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Deligne-Mumford stacks, which are locally modeled by quotients of schemes by finite group actions, and
are used to model moduli spaces of interesting automorphisms such as elliptic curves, were introduced
in [P. Deligne and D. Mumford, Publ. Math., Inst. Hautes Étud. Sci. 36, 75–109 (1969; Zbl 0181.48803);
Matematika, Moskva 16, No. 3, 13–53 (1972; Zbl 0233.14008)]. The theory of Deligne-Mumford stacks has
lead to splendid developments in algebraic geometry [L. Lafforgue, J. Am. Math. Soc. 11, No. 4, 1001–
1036 (1998; Zbl 1045.11041)] and Gromov-Witten theory [M. Kontsevich, Commun. Math. Phys. 147,
No. 1, 1–23 (1992; Zbl 0756.35081)]. Higher categorical generalizations of Deligne-Mumford stacks have
been attempted in [B. Toën and G. Vezzosi, Homotopical algebraic geometry. II: Geometric stacks and
applications. Providence, RI: American Mathematical Society (AMS) (2008; Zbl 1145.14003); J. Lurie,
“Derived algebraic geometry. V: Structured spaces”, Preprint, arXiv:0905.0459] to find out far reaching
generalizations of algebraic geometry such as the algebraic geometry of simplicial commutative rings and
the algebraic geometry of E∞-ring spectra.
The notion of a smooth orbifold grew out of differential topology and the study of automorphic forms, also
appearing in the study of 3-manifolds and in foliation theory. Although orbifolds were initially defined
as topological spaces with an orbifold atlas, they are now encoded as differentiable stacks [D. A. Pronk,
Compos. Math. 102, No. 3, 243–303 (1996; Zbl 0871.18003)]. Étale differentiable stacks are differentiable
stacks which are mild generalizations of smooth orbifolds, subsuming leaf spaces of foliated manifolds
and quotients of manifolds by almost-free Lie group actions [D. Carchedi, Algebr. Geom. Topol. 13, No.
2, 831–903 (2013; Zbl 1263.22001); Adv. Math. 352, 56–132 (2019; Zbl 07082639); R. Hepworth, Algebr.
Geom. Topol. 9, No. 2, 1105–1175 (2009; Zbl 1175.55004); Theory Appl. Categ. 22, 542–587 (2009; Zbl
1206.37009); I. Moerdijk, Rev. Acad. Ci. Exactas Fís. Quím. Nat. Zaragoza, II. Ser. 48, 5–33 (1993; Zbl
0804.57014); D. A. Pronk, Compos. Math. 102, No. 3, 243–303 (1996; Zbl 0871.18003); G. Trentinaglia and
C. Zhu, Compos. Math. 148, No. 3, 807–834 (2012; Zbl 1245.18005); H.-H. Tseng and C. Zhu, Compos.
Math. 142, No. 1, 251–270 (2006; Zbl 1111.58019); C. Wockel, Adv. Math. 228, No. 4, 2218–2257 (2011;
Zbl 1238.22012)].
This monograph develops a universal framework to study higher étale differentiable stacks and orbifolds on
the one hand, and higher algebraic Deligne-Mumford stacks as well as their derived and spectral analogues
on the other. This framework was developed not only to provide a useful language putting orbifolds and
Deligne-Mumford stacks on the same footing but also to reveal new insights about these objects and their
generalizations. In particular, a new characterization of classical Deligne-Mumford stacks as well as its
extension to the derived and spectral setting can be obtained, while, in the differentiable setting, we find
out that there is a natural correspondence between n-dimensional higher étale differentiable stacks and
classical fields for n-dimensional field theories in the sense of [D. S. Freed and C. Teleman, Commun.
Math. Phys. 326, No. 2, 459–476 (2014; Zbl 1285.81057)].
An ∞-topos is an (∞, 1)-category of ∞-sheaves, ∞-sheaves being higher categorical versions of sheaves
and stacks taking values in in the (∞, 1)-category Grp∞ of ∞-groupoids. An ∞groupoid is a model for
the homotopy type of a topological space, so that ∞-sheaves are essentially homotopy sheaves of spaces.
The homeomorphism type of a topological space X is to be recovered from its topos Sh (X) of sheaves of
sets , and a general topos is to be put down as a generalized space with points being of automorphisms.
The homeomorphism type of X is also encoded by the ∞-topos Sh∞ (X) of ∞-sheaves of ∞-groupoids
over X, and a general ∞-topos is to be put down as a generalized space with points possessing auto-
morphisms, automorphisms between automorphisms, automorphisms between automorphisms between
automorphisms, and so on. The idea is the same geometric intuition behind the underlying space of a
higher orbifold or higher Deligne-Mumford stack. The author models all the geometric objects as ∞-topoi
with an appropriate structure sheaf. The author starts by specifying local models, generalized orbifolds
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or Deligne-Mumford stacks being defined as those objects locally equivalent to the local models, in much
the same way as one builds manifolds out of Euclidean spaces or schemes our of affine schemes.
The monograph consists of 6 chapters. Chapter 1 is an introduction and an overview. Chapter 2 offers
a brief review of higher topos theory. develops the role of n-topoi (0 ≤ n ≤ ∞) as generalized spaces,
paying particular attention to the notion of a local homeomorphism between n-topoi and introducing a
Grothendieck topology (called the étale topology) on higher topoi, by which one can glue higher topoi
together along local homeomorphisms. Chapter 4 introduces the concept of structured ∞-topoi and
reviews the notions of geometry and geometric structure in [J. Lurie, “Derived algebraic geometry. V:
Structured spaces”, Preprint, arXiv:0905.0459].
Chapter 5 is the cornerstone of the monograph, developing a natural framework to model generalized
higher orbifolds and Deligne-Mumford stacks as structured ∞-topoi. The following four theorems are
established.
Theorem. There is a full and faithful functor

L ↪→ Sh∞ (L)

between the (∞, 1)-category of L-étendues and the (∞, 1)-category of ∞-sheaves over L.
Theorem. If the (∞, 1)-category of local models L is essentially small, then there is a canonical equivalence
of (∞, 1)-categories

Lét ≃ Sh∞
(
Lét

)
between the (∞, 1)-category of L-étendues and only their étale morphisms, and the (∞, 1)-category of ∞-
sheaves over the (∞, 1)-category consisting of the objects of L-étendues and only their étale morphisms.
Moreover, the ∞-topos U := Sh∞

(
Lét

)
carries a canonical structure sheaf OU , making the pair (U, OU )

an L-étendue. Furthermore, (U, OU ) is a terminal object in Lét.
Theorem. An ∞-sheaf X on L is Deligne-Mumford iff it is in the essential image of the étale prolongation
functor

j! : Sh∞
(
Lét

)
→ Sh∞ (L)

Theorem. An ∞-sheaf X on L is Deligne-Mumford iff it is in the essential image of a relative prolongation
functor

jU
! : Sh∞

(
Lét

)
→ Sh∞ (L)

for some small subcategory U of L.
Chapter 6 spells out the general machinery developed in Chapter 5 within the setting of differential
topology, and in the cases of classical, derived and spectral algebraic geometry. §6.1 defines the concept
of a differentiable ∞-orbifold and an étale differentiable ∞-stack. The main results are the following two
theorems.
Theorem. An ∞-sheaf X on the category of smooth manifolds Mfd is an étale differentiable stack iff
it is étale differentiable ∞-stack and is 1-truncated. Similarly, X is a differentiable orbifold iff it is a
differentiable ∞-orbifold and is 1-truncated.
Theorem. Any étale differentiable ∞-stack X can be realized as the étale space of an X -gerbe over an
effective étale differentiable ∞-stack Y.
§6.2 applies the results of Chapter 5 to the setting of G-schemes for a geometry in the sense of [J.
Lurie, “Derived algebraic geometry. V: Structured spaces”, Preprint, arXiv:0905.0459], working out
consequences of these results to the theory of higher Deligne-Mumford stacks, derived Deligne-Mumford
stacks and spectral Deligne-Mumford stacks. The main results are the following theorem and a list of
theorems as special cases of the second, third and fourth theorems above.
Theorem. Let k be a commutative ring and let L be the category of affine k-schemes, viewed as a category
of structured ∞-topoi, with each commutative k-algebra A being associated to its small étale ∞-topos
Sh∞ (Aét). An ∞-sheaf on affine k-schemes with respect to the étale topology is a Deligne-Mumford stack
in the classical sense iff it is a Deligne-Mumford stack for L and is 1-truncated.

Reviewer: Hirokazu Nishimura (Tsukuba)
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