay between the AP and the edge server can be neglected.
The edge server is connected to the cloud server located on the Internet via a wired
high-speed link.

Figure 4.1. The model of a three-tier cloud computing system.

In our system, the average arrival rate of applications at mobile device i is de-
noted by θi. The average service rate of mobile device i is denoted by µi. The exe-
cution of applications on a mobile device follows the first-come-first-serve (FCFS)
basis.

When an application arrives at a mobile device, the mobile device can execute
the application locally or offload the application to the edge server. The applica-
tion is considered to be an inseparable job that should be integrally offloaded, and
the offloading ratio of applications that arrive at mobile device i is denoted by αi.
Therefore, the offloading rate of mobile device i is αiθi, and the total offloading
rate of all mobile devices is denoted by λ, where λ = ∑N

i=1 αiθi. The edge server
can execute an offloaded application or offload the application again to the remote
cloud server further. The offloading ratio of the edge server is denoted by αE, and
thus the offloading rate from the edge server to the cloud server is αEλ. We as-
sume that the edge server has only one processing server such that it can execute

55

Tier 1

Highs

Tier 2

Tier 3
I I I

Mobile devices

only one application at a time and execute applications following FCFS basis. On
the other hand, the cloud server has abundant processing servers so that each of-
floaded application can be executed immediately after arriving at the cloud server.
The service rates of the edge server and the cloud server are denoted by µE and
µC, respectively.

The network model is shown in Figure 4.2. If an application is decided for
offloading, then the input and output data of the application are transmitted via
the shared uplink channel from the mobile device to the edge server and via the
shared downlink channel from the edge server to the mobile device, respectively.
The average data size transmitted over the uplink channel, i.e., the average input
data size of the applications, is Du. The average data size transmitted over the
downlink channel, i.e., the average output data size of the applications, is Dd. The
transmission rates of the uplink channel and downlink channel are denoted by u
and d, respectively, and the total transmission rate of the shared channels is de-
noted by S (S = u + d). Additionally, let µu and µd denote the average service
rates of uplink and downlink channels, respectively, and then we have µu = u

Du

and µd = d
Dd

. The data transmission via both the uplink and downlink channels
also follow the FCFS basis. We assume that the transmission delay between the
edge server and the cloud server is a positive constant, denoted by H.

Figure 4.2. Network model.

In order to clearly explain how to execute an application in the system, we
show an example in Figure 4.3. When an application arrives at the mobile device

56

Cloud servers

High speed
link

Edge server

Uplmk Q ,/, ',,§~.:!:k
channel ~ o
o~-sSs:~ .~>~

Mobile devices

i, it will be offloaded to the edge server with αi probability. If the application is
decided for local execution, it is queued at the mobile device and executed follow-
ing the FIFO basis. If the application is decided for offloading to the edge server,
the mobile device transmits the input data of the application via the uplink chan-
nel. The input data transmissions are also queued and transmitted following the
FIFO basis. After the input data transmission, the edge server further offloads the
applications to the cloud servers with αE probability. If the application is decided
for execution at the edge server, the application is queued at the edge server and
executed following the FIFO basis. If the application is decided to be offloaded to
the cloud servers, the data transmission and the application execution can be han-
dled immediately because there is no queue at the high-speed link and the cloud
servers. After the execution result is obtained by the edge server, the output data
are transmitted back to the mobile device via the downlink channel. The output
data transmission is also queued and transmitted following the FIFO basis. The
response time of the application is the time cost from the application that arrives
at the mobile device until the output data are obtained by the mobile device.

Figure 4.3. An example for the application execution.

In this study, we focus on how to find the optimal offloading ratios for mo-
bile devices and the edge server, i.e., αi, i ∈ {1, ..., N}, and αE, and how to deter-
mine the uplink and downlink transmission rates, i.e., u and d, with limited total
transmission rate, respectively, in order to minimize the average response time of
applications.

57

Mobile device N

Application
arrival rate 0;

Offloading
ratio a;

Output
Mobile device i

Uplink channel

Offloading
ratio a£

Edge server
execution

Edge server

High speed
link server

execution

Cloud server

4.1.2 Formulation

The system is divided into five parts as Figure 4.3: the local execution (green part),
the uplink channel transmission (red part), the edge server execution (khaki part),
the cloud server execution and the data transmission between the edge server and
the cloud server (blue part), and the downlink channel transmission (purple part).
The notation used in our model and formulation is summarized in Tables 4.1, 4.2
and 4.3.

Table 4.1. Parameters used in application level offloading problem.

Symbol Meaning
N number of mobile devices
θi arrival rate of applications at mobile device i
µi service rate of mobile device i

µE service rate of the edge server
µC service rate of the cloud server
Du average uplink data size of applications
Dd average downlink data size of applications

S total transmission rate of shared communication channels
H transmission delay of the high-speed link between the edge server

and the cloud server
hi(αi) average execution delay of applications at mobile device i
hi(αi) total execution delay of applications at mobile device i

hU(λ, u) total transmission delay of the input data at the uplink channel
hD(λ, d) total transmission delay of the output data at the downlink channel

hE(λ, αE) total execution delay of applications at the edge server
hC(λ, αE) sum of total execution time at the cloud server and total transmis-

sion time at the high-speed link

Table 4.2. Decision variables used in application level offloading problem.

Symbol Meaning
u transmission rate of the uplink channel
d transmission rate of the downlink channel

αi offloading ratio of mobile device i, i ∈ {1, ..., N}
αE offloading ratio of the edge server

We firstly consider the local execution part. The total execution delay of ap-
plications executed at mobile device i is denoted by function hi(αi) and the aver-
age execution delay of applications is denoted as function hi(αi), where 1 ≥ αi ≥

58

Table 4.3. Intermediate variables used in application level offloading problem.

Symbol Meaning
λ total offloading rate of applications from all mobile devices, i.e., λ =

∑N
i=1 αiθi.

µu service rate of the uplink channel, i.e., µu = u
Du

µd service rate of the downlink channel, i.e., µd = d
Dd

max{0, θi−µi
θi
} to guarantee that the average execution delay at a mobile device is

not infinite. The execution delay of the application executed at a mobile device
includes the queuing time and the execution time. Then, we can have following
equation.

hi(αi) = (1− αi)θihi(αi) (4.1)

In general, for a nondeterministic queue, i.e., both/one of arrival interval and pro-
cessing time follow/follows random distributions, the average sojourn time is in-

creasing and convex of its workload and therefore we assume that dhi
dαi

< 0 and
d2hi
dαi

2 > 0. Additionally, we can also have following equations.

dhi

dαi
= (1− αi)θi

dhi

dαi
− θihi(αi) < 0 (4.2)

d2hi

dαi
2 = (1− αi)θi

d2hi

dαi
2 − 2θi

dhi

dαi
> 0 (4.3)

Thus, we know that hi is a decreasing convex function, i.e., dhi
dαi
≤ 0 ≤ d2hi

dαi
2 . Ac-

cording to Kingman’s formula [60], we know that for a single processor nonde-
terministic queue, the average queuing time becomes infinitely large if the arrival
rate reaches the processing rate. Thus, we let hi(αi) = +∞ when θi ≥ µi and
(1− αi)θi = µi.

Let us consider the uplink channel transmission part. The total transmission
delay of the input data of offloaded applications is denoted by function hU(λ, u),
where λ ≤ µu. The transmission delay of the data transmitted via the uplink
channel includes the queuing time and the transmission time. Similar to hi, we
assume that hU is an increasing convex function of λ, i.e., ∂hU

∂λ ≥ 0 and ∂2hU
∂λ2 ≥ 0,

while a decreasing convex function of u, i.e., ∂hU
∂u ≤ 0, and ∂2hU

∂u2 ≥ 0. Additionally,
we let hU(λ, u) = +∞ when λ = µu.

At the edge server execution part, the total execution delay of applications at
the edge server is denoted by function hE(λ, αE), where (1 − αE)λ ≤ µE. The

59

execution delay of an application executed at the edge server includes the queuing
time and the execution time. Similar to hi, we assume that hE is an increasing
convex function of λ, i.e., ∂hE

∂λ ≥ 0 and ∂2hE
∂λ2 ≥ 0, while a decreasing convex function

of αE, i.e., ∂hE
∂αE
≤ 0 and ∂2hE

∂αE
2 ≥ 0. Additionally, we have hE(λ, αE) = +∞ when

(1− αE)λ = µE.
After that, we consider the cloud server execution and the data transmission

between the edge server and the cloud server. The total execution delay of ap-
plication at the cloud server equals to the sum of the total execution time at the
cloud server and the total transmission time over the communication channel and
is denoted by function hC(λ, αE) = (2H + 1

µC
)αEλ. Note that there is neither queue

on the high-speed channel nor on the cloud server, only the execution time and
the transmission time are included in hC. It is clear that hC is an increasing convex
function of λ and αE when λ ≥ 0 and αE ≥ 0.

At last, we consider the downlink transmission part. The total transmission
delay of the output data of offloaded applications is denoted by function hD(λ, d),
where λ ≤ µd. The transmission delay of the data transmitted via the downlink
channel includes the queuing time and the transmission time. Similar to hU, we
assume that ∂hD

∂λ ≥ 0, ∂hD
∂d ≤ 0, ∂2hD

∂λ2 ≥ 0 and ∂2hD
∂d2 ≥ 0. Additionally, we have

hD(λ, d) = +∞ when λ = µd.
In summary, the problem of minimizing the average response time of applica-

tions considered in this chapter is formulated as follows:

min
1

N

∑
i=1

θi

(N

∑
i=1

hi(αi) + hU(λ, u) + hE(λ, αE) + hC(λ, αE) + hD(λ, d)
)

, (4.4)

subject to

λ =
N

∑
i=1

αiθi, (4.5)

(1− αi)θi ≤ µi, i ∈ {1, ..., N}, (4.6)

λ ≥
N

∑
i=1

max{0, θi − µi}, (4.7)

λ ≤
N

∑
i=1

θi, (4.8)

S = u + d, (4.9)
λ ≤ µu, (4.10)
λ ≤ µd, (4.11)

60

(Du + Dd)λ ≤ S, (4.12)
(1− αE)λ ≤ µE, (4.13)
0 ≤ αi ≤ 1, i ∈ {1, ..., N}, (4.14)
0 ≤ αE ≤ 1. (4.15)

Constraint (4.5) ensures that the total offloading rate is the sum of offloading
rates of all mobile devices. Constraints (4.6) and (4.7) guarantee that the execu-
tion delay at a mobile device is not infinite. Constraint (4.8) guarantees that the
total offloading rate of mobile devices is lower than total arrival rate of mobile de-
vices. Constraint (4.9) shows that the total transmission rate is the sum of the up-
link transmission rate and the downlink transmission rate. Constraints (4.10) and
(4.11) guarantee that the transmission delays at the uplink and downlink channels
are not infinite. Constraint (4.12) guarantees that the minimum transmission rate
requirement is lower than the total transmission rate. Constraint (4.13) guarantees
that the execution delay at the edge server is not infinite. Constraints (4.14) and
(4.15) state the range of offloading ratios of mobile devices and the edge server.

4.2 Analysis and Algorithm for Application Level Of-
floading

In this section, we analyse the computation offloading system and further pro-
pose an efficient algorithm to determine the optimal transmission rate of uplink
and downlink channels, and the optimal offloading strategy for mobile devices
and the edge server. Since θi are given as parameters, 1

∑N
i=1 θi

in problem (4.4) can

be removed and the average response time minimizing problem becomes the to-
tal response time minimizing problem. The system is divided into three part in
our analysis: the local execution part including the application executions on mo-
bile devices, the data transmission part including the data transmissions over the
shared wireless communication channels and the remote execution part includ-
ing the application executions on servers and data transmission between the edge
server and the cloud server. Then, the problem is transformed into a piecewise
convex optimization problem based on our analysis and an algorithm is proposed
to solve the transformed problem.

4.2.1 Data Transmission over Uplink and Downlink Channels

We firstly consider how to determine the uplink and downlink transmission rates
u and d to minimize the total transmission delay for a given total offloading rate

61

λ. We simply write hU(λ, u) and hD(λ, d) as hU(u) and hD(d), respectively, with a
given λ. The total transmission delay, denoted by f1, is given as follows:

f1 = hU(u) + hD(d), (4.16)

where

S = u + d, (4.17)
λ ≤ µu, (4.18)
λ ≤ µd. (4.19)

Theorem 2 For a given λ, the minimum total transmission delay, denoted as f1
∗, and the

optimal transmission rates of uplink and downlink channels, denoted as u∗ and d∗, can be
uniquely determined if constraint (4.12) is held. Additionally, f1

∗ is a convex function of
λ.

Proof The transmission rate determination problem is formulated as follows.

min f1 = hU(u) + hD(d), (4.20)
subject to

S = u + d, (4.21)
λ ≤ µu, (4.22)
λ ≤ µd. (4.23)

We firstly analyze the feasible region of problem (4.20). If (Du + Dd)λ > S, at least
one of constraints (4.22) and (4.23) cannot be held because S = u + d (constraint (4.21)),
µu = u

Du
and µd = d

Dd
. Thus, constraint (4.12) should be held to guarantee that the

optimal solution of problem (4.20) exists.
Then, we need to find the optimal solution of problem (4.20). The optimal transmission

rates cannot be determined when λ = µu, λ < µd or λ < µu, λ = µd because hU(u) =
+∞ when λ = µu and hD(d) = +∞ when λ = µd. As described in section 4.1.2, hU
and hD are convex functions of u and d, respectively. Thus, problem (4.20) is a convex
optimization problem in terms of u and d for a given λ. A lagrange multiplier [62] k1 of
constraint (4.21) is introduced to analyze the problem. Thus, problem (4.20) is transformed
into problem (4.24).

min L1 = f1 + k1(S− u− d). (4.24)

Then we have ∂L1
∂u = 0 and ∂L1

∂d = 0 when L1 is minimized. Thus, we have Equation (4.25).

∂ f1(u∗)
∂u

=
∂ f1(d∗)

∂d
= k1. (4.25)

62

According to constraints (4.21)–(4.23) and Equation (4.25), the optimal u∗ and d∗ are
obtained by solving following relations.

S = u∗ + d∗, (4.26)
∂hU(u∗)

∂u
=

∂hD(d∗)
∂d

, (4.27)

Duλ ≤ u∗, (4.28)
Ddλ ≤ d∗. (4.29)

The minimum total transmission delay is obtained by substituting u∗ and d∗ into prob-
lem (4.20) and shown as follows.

f1
∗ = hU(u∗) + hD(d∗). (4.30)

Note that both u∗ and d∗ depend on λ. Let u∗ = gU(λ) and d∗ = gD(λ). According
to Equations (4.26) and (4.27), we know that dgU(λ)

dλ + dgD(λ)
dλ = 0 and ∂hU

∂gU(λ)
= ∂hD

∂gD(λ)
.

We can then find ∂2 f1
∗

∂λ2 ≥ 0 by using the chain rule [61]. �

Once u∗ and d∗ have been found, the constraints about u and d, i.e., constraints
(4.9)–(4.11), can be neglected.

4.2.2 Remote Execution

We secondly consider how to determine the offloading ratio of the edge server, i.e.,
αE, for a given λ. We simply write hE(λ, αE) and hC(λ, αE) as hE(αE) and hC(αE),
respectively, with a given λ. The total execution delay of the offloaded applications
at servers, denoted by f2, is given as follows:

f2 = hE(αE) + hC(αE), (4.31)

where

(1− αE)λ ≤ µE, (4.32)
0 ≤ αE ≤ 1. (4.33)

Theorem 3 For a given λ, the minimum total execution delay, denoted as f2
∗, of the

offloaded applications at servers and the optimal offloading ratio of the edge server, denoted
as αE

∗, can be uniquely determined. Additionally, f2
∗ is a convex function of λ.

Proof The edge server offloading ratio determination problem is formulated as follows.

min f2 = hE(αE) + hC(αE), (4.34)

63

subject to
(1− αE)λ ≤ µE, (4.35)
0 ≤ αE ≤ 1. (4.36)

As described in section 4.1.2, hE and hC are convex functions of αE for a given λ.
Thus, hE + hC is a convex function of αE. By taking the derivatives of hE and hC, the
optimal offloading ratio, i.e., αE

∗, can be found. If ∂hE(0)
∂αE

+ ∂hC(0)
∂αE

≥ 0, αE
∗ = 0; if

∂hE(0)
∂αE

+ ∂hC(0)
∂αE

< 0 < ∂hE(1)
∂αE

+ ∂hC(1)
∂αE

, 1 < αE
∗ < 1; and if ∂hE(1)

∂αE
+ ∂hC(1)

∂αE
≤ 0,

αE
∗ = 1. Therefore, we obtain αE

∗ as follows, where G(αE) =
∂hE
∂αE

+ ∂hC
∂αE

and G−1 is the
inverse function of G.

α∗E =


0, if ∂hE(0)

∂αE
+ ∂hC(0)

∂αE
≥ 0,

1, if ∂hE(1)
∂αE

+ ∂hC(1)
∂αE

≤ 0,
G−1(0), otherwise.

(4.37)

Let αE
∗ = gE(λ), the minimum total execution delay of offloaded applications is ob-

tained by substituting gE(λ) into problem (4.34) and shown as follows.

f2
∗ = hE(gE(λ)) + hC(gE(λ)). (4.38)

According to Equations (4.37), we find that ∂hE
∂gE(λ)

+ ∂hC
∂gE(λ)

= 0. We also have ∂hC
∂gE(λ)

=

λ(2H + W
C). Therefore, we find ∂2 f2

∗

∂λ2 ≥ 0 by using the chain rule. �

Once αE
∗ has been found, the constraints about αE, i.e., constraints (4.13) and

(4.15), can be neglected. From Theorems 2 and 3, problem (4.4) can be transformed
into the following optimization problem, where constraints (4.9)–(4.11), (4.13) and
(4.15) are neglected.

min F1 =
N

∑
i=1

hi(αi) + f1
∗(λ) + f2

∗(λ), (4.39)

subject to

λ =
N

∑
i=1

αiθi, (4.40)

(1− αi)θi ≤ µi, i ∈ {1, ..., N}, (4.41)

λ ≥
N

∑
i=1

max{0, θi − µi}, (4.42)

64

λ ≤
N

∑
i=1

θi, (4.43)

(Du + Dd)λ ≤ S, (4.44)
0 ≤ αi ≤ 1, i ∈ {1, ..., N}. (4.45)

4.2.3 Local Execution

At last, we consider how to determine the offloading rates of mobile devices for a
given λ to minimize the total execution delay of mobile devices. Let λi denote the
offloading rate of mobile device i; then, we have λi = αiθi, i ∈ {1, 2, ..., N} and λ =

∑N
i=1 λi. Since αi =

λi
θi

is an affine function and hi(αi) is a convex function, hi(
λi
θi
)

is a convex function of λi. Because θi is a constant, henceforth, we use the simple
function Hi(λi) rather than hi(

λi
θi
) for description simplicity. The total execution

delay of all mobile devices, denoted as f3, is given as follows:

f3 =
N

∑
i=1

Hi(λi), (4.46)

where

λ =
N

∑
i=1

λi, (4.47)

θi − λi ≤ µi, i ∈ {1, ..., N}, (4.48)
0 ≤ λi ≤ θi, i ∈ {1, ..., N}. (4.49)

An example is used to make our main idea for solving offloading rate deter-
mination problem with a given λ clearly. As shown in Figure 4.4, there are four
reservoirs with different depths, widths and heights. The volumes of water in
each reservoir are also different (the water level may be higher than the height of
the reservoir such as reservoir A in Figure 4.4). Let us consider that how to pump
water from reservoirs while minimizing the maximal absolute water level heights
in reservoirs.

In Figure 4.4, reservoir A is different with others so that we classify it as a
separate class and firstly pump water from reservoir A until the water level in
A is same as the height of A (Figure 4.5(a)). Then, we continue pumping water
from reservoir A until the absolute water level in A is same as that in B (Figure
4.5(b)). Next, we pump water from both of reservoirs A and B until the absolute
water levels in A and B are same as that in C (Figure 4.5(c)). After that, the water
is pumped from reservoirs A, B and C until the absolute water levels in A, B and

65

Figure 4.4. Original state.

(a) (b)

(c) (d)

Figure 4.5. Intermediate states 1.

C are same as that in D (Figure 4.5(d)). When the reservoirs A, B, C and D become
the same absolute water level, all of reservoirs need to be pumped until one of
them becomes empty (C in Figure 4.6(a)). The empty reservoir C is classified as
a separate class (Figure 4.6(b)) because there is not water can be pumped from C.
Similarly, if we continue pumping from reservoirs, B will become empty and be

66

I

•••• •••••••••• ••••• ••••••••••• 1 ••

A B C D
reservoirs

I - - - -.
I I
I I
I I
I I

OE
r- - - --1

I I
I I
I I
I I
I

A BCD A BCD

.-----, ,-----1
I I I I
I I I I

··· · ----:············ tl·········U ·········· ····· ···· ... · ----: ··········· H ···· u -··· ····
A BCD A BCD

classified with C (Figure 4.6(c)). Then, A becomes empty and is classified with
B and C (Figure 4.6(c)). At last, all of reservoirs become empty and the water is

(a) (b)

(c) (d)

Figure 4.6. Intermediate states 2.

pumped from reservoirs completely (Figure 4.7).

Figure 4.7. Final state.

67

A B

A D

C D

[l LJ
......

B

r - - - -.
I I
I I

A

I
I

C

B

tl -LJ
A B D C

r - - - -,
I

[l LJ
I

-------- t -----

D A B C

LJ
C D

In our problem, each mobile device can be treated as a reservoir and the appli-
cation offloading can be seen as the water pumping. Different processing rates of
mobile devices also correspond to different depths, widths and heights of reser-
voirs. Additionally, gradients of offloading gains for mobile devices can be treated
as the water levels of reservoirs. Then, we can prove following theorem.

Theorem 4 For a given λ, the minimum total execution delay, denoted as f3
∗, can be

uniquely determined if constraints (4.42) and (4.43) are held. The minimum total execu-
tion delay and the optimal offloading rate of mobile device i, denoted as λi

∗, are shown in
Equations (4.50) and (4.51), where gi is a function of λ. Additionally, f3

∗ is a piecewise
convex function of λ that is divided by 2N− k nondifferentiable points where k is the num-
ber of overloaded mobile without offloading, i.e., k = |NOL| and NOL = {i|µi ≤ θi, i ∈
{1, ..., N}}.

f3
∗ =

N

∑
i=1

Hi(λi
∗), (4.50)

λi
∗ = gi(λ), i ∈ {1, ..., N}. (4.51)

Proof We formulate the offloading rate determination problem as follows.

min f3 =
N

∑
i=1

Hi(λi), (4.52)

subject to

λ =
N

∑
i=1

λi, (4.53)

θi − λi ≤ µi, i ∈ {1, ..., N}, (4.54)
0 ≤ λi ≤ θi, i ∈ {1, ..., N}. (4.55)

Similar to the proof of Theorem 2, constraints (4.42) and (4.43) should be held to guar-
antee that the optimal solution of problem (4.52) exists. Additionally, if mobile device i
is overloaded, i.e., θi ≥ µi, the optimal offloading rates cannot be determined for when
λi = θi − µi because Hi(θi − µi) = +∞.

Since Hi is a convex function of λi, which is described above, f3 is a convex function
of λi, i ∈ {1, ..., N}. Thus, f3 has only one extreme value in the feasible region of problem
(4.52).

The mobile devices whose optimal offloading rates are determined to lie on the lower
bound are represented by the set N f ull, i.e., i ∈ N f ull if the optimal offloading rate of
mobile device i, λi

∗, is 0, which means that no application is offloaded from mobile device
i. The mobile devices whose optimal offloading rates are determined to lie on the upper
bound are represented by the set Nidle, i.e., i ∈ Nidle if λi

∗ = θi, which means that all

68

applications are offloaded from mobile device i. All other mobile devices are represented by
the set Nnormal, i.e., i ∈ Nnormal if 0 < λi

∗ < θi, which means that some applications are
offloaded from mobile device i. According to KKT conditions [63], the optimal offloading
rates, i.e., the optimal solution of problem (4.52), have to satisfy following relations for a
given λ, where k2 is a lagrange multiplier.

dHi(λi
∗)

dλi
= k2, i ∈ Nnormal, (4.56)

dHi(0)
dλi

≥ k2, i ∈ N f ull, (4.57)

dHi(θi)

dλi
≤ k2, i ∈ Nidle, (4.58)

µi > θi, i ∈ N f ull, (4.59)

λ = ∑
i∈Nnormal

λi
∗ + ∑

i∈Nidle

θi. (4.60)

For a given λ, the optimal offloading rates of mobile devices are found by solving rela-
tions (4.56)–(4.60). We express the optimal offloading rate of mobile device i as a function
of λ, i.e., λi

∗ = gi(λ), and thus the optimal total execution delay of mobile devices, i.e., f3
∗

is a function of λ. Note that, function f3
∗ has a set of nondifferentiable points. For example

Figure 4.8. Nondifferentiable points for one mobile device.

there is only one mobile device as Figure 4.8, a nondifferentiable point of f3
∗ exists if λ = 0

or λ = θ1. If there are two mobile devices as Figure 4.9, a nondifferentiable point of f3
∗

exists if λ = 0, λ = θ1 − G1
−1(dH2(0)

dλ2
), λ = θ1 + G2

−1(dH1(θ1)
dλ1

) or λ = θ1 + θ2, where

G1 = dH1(λ1)
dλ1

and G2 = dH2(λ2)
dλ2

. Therefore, f3
∗ is a piecewise function of λ and has 2N

nondifferentiable points if there are N mobile devices. Additionally, since constraint (4.42)

69

Arrival rate: 01

A= 0 ··· ····· ··· ········· ······ ·····

A= 01 ···········._-•

Mobile device 1

Figure 4.9. Nondifferentiable points for two mobile devices.

is held and Nnormal = {i|µi ≤ θi, i ∈ {1, ..., N}} when λ = ∑N
i=1 max{0, θi − µi}, the

number of nondifferentiable points of f3
∗ in its feasible region is 2N− k where k = |NOL|

and NOL = {i|µi ≤ θi, i ∈ {1, ..., N}}. Moreover, we find that f3
∗ is a convex function

of λ in each piece by using the chain rule. Thus, f3
∗ is a convex piecewise function of λ.

Once the optimal offloading rate for each mobile device has been found, con-
straints (4.40), (4.41) and (4.45) can be neglected. Problem (4.39) can be further
transformed into the following optimization problem, where constraints (4.42)–
(4.44) are consolidated into constraint (4.62).

min F2 = f1
∗(λ) + f2

∗(λ) + f3
∗(λ), (4.61)

subject to
N

∑
i=1

max{0, θi − µi} ≤ λ ≤ min{
N

∑
i=1

θi,
S

Du + Dd
}. (4.62)

4.2.4 Algorithm for Application Level Offloading

As described in Theorem 4, f3
∗(λ) is a piecewise convex function of λ divided

by 2N − k nondifferentiable points. Thus, problem (4.61) can be decomposed into
2N − k convex subproblems, Aj(j ∈ {k + 1, ..., 2N}), and shown as follows:

min F2 = min{Ak+1, ..., A2N}. (4.63)

70

Arrival rate: 01 Arrival rate: 02

;t = 0 ······· ········· ·················· ····· ·······

------·······························

Mobile device 1 Mobile device 2

Each subproblem Aj, j ∈ {k + 1, ..., 2N}, is formulated as follows:

min Aj = f1
∗(λ) + f2

∗(λ) + f3
∗(λ), (4.64)

subject to
ϕj−1 ≤ λ ≤ ϕj, (4.65)

λ ≤ S
Du + Dd

, (4.66)

where ϕj, j ∈ {k + 1, ..., 2N}, are values of nondifferentiable points of f3
∗(λ)

,which are sorted in ascending order, and ϕk = ∑N
i=1 max{0, θi − µi}. Because

∑N
i=1 max{0, θi − µi} is the lower bound of λ in problem (4.61) and ϕj, j ∈ {k +

1, ..., 2N}, are located in the feasible region of problem (4.61), we have ϕj ≥ ϕk =

∑N
i=1 max{0, θi − µi}, j ∈ {k + 1, ..., 2N}. Additionally, as described in the proof

of Theorem 4, ∑N
i=1 θi is the largest value among nondifferentiable points, i.e.,

ϕj ≤ ∑N
i=1 θi, j ∈ {k + 1, ..., 2N}. Therefore, constraint (4.62) can be simplified

to constraint (4.66).
Consequently, in order to solve problem (4.64), we need to find ϕj, j ∈ {k +

1, ..., 2N}. First, we calculate dHi(0)
dλi

and dHi(θi)
dλi

, i ∈ {1, ..., N}. Note that if mobile
device i is overloaded without offloading, i.e., θi ≥ µi, λi = 0 is not in the feasible
region of Hi. Therefore, for an overloaded mobile device i, we let dHi(0)

dλi
= −∞.

Second, we set N = { dHi(0)
dλi

, dHi(θi)
dλi
|i ∈ {1, ..., N}} and sort N in ascending order.

Then, ϕj, j ∈ {k + 1, ..., N}, corresponds jth element of N . Note that {ϕj|j ∈
{k + 1, ..., 2N}} is also the set of the first nondifferentiable points of gi(λ), i ∈
{1, ..., N}, if θi < µi, and the last nondifferentiable points of gi(λ), i ∈ {1, ..., N},
as described in the proof of Theorem 4. As λ increases, the first nondifferentiable
point of gi(λ) is the point at which the applications of mobile device i are beginning
to be offloaded and the last nondifferentiable point of gi(λ) is the point at which all
the applications of this mobile device are offloaded. Therefore, if the jth (j ≥ k + 1)
element of N is dHi(0)

dλi
, ϕj is obtained by solving following relations.

dgi(ϕj
−)

dλ
= 0, (4.67)

dgi(ϕj
+)

dλ
< 0, (4.68)

where
dgi(ϕj

−)
dλ and

dgi(ϕj
+)

dλ are the left derivative and right derivative, respectively,

of gi(λ) at ϕj. If the jth (j ≥ k + 1) element ofN is dHi(θi)
dλi

, ϕj is obtained by solving

71

following relations.

dgi(ϕj
−)

dλ
< 0, (4.69)

dgi(ϕj
+)

dλ
= 0. (4.70)

After finding the nondifferentiable points, we need to find in which piece the
optimal total offloading rate, denoted by λ∗, is located. Let ϕ denote a nondif-
ferentiable point of F2. If dF2(ϕ−)

dλ ≥ 0, which means that we can further offload

applications from mobile devices to servers, then we must have dF2(ϕ−)
dλ ≥ 0 ⇔

dF2(ϕ+)
dλ ≥ 0. For the same reason, we have dF2(ϕ−)

dλ ≤ 0 ⇔ dF2(ϕ+)
dλ ≤ 0. There-

fore, the optimal piece, denoted by j∗, satisfies the conditions ϕj∗−1 ≤ λ∗ ≤ ϕj∗

and
dAj∗ (ϕj∗−1

+)

dλ ≤ 0 ≤
dAj∗ (min{ϕj∗ , S

Du+Dd
}−)

dλ . A nonoptimal piece j satisfies either

the conditions of
dAj(ϕj−1

+)

dλ ≤ 0 and
dAj(min{ϕj, S

Du+Dd
}−)

dλ ≤ 0 or the conditions of
dAj(ϕj−1

+)

dλ ≥ 0 and
dAj(min{ϕj, S

Du+Dd
}−)

dλ ≥ 0. Thus, j∗ can be easily found using
the binary search method [64]. Additionally, if any equality holds in the above

conditions, λ∗ can be found directly, i.e., λ∗ = ϕj−1 if
dAj(ϕj−1

+)

dλ = 0 or λ∗ = ϕj

if
dAj(min{ϕj, S

Du+Dd
}−)

dλ = 0. If no equality holds, λ∗ can be found using Newton’s
method [65] in the optimal piece. The optimal offloading rates of the mobile de-
vices, denoted as αi

∗, i ∈ {1, ..., N}, are obtained by letting αi
∗ = gi(λ

∗)
θi

.
Our proposed offloading algorithm is shown in Algorithm 8. Nondifferentiable

points are found in steps 1 ∼ 11. j∗ and λ∗ are found in steps 12 and 13. In step
14, the optimal offloading ratios are calculated and the transmission rates are de-
termined. The computational complexity of step 10 is bounded by O(N log N),
where N is the number of mobile devices. The computational complexity of bi-
nary search method used in step 12 is bounded by O(log N). The computational
complexity of Newton’s method used in step 13 is bounded by O(1). Therefore,
the total computational complexity of Algorithm 8 is bounded by O(N log N).

4.3 Performance Evaluation

We present the performance evaluation of our proposed efficient offloading algo-
rithm, denoted by ALO in the figures. An extreme case in which no application
is offloaded, called No offloaded, is also simulated for comparison. Two previous
algorithms [33, 34], denoted by IPM-based and ERWP, are compared with our pro-
posed algorithm. The algorithm proposed in [33] considered the queue on the

72

Algorithm 8 Application level offloading algorithm.

Input: θi, µi, i ∈ {1, ..., N}, Du, Dd, S, µE, µC, H
1: set k = 0, N = ∅
2: for all i ∈ {1, ..., N} do
3: if θi ≥ µi then
4: set dHi(0)

dλi
= −∞, k = k + 1, calculate dHi(θi)

dλi
5: else
6: calculate dHi(0)

dλi
and dHi(θi)

dλi
7: end if
8: set N = N ∪ { dHi(0)

dλi
, dHi(θi)

dλi
}

9: end for
10: sort N in ascending order
11: obtain ϕj, j ∈ {k + 1, ..., 2N}, by solving either relations (4.67) and (4.68) or

(4.69) and (4.70); set ϕk = ∑N
i=1 max{0, θi − µi}

12: find j∗ using the binary search method
13: find λ∗ using Newton’s method in Ai∗

14: calculate u∗, d∗, αE
∗ and αi

∗, i ∈ {1, ..., N}, using relations (4.26)–(4.29), (4.37)
and αi

∗ = gi(λ
∗)

θi
, respectively

15: return u∗, d∗, αE
∗ and αi

∗, i ∈ {1, ..., N}

edge server but did not consider the queue on the shared channels and the co-
operation between servers. The algorithm proposed in [34] considered the queue
on the channels but did not consider the queue on the edge server. Because both
previous algorithms treated the service rate of a mobile device as a constant value,
we assume that the service rates of all mobile devices are the same in our exper-
iments, i.e., µi = µ, i ∈ {1, ..., N}. To avoid causing any bias to the algorithm
proposed in [34], we assume that all of the offloaded applications decided by their
algorithm are offloaded to the cloud server, which is similar to the scenario that
they considered.

In our experiments, the arrival of applications on a mobile device follows a
Poisson distribution. The execution times on mobile devices and servers, the input
data size and the output data size follow negative exponential distributions that
are the same as those in [33, 34]. Hence, the execution of applications at a mobile
device is treated as an M/M/1 queue [66]; the uplink transmission is also treated
as an M/M/1 queue. According to Burke’s theorem [67], the output processes of
M/M/1 and M/M/∞ also follow a Poisson distribution. Thus, the execution of
applications at the edge server and the downlink transmission are also treated as

73

M/M/1 queues. Then, we have Eqs. (4.71)–(4.74).

hi(αi) =
(1− αi)θi

µ− (1− αi)θi
, i ∈ {1, ..., N}, (4.71)

hU(λ, u) =
λ

µu − λ
=

λ
u

Du
− λ

, (4.72)

hE(λ, αE) =
(1− αE)λ

µE − (1− αE)λ
, (4.73)

hD(λ, d) =
λ

µd − λ
=

λ
d

Dd
− λ

. (4.74)

We sort the mobile devices by their application arrival rates in descending or-
der, i.e., θ1 ≥ θ2 ≥ ... ≥ θN. Then, u∗, d∗, αE

∗, αi
∗, i ∈ {1, ..., N} and ϕj, j ∈

{1, ..., 2N} is calculated as follows.

u∗ =
(Du
√

Dd − Dd
√

Du)λ +
√

DuS√
Du +

√
Dd

, (4.75)

d∗ =
(Dd
√

Du − Du
√

Dd)λ +
√

DdS√
Du +

√
Dd

, (4.76)

αE
∗ =





0,

if λ ≤ µE −
√

µEµC
1+2HµC

,

1− 1
λ

(
µE −

√
µEµC

1+2HµC

)
,

otherwise,

if 1
µE
≤ 1

µC
+ 2H,

1, otherwise,

(4.77)

αi
∗ =



0, if λ ≤
i

∑
j=1

(θj − θi),

1
kθi

(
λ−

k

∑
j=1

(θj − θi)
)
,

if
k

∑
j=1

(θj − θk) < λ ≤
k+1

∑
j=1

(θj − θk+1),

k ∈ {i, ..., N − 1},
1, otherwise,

(4.78)

74

ϕj =


j

∑
i=1

(θi − θj), if i ≤ N,

N

∑
i=1

θi, otherwise.
(4.79)

f1
∗(λ), f2

∗(λ) and f3
∗(λ) can be calculated by f1

∗(λ) = hE(λ, αE
∗)+ hC(λ, αE

∗),
f2
∗(λ) = hE(λ, αE

∗)+ hC(λ, αE
∗) and f3

∗(λ) = ∑N
i=1 hi(αi), respectively, and shown

as follows.

f1
∗ =

(
√

dU +
√

dD)
2λ

S− (dU + dD)λ
, (4.80)

f2
∗ =





λ
µE−λ ,

if λ ≤ µE −
√

µE
1

µC
+2H

,

(λ− µE)(
1

µC
+ 2H)− 1 + 2

√
µE
µC

+ 2µEH,

otherwise,

if 1
µE
≤ 1

µC
+ 2H,

λ(1
µC

+ 2H), otherwise,

(4.81)

f3
∗ =



θ1−λ
µ−(θ1−λ)

+
N

∑
i=2

θi

µ− θi
, if λ ≤ θ1 − θ2,

j

j

∑
i=1

θj − jλ

jµ−
j

∑
i=1

θi − λ

+
N

∑
i=j+1

θi

µ− θi
, if

j

∑
i=1

(θi − θj) ≤ λ ≤
j+1

∑
i=1

(θi − θj+1),

j ∈ {2, ..., N − 1},

N
N

∑
i=1

θi − Nλ

Nµ−
N

∑
i=1

θi − λ

, if
N

∑
i=1

(θi − θN) ≤ λ,

0, otherwise.
(4.82)

4.3.1 Parameter Settings

The number of mobile devices is set to 100. The service rate of a mobile device and
the average size of the application input data are set to 1 and 0.4 MB, respectively,
i.e., µ = 5

7 and Du = 0.4 MB. Additionally, the average size of the application

75

output data is set as 0.1 MB, i.e., Dd = 0.1 MB. The service rate of the edge server
is set to 14 times that of a mobile device, i.e., µE

µ = 14. We assume that the service
rate of the cloud server is the same as that of the edge server, i.e., µE = µC. The
total transmission rate is set as 80 Mbps, i.e., S = 80 Mbps. The transmission delay
of the high-speed link between the edge server and the cloud server is set to 0.5 s,
i.e., H = 0.5 s. The average arrival rate of applications on the ith mobile device,
θi, i ∈ {1, ..., N}, is generated randomly within the range [0, 0.8µ]. The setting
of parameters is shown in Table 4.4. The program used in our experiments was
developed using Python 3.6 on a computer running Microsoft Windows 10 with
an Intel E3 3.0 GHz CPU and 24 GB of memory.

Table 4.4. Parameter settings in experiments.

Setting Description
100 number of mobile devices

5
7 service rate of a mobile device

14 service rate ratio of server vs. mobile device
0.4MB average sizes of the input data
0.1MB average sizes of the output data

80Mbps total transmission rate
0.5s transmission delay between the edge server and the cloud

server
[0, 0.8× 5

7] average arrival rate of applications on a mobile device

4.3.2 Effect of Total Transmission Rate

Figure 4.10 shows the average application response times for different approaches
with various total transmission rates of the shared channels, as obtained through
numerical experiments. The total transmission rates are set as 0, 20, 40, 60, 80,
100, 120, 140 and 160 Mbps in each experiment, respectively. We find that our pro-
posed algorithm performs much better than the others for a wide range of total
transmission rates. When the total transmission rate is low, few applications are
offloaded. As the total transmission rate increases, increasingly more applications
are offloaded. When the total transmission rate is low, the IPM-based algorithm
yields considerably worse results than the other algorithms because the IPM-based
algorithm does not consider the queuing time on the shared communication, re-
sulting in incorrect offloading. Additionally, when the total transmission rate is
high, as the transmission rate increases, the performance of the IPM-based algo-
rithm is almost invariant because it fails to consider the cooperation between the
edge server and the cloud server. The limited resources of the edge server restrict

76

the application offloading in the IPM-based algorithm. Because the ERWP algo-
rithm fails to consider the cooperation of the edge server and the cloud server, our
algorithm always outperforms the ERWP algorithm. These results demonstrate
that our algorithm can choose an opportune offloading strategy for various total
transmission rates.

Figure 4.10. Effect of total transmission rate.

In order to further test the performance of our proposed algorithm, we con-
sider the case of that the service rates of mobile devices are different with each
other. In this case, the service rate of a mobile device is generated randomly within
the range [4

7 , 6
7] rather than fixed as 5

7 . The average application response times for
different approaches with various total transmission rates, as obtained through nu-
merical experiments, are shown in Figure 4.11. We can find that our algorithm still
outperforms previous algorithms no matter whether the service rates of mobile
devices are same or not.

Additionally, in order to test the robustness of our proposed algorithm, we con-
sider the case of that transmission rates are randomly fluctuated within the ranges

77

,,--..._
Cf.) --­(I)

s
(I)
Cf.)

s:::
0
0..
Cf.)
(I)
I-,

(I)

~
I-,

~

3.5

- --- - --- - --- - --- - .. - - . - - . - -
-a-No offloaded
◄o IPM-based

3 -• ERWP
- ALO

2.5

2

1.5

0 20 40 60 80 100 120 140 160

total transmssion rate (Mbps)

Figure 4.11. Effect of total transmission rate (service rates of mobile devices are
different).

of [20, 60], [40, 120], [60, 180] and [80, 240] Mbps, respectively. The offloading
strategies are obtained with fixed total transmission rate as 40, 80, 120 and 160
Mbps, respectively, but tested in fluctuating transmission rate scenarios. We sim-
ulate the execution of applications that arrive over a period of 12 hours, where
each simulation is run 100 times. Figure 4.12 shows the average response times
of applications when the transmission rate fluctuation time ratio changes from 0
to 100%. The half-widths of the confidence intervals at the 99% confidence level
are all less than 0.1% of the sample means and therefore are not shown in the fig-
ure. We find that the response time is nearly invariant for all algorithms in each
scenarios, proving the high robustness of these algorithms.

Moreover, we also consider an other case of transmission rate fluctuation. In
a period of 1000 seconds, the total transmission rate increases by 10% in a time
slot of 100 seconds, but decreases by 10% in another time slot of 100 seconds. The
offloading strategies are obtained with fixed total transmission rate but tested in

78

--..
00
'-'
(I)

s ·-.....
(I)
00
Q
0
0..
00
(I)
I-<
(I)
00
~
I-<
(I)

>-
~

3.4 _ -• _ -a- _ _,._ _ --- _ .. __ • __ ■ __

2.9

2.4

1.9

1.4

0.9
0 20

' I
'.
~ -. ,

-a-No offloaded
~ !PM-based
-•· ERWP
- ALO

. --+· . ~ . -♦ • - • · -.... -.... . - •- . -
40 60 80 100 120 140 160

total transmssion rate (Mbps)

(a) 20∼60 Mbps. (b) 40∼120 Mbps.

(c) 60∼180 Mbps. (d) 80∼240 Mbps.

Figure 4.12. Randomly fluctuating total transmission rate.

fluctuating transmission rate scenarios. We simulate the execution of applications
that arrive over a period of 12 hours, where each simulation is run 100 times. Fig-
ure 4.13 shows the average response times of applications in which the average
transmission rates are 40, 80, 120 and 160 Mbps, respectively. The half-widths of
the confidence intervals at the 99% confidence level are all less than 0.1%. The
results show that fluctuation ratios of average response time are lower than 1%.

4.3.3 Effect of Ratio of the Computing Power of Server vs. Mobile
device

Figure 4.14 shows the average application completion times achieved with the dif-
ferent approaches for various values of the ratio of the computing power of the

79

3.5 -----------------~

,. - - - --- - - - • - - - - • - - - --- - - - 1•
---No offloaded

- IPM-based
-~ ERWP

-+-ALO

20 40 60 80 100

ratio of transmission rate fluctuation time(%)

3.5 -----------------~

,. - - - --- - - - • - - - - • - - - --- - - - 1•
---No offloaded

- IPM-based
-~ ERWP

-+-ALO

- .. - ·• - .. -·. - .. +- .. - . ♦- .. -

~ . - . - -~ . - . - •/r- . - . - - . - •II,:- . - • - •

20 40 60 80 100

ratio of transmission rate fluctuation time(%)

3.5

3.5

•• - - - --- - - - • - - - -• - - - --- - - - ti

---No offloaded

- IPM-based
-~ ERWP

-+-ALO

- .. - ·♦ - .. -·. - .. +- .. - . ♦- •• -
.. . - . - -~ . - . - •/r- . - . - - . - •II,:- • - • - •

~ ~ 00 W 100

ratio of transmission rate fluctuation time(%)

•• - - - --- - - - • - - - -• - - - --- - - - ti

---No offloaded

- IPM-based
-~ ERWP

-+-ALO

- . . - ·• - .. -· . - .. +- .. - . ♦- .. -

.. . - . - -~ . - . - •/r- . - . - ·Ir- . - . - ·II,:- . - • - •

0 20 40 60 80 100

ratio of transmission rate fluctuation time (%)

(a) Average transmission rate is 40
Mbps.

(b) Average transmission rate is 80
Mbps.

(c) Average transmission rate is 120
Mbps.

(d) Average transmission rate is 160
Mbps.

Figure 4.13. Continuously fluctuating total transmission rate.

server to that of the mobile device, as obtained through numerical experiments.
The values of ratio of the computing power of a server to that of a mobile device
are set as 6, 8, 10, 12, 14, 16, 18 and 20 in each experiment, respectively. From Fig-
ure 4.14, we find that our algorithm can always achieve high performance since
the cooperation between servers is considered. As the computing power ratio be-
tween the server and mobile device increases, the average response time of the
IPM-based algorithm decreases because this algorithm only utilized the compu-
tation resources on the edge server, which causes a large queueing time on the
edge server when the processing rate of the server is low. The performance of the
ERWP algorithm is almost invariant since this algorithm does not consider the co-
operation of the edge server and the cloud server. These results demonstrate that

80

~1.5
Q)

-E

0.5

~1.5
Q)

-E

!PM-based

!PM-based

ERWP

ERWP

ALO

■ Without fluctuation
□ Fluctuation

ALO

~1.5
Q)

-E
1A
§
~ I

~
Q)
bl)
ro

~
ro

0.5

~1.5
Q)

-E

!PM-based ERWP

!PM-based ERWP

■ Without fluctuation
□ Fluctuation

ALO

■ Without fluctuation
□ Fluctuation

ALO

Figure 4.14. Effect of computing power ratio.

our algorithm ensures the utilization of server resources while ensuring that the
transmission delay remains low.

4.3.4 Effect of Number of Mobile Devices

Figure 4.15 shows the average application completion times of algorithms with
varying numbers of mobile devices, as obtained through numerical experiments.
The numbers of users are set as 1, 50, 100, 150 and 200 in each experiment, respec-
tively. From Figure 4.15, we can find that our algorithm outperforms the other
algorithms. When there are few mobile devices, all of the algorithms offload all
applications from the mobile devices. However, applications are offloaded to the
remote cloud server in the ERWP algorithm, which cases extra transmission delay.
Thus, our algorithm and the IPM-based algorithm outperform the ERWP algo-
rithm. As the number of mobile devices increases, the ERWP algorithm shows
better performance than the IPM-based algorithm but still performs worse than

81

3.5

3

6

- - --- - --- - - ■ - - - -• - - --- - -

........

8

••

10 12

-. No offloaded
-+ !PM-based
-• ERWP
- ALO

14 16 18

ratio of processing rate of a server to a mobile device

20

Figure 4.15. Effect of the number of users.

our algorithm. The cooperation between servers is considered in our algorithm so
that the utilization of server resources in our algorithm is higher than that in the
other algorithms. These results prove that our algorithm shows better scalability
than the other algorithms.

4.4 Conclusion

In this study, we focus on the problem of how to offload computationally inten-
sive applications and how to determine the transmission rate of communication
channels in order to minimize the average application response time. We consider
a three-tier cloud computing system in which applications are offloaded from mo-
bile devices to the edge servers and further offloaded to the cloud servers if nec-
essary. We also consider the limited total transmission rate of the shared com-
munication channels. The problems of computation offloading and transmission

82

3.5 ,-----------------------,

3

~ 2.5
'-"

Q.)

8 ·-..... 2
Q.)
rn
§
~ 1.5
Q.)
1--,

Q.)
bl)
ro
1--,
Q.)

> ro

0.5

-----------4----- ■ -----

_. No offloaded
~ !PM-based
-• ERWP
- ALO

o~----~----~----~----~
0 50 100 150 200

number of mobile devices

rate determination have been jointly studied and formulated as an optimization
problem. The joint problem has been analysed and transformed into a piecewise
convex optimization problem. An efficient algorithm has been proposed to find
the optimal solution to our problem. The proposed algorithm has been tested by
experiments, and the results show that our proposed algorithm outperforms pre-
vious algorithms. Additionally, the results also show that our algorithm has high
robustness.

83

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we firstly study the task level offloading problem which controls both
of the data transmission and the task execution. Then, we study the application
level offloading problem from the viewpoint of system analysis. In conclusion,
the computation offloading for mobile cloud computing in term of minimizing the
average response time of applications has been completely studied in this thesis.

In chapter 3, we have studied the task level offloading problem of how to of-
fload tasks of applications, which consist of a set of parallel and serial tasks, from
multiple mobile devices to an edge server via a shared communication channel in
an online scenario while considering the resource limitations of both of the shared
channel and the edge server. A three-phase offloading method is proposed in this
study to solve the problem. We firstly focus on the offloading problem where only
the resource limitation of the shared channel is considered. Two effective offload-
ing approaches are proposed and switched depending on the degree of system
congestion in order to obtain the initial solution. In second phase, the resource
limitation of the edge server is considered and a resource assignment algorithm is
proposed to assign the unoccupied computation resource for tasks which are de-
cided to be offloaded in initial solution and adjust the initial solution. At last, the
data transmission time is rescheduled if necessary. We have tested the proposed
method via simulation experiments with various system parameters and find that
our method is significantly outperforms previous methods. The main reason of
this finding is that the collisions on the shared channel are scheduled and the char-
acteristic of parallel tasks is utilized in our offloading strategy.

In chapter 4, we have studied the application level offloading problem of how
to integrally offload applications from mobile devices. A three-tier computation
offloading system with multiple mobile devices, edge servers and cloud servers is

84

considered in our study. In this system, an application can be integrally offloaded
from a mobile device to an edge server, and further offloaded to a cloud server if
necessary. The resource limitations of the mobile devices, edge servers and shared
channels between mobile devices and edge servers are considered in our study.
We focus on the joint computation offloading and transmission rate determination
problem and propose an offline offloading strategy to minimize the average re-
sponse time of applications. We have formulated the joint problem as a non-convex
optimization problem based on the characteristic of the computation offloading
system and further transform the formulated problem into a single-variable piece-
wise convex optimization problem based on our analysis. An efficient algorithm is
proposed to find the optimal offloading ratios and the optimal transmission rates.
According to experiments, we can find that our proposed algorithm outperforms
previous algorithms and the performance of our algorithm is highly robust.

5.2 Future Work

In this thesis, we have studied the computation offloading for mobile cloud com-
puting in term of minimizing time consumption. In this section, we will present
some worthy research topics in mobile cloud computing which can be studied in
the future.

• Computation offloading in term of minimizing energy consumption.

We have studied the computation offloading problem to minimize time con-
sumption in this thesis. However, it is also important to reduce the energy
consumption for mobile devices. Because of the limited battery capacity on
mobile devices, one of the most crucial design objectives of the mobile device
is extending its battery lifetime [68]. Some related works such as [69–73] have
focused on the energy consumption minimization. Being different with time
consumption minimization, only the energy consumption of mobile devices,
such as the energy consumption for computation processing and the data
transferring/receiving, are taken into consideration in this topic. Therefore,
the offloading strategies which aim at minimizing energy consumption pre-
fer to offload more computations to the server in order to reduce the energy
consumption of the mobile devices. However, it may postpone response time
of applications. Thus, it is important to study how to minimize the energy
consumption under a response time requirement.

• Data sharing in mobile cloud computing.

The problem of how to use the computation resources of servers has been
studied in this thesis. However, servers can provide not only the computa-

85

tion resources but also the storage resources. It is also important to study how
to use the storage resources of servers, i.e., data sharing problem in mobile
cloud computing. There are some related works such as [74–80] have studied
the data sharing in mobile cloud computing. Being different with computa-
tion offloading, which is an unidirectional process that the computations are
offloaded from a mobile device to a server, data sharing is a bidirectional
process including both of data collecting from a mobile device to a server
and data pushing from a server to a mobile device. In data collection, it is
necessary to study how to enhance the security and reduce the energy con-
sumption of data transmission. In data pushing, the major problem is how to
allocate the data at servers in order to ensure that the data can be transmitted
to mobile devices efficiently.

86

Acknowledgements

First and foremost, I would like to express my the deepest respect and the most
sincere appreciation to my adviser, Prof. Yongbing Zhang, for his patience, en-
couragement and careful guidance. Every time I have questions, he always give
me careful guidance and detailed advice. When I am confused, he always points
my way forward. Without his enlightening instruction, I could not have com-
pleted my thesis. His boundless enthusiasm, careful attention to detail and infinite
patience enlighten me not only in this thesis but also in my future study. It is my
privilege to have the opportunity to study under his guidance.

I also would like to thank Prof. Phung-Duc Tuan and Prof. Masahiro Hachimori
for their useful suggestions and opinions. According to their advices, I can finish
my study smoothly.

In addition, I would like to thank the rest of my thesis committee: Prof. Hiroy-
asu Ando and Prof. Shigetomo Kimura, for their insightful comments and instruc-
tive suggestions.

Last but not least, I would like to extend my special thanks to my parents and
my family, who support me to move on and give me courage in my difficult times.

87

Bibliography

[1] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, No. 4, 2010; pp. 51-56.

[2] K. Akherfi, M. Gerndt and H. Harroud, “Mobile cloud computing for compu-
tation offloading: Issues and challenges,” Applied computing and informatics,
Vol. 14 No. 1, 2018; pp. 1-16.

[3] S. Patidar, D. Rane and P. Jain, ”A survey paper on cloud computing,” 2012
Second International Conference on Advanced Computing & Communication Tech-
nologies, 2012; pp. 394-398.

[4] X. Fan, J. Cao, and H. Mao, ”A survey of mobile cloud computing,” ZTE Com-
munications, 2011.

[5] F. Liu, P. Shu, H. Jin, et al. “Gearing resource-poor mobile devices with pow-
erful clouds: architectures, challenges, and applications,” IEEE Wireless com-
munications, Vol. 20, No. 3, 2013; pp. 14-22.

[6] F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Sys-
tems Engineering, Vol. 57, No. 3, 2015; pp. 221-224.

[7] B. Liang, V. W. S. Wong, R. Schober, et al. “Mobile edge computing,” Key Tech-
nologies for 5G Wireless Systems, Vol. 16, No. 3, 2017; pp. 1397-1411.

[8] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for
multi-server mobile-edge computing networks,” IEEE Transactions on Vehicu-
lar Technology, Vol. 68, No. 1, 2019; pp. 856-868.

[9] V. Tripathi, ”Adaptive Computation Offloading in Mobile Cloud Comput-
ing,” CLOSER, 2017.

[10] A. Amies, “Developing and hosting applications on the cloud,” IBM Press,
2012.

88

[11] W. Y. Chang, H. Abu-Amara and J. F. Sanford, “Transforming enterprise cloud
services,” Springer Science & Business Media, 2010.

[12] A. Fox, D. A. Patterson and S. Joseph, “Engineering software as a service: an
agile approach using cloud computing,” Strawberry Canyon LLC, 2013.

[13] Z. Li, C. Wang and R. Xu, “Computation offloading to save energy on hand-
held devices: a partition scheme,” ACM International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 2001; pp. 238-246.

[14] M. V. Barbera, S. Kosta, A. Mei, et al. “To offload or not to offload? the band-
width and energy costs of mobile cloud computing,” IEEE International Con-
ference on Computer Communications, 2013; pp. 1285-1293.

[15] I. Trummer and C. Koch, “Solving the join ordering problem via mixed integer
linear programming,” ACM International Conference on Management of Data,
2017; pp. 1025-1040.

[16] O. Gurobi, “Gurobi optimizer reference manual,” http://www.gurobi.com, 2015.

[17] B. Zhao, Z. Xu, C. Chi, et al. “Mirroring smartphones for good: A feasibility
study,” International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services, 2010; pp. 26-38.

[18] R. Kemp, N. Palmer, T. Kielmann, et al. “Cuckoo: a computation offloading
framework for smartphones,” International Conference on Mobile Computing,
Applications, and Services, 2010; pp. 59-79.

[19] E. Cuervo, A. Balasubramanian, D. Cho, et al. “MAUI: making smartphones
last longer with code offload,” Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, 2010, pp. 49-62.

[20] M. Satyanarayanan, V. Bahl, R. Caceres, et al. “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, 2009.

[21] M. R. Rahimi, “Exploiting an elastic 2-tiered cloud architecture for rich mobile
applications,” IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2012; pp. 1-2.

[22] R. M. Rahimi, N. Venkatasubramanian, S. Mehrotra, et al. “MAPCloud:
Mobile applications on an elastic and scalable 2-tier cloud architecture,”
IEEE/ACM 5th International Conference on Utility and Cloud Computing, 2012;
pp. 83-90.

89

[23] M. R. Rahimi, N. Venkatasubramanian and A. V. Vasilakos, “MuSIC: Mobility-
aware optimal service allocation in mobile cloud computing,” IEEE 6th Inter-
national Conference on Cloud Computing, 2013; pp. 75-82.

[24] T. X. Tran, A. Hajisami, P. Pandey, et al. “Collaborative mobile edge comput-
ing in 5G networks: New paradigms, scenarios, and challenges,” IEEE Com-
munications Magazine, Vol. 55, No. 4, 2017; pp. 54-61.

[25] X. Chen, “Decentralized computation offloading game for mobile cloud com-
puting,” IEEE Transactions on Parallel and Distributed Systems, Vol. 26, No. 4,
2014; pp. 974-983.

[26] X. Chen, L. Jiao, W. Li, et al. “Efficient multi-user computation offloading for
mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, Vol.
24, No, 5, 2015; pp. 2795-2808.

[27] E. Meskar, T. D. Todd, D. Zhao, et al. “Energy efficient offloading for compet-
ing users on a shared communication channel,” IEEE International Conference
on Communications, 2015; pp. 3192-3197.

[28] E. Meskar, T. D. Todd, D. Zhao, et al. “Energy aware offloading for compet-
ing users on a shared communication channel,” IEEE Transactions on Mobile
Computing, Vol. 16, No. 1, 2016; pp. 87-96.

[29] J. Zheng, Y. Cai, Y. Wu, et al. “Dynamic computation offloading for mobile
cloud computing: A stochastic game-theoretic approach,” IEEE Transactions
on Mobile Computing, Vol. 18, No. 4, 2018; pp. 771-786.

[30] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” IEEE Conference on Computer Communications, 2017; pp. 1-9.

[31] C. Yi, J. Cai and Z. Su, “A Multi-User Mobile Computation Offloading and
Transmission Scheduling Mechanism for Delay-Sensitive Applications,” IEEE
Transactions on Mobile Computing, 2019.

[32] W. Fan, Y. Liu, B. Tang, et al. “Computation offloading based on cooperations
of mobile edge computing-enabled base stations,” IEEE Access, Vol. 6, 2017;
pp. 22622-22633.

[33] L. Liu, Z. Chang, X. Guo, et al. “Multi-objective optimization for computa-
tion offloading in mobile-edge computing,” IEEE Symposium on Computers and
Communications, 2017; pp. 832-837.

90

[34] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading in
heterogeneous networks,” IEEE Transactions on Mobile Computing, Vol. 17, No.
2, 2017; pp. 461-474.

[35] X. Ma, S. Wang, S. Zhang, et al. “Cost-Efficient Resource Provisioning for Dy-
namic Requests in Cloud Assisted Mobile Edge Computing,” IEEE Transac-
tions on Cloud Computing, 2019.

[36] M. T. Thai, Y. D. Lin, Y. C. Lai, et al. “Workload and Capacity Optimization for
Cloud-Edge Computing Systems with Vertical and Horizontal Offloading”,
IEEE Transactions on Network and Service Management, 2019.

[37] B. G. Chun, S. Ihm, P. Maniatis, et al. “Clonecloud: elastic execution between
mobile device and cloud,” ACM Proceedings of the 6th Conference on Computer
systems, 2011; pp. 301-314.

[38] M. R. Ra, A. Sheth, L. Mummert, et al. “Odessa: enabling interactive percep-
tion applications on mobile devices,” ACM Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, 2011; pp. 43-56.

[39] M. Jia, J. Cao and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” IEEE Con-
ference on Computer Communications Workshops, 2014; pp. 352-357.

[40] H. Wu, W. Knottenbelt, K. Wolter, et al. “An optimal offloading partitioning
algorithm in mobile cloud computing,” International Conference on Quantitative
Evaluation of Systems, 2016; pp. 311-328.

[41] M. Goudarzi, M. Zamani and A. T. Haghighat, “A fast hybrid multi-site com-
putation offloading for mobile cloud computing,” Journal of Network and Com-
puter Applications, Vol. 80, 2017; pp. 219-231.

[42] Y. Tao, Y. Zhang and Y. Ji, “Efficient computation offloading strategies for mo-
bile cloud computing,” IEEE International Conference on Advanced Information
Networking and Applications, 2015; pp. 626-633.

[43] R. Kumari, S. Kaushal and N. Chilamkurti, “Energy conscious multi-site com-
putation offloading for mobile cloud computing,” Soft Computing, Vol. 22, No.
20, 2018; pp. 6751-6764.

[44] G. Zhang, Y. Chen, Z. Shen, et al. “Distributed energy management for multi-
user mobile-edge computing systems with energy harvesting devices and
QoS constraints.” IEEE Internet of Things Journal, 2018.

91

[45] Y. Mao, J. Zhang and K. B. Letaief, “Joint task offloading scheduling and
transmit power allocation for mobile-edge computing systems,” IEEE Wire-
less Communications and Networking Conference, 2017; pp. 1-6.

[46] H. Xing, L. Liu, J. Xu, et al. “Joint task assignment and wireless resource allo-
cation for cooperative mobile-edge computing,” IEEE International Conference
on Communications, 2018; pp. 1-6.

[47] H. Wu, Y. Sun and K. Wolter, “Energy-efficient decision making for mobile
cloud offloading,” IEEE Transactions on Cloud Computing, 2018.

[48] L. Yang, J. Cao, H. Cheng, et al. “Multi-user computation partitioning for la-
tency sensitive mobile cloud applications,” IEEE Transactions on Computers,
Vol. 64, No. 8, 2014; pp. 2253-2266.

[49] L. Yang, B. Liu, J. Cao, et al. “Joint computation partitioning and resource al-
location for latency sensitive applications in mobile edge clouds,” IEEE Trans-
actions on Services Computing, 2019.

[50] K. Guo, M. Yang, Y. Zhang Y, et al. “An Efficient Dynamic Offloading Ap-
proach based on Optimization Technique for Mobile Edge Computing,” IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering,
2018; pp. 29-36.

[51] K. Guo, M. Yang and Y. Zhang, “Computation offloading over a shared com-
munication channel for mobile cloud computing”, IEEE Wireless Communica-
tions and Networking Conference, 2018; pp. 1-6.

[52] K. Guo, M. Yang, Y. Zhang, et al. “Efficient resource assignment in mobile
edge computing: A dynamic congestion-aware offloading approach”, Journal
of Network and Computer Applications, Vol. 134, 2019; pp. 134: 40-51.

[53] P. Dempsey, “The Teardown: Samsung Galaxy S8 Plus smartphone,” Engi-
neering & Technology, Vol. 12, No. 6, 2017; pp. 78-79.

[54] L. Yang, W. Liu, N. Guan, et al. “Dark silicon-aware hardware-software col-
laborated design for heterogeneous many-core systems,” 22nd Asia and South
Pacific Design Automation Conference, 2017; pp. 494-499.

[55] S. Yang, X. Bei, Y. Zhang, et al. “Application offloading based on R-OSGi in
mobile cloud computing,” IEEE 4th International Conference on Mobile Cloud
Computing, Services, and Engineering, 2016; pp. 46-52.

92

[56] Y. Zhang, H. Liu, L. Jiao, et al. “To offload or not to offload: an efficient code
partition algorithm for mobile cloud computing,” IEEE 1st International Con-
ference on Cloud Networking, 2012; pp. 80-86.

[57] A. B. Craig, “Understanding augmented reality: Concepts and applications,”
Newnes, 2013.

[58] E. Blem, J. Menon and K. Sankaralingam, “A detailed analysis of contempo-
rary arm and x86 architectures,” UW-Madison Technical Report, 2013.

[59] K. Guo, M. Yang, Y. Zhang, et al. “Joint Computation Offloading and Band-
width Assignment in Cloud-Assisted Edge Computing”, IEEE Transactions on
Cloud Computing, 2019.

[60] J. G. Shanthikumar, S. Ding and M. T. Zhang, “Queueing theory for semicon-
ductor manufacturing systems: a survey and open problems,” IEEE Transac-
tions on Automation Science and Engineering, Vol. 4, No. 4, 2007; pp. 513-522.

[61] Chain rule, https://en.wikipedia.org/wiki/Chain rule

[62] Lagrange multiplier, https://en.wikipedia.org/wiki/Lagrange multiplier

[63] Karush–Kuhn–Tucker conditions, https://en.wikipedia.org/wiki/Karush-
Kuhn-Tucker conditions

[64] Binary search algorithm, https://en.wikipedia.org/wiki/Binary search algorithm

[65] Newton’s method, https://en.wikipedia.org/wiki/Newton%27s method

[66] J. Abate and W. Whitt, “Transient behavior of the M/M/l queue: Starting at
the origin,” Queueing systems, Vol. 2, No. 1, 1987; pp. 41-65.

[67] J. Walrand, “A probabilistic look at networks of quasi-reversible queues,”
IEEE transactions on information theory, Vol. 29, No. 6, 1983; pp. 825-831.

[68] H. Wu, “Multi-objective decision-making for mobile cloud offloading: A sur-
vey,” IEEE Access, Vol. 6, 2018; pp. 3962-3976.

[69] G. Zhang, W. Zhang, Y. Cao, et al. “Energy-delay tradeoff for dynamic of-
floading in mobile-edge computing system with energy harvesting devices,”
IEEE Transactions on Industrial Informatics, Vol. 14, No. 10, 2018; pp. 4642-4655.

[70] Y. Zhang, J. He and S. Guo, “Energy-Efficient Dynamic Task Offloading for
Energy Harvesting Mobile Cloud Computing,” IEEE International Conference
on Networking, Architecture and Storage, 2018; pp. 1-4.

93

[71] Y. Kim, H. W. Lee and S. Chong, “Mobile computation offloading for applica-
tion throughput fairness and energy efficiency,” IEEE Transactions on Wireless
Communications, Vol. 18, No. 1, 2018; pp. 3-19.

[72] C. You, Y. Zeng, R. Zhang, et al. “Asynchronous mobile-edge computation of-
floading: Energy-efficient resource management,” IEEE Transactions on Wire-
less Communications, Vol. 17, No. 11, 2018; pp. 7590-7605.

[73] J. Zhang, H. Guo and J. Liu, “Energy-Aware Task Offloading for Ultra-Dense
Edge Computing,” IEEE International Conference on Internet of Things and IEEE
Green Computing and Communications and IEEE Cyber, Physical and Social Com-
puting and IEEE Smart Data, 2018; pp. 720-727.

[74] J. Zhang, Z. Zhang and H. Guo. “Towards secure data distribution systems in
mobile cloud computing,” IEEE Transactions on Mobile Computing, Vol. 16, No.
11, 2017; pp. 3222-3235.

[75] R. Li, C. Shen, H. He, et al. “A lightweight secure data sharing scheme for
mobile cloud computing,” IEEE Transactions on Cloud Computing, Vol. 6, No.
2, 2017; pp. 344-357.

[76] X. Li, S. Liu, F. Wu, et al. “Privacy preserving data aggregation scheme for mo-
bile edge computing assisted IoT applications,” IEEE Internet of Things Journal,
2018.

[77] Y. Xie, H. Wen, B. Wu, et al. “A modified hierarchical attribute-based encryp-
tion access control method for mobile cloud computing,” IEEE Transactions on
Cloud Computing, Vol. 7, No, 2, 2019; pp. 383-391.

[78] R. K. Lomotey, J. A. Nilson, K. Mulder, et al. “Mobile medical data synchro-
nization on cloud-powered middleware platform,” IEEE Transactions on Ser-
vices Computing, Vol. 9, No. 5, 2016; pp. 757-770.

[79] A. Awad, A. Matthews, Y. Qiao, et al. “Chaotic searchable encryption for mo-
bile cloud storage,” IEEE Transactions on Cloud Computing, Vol. 6, No. 2, 2015;
pp. 440-452.

[80] A. Capponi, C. Fiandrino, D. Kliazovich, et al. “A cost-effective distributed
framework for data collection in cloud-based mobile crowd sensing architec-
tures,” IEEE Transactions on Sustainable Computing, Vol. 2, No. 1, 2017; pp. 3-16.

94

