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A continuous-time Markov chain is a way to determine the dynamics of a population which is spread across
some finite set of states. Population can flow between the states. Under certain conditions the population
of the states tend towards an equilibrium in which at any state the inflow of population is equal to its
outflow. In an electrical circuit of linear registors, charge can flow along wires, In equilibrium, without any
driving voltage from outside, the current along each wire is zero, and the potential at each node is equal. A
continuous-time Markov chains is called detailed balanced if in equilibrium, for any two vertices connected
by an edge, the flow from one of the two vertices to the other equals the opposite flow. The authors call
continuous-time Markov chains Markov processes, and the principal objective in this paper is to formalize
and exploit the well-known analogy between detailed balanced Markov processes and electrical circuits
of linear registors (potential ⇔ population, current ⇔ flow, conductance ⇔ rate constant, power ⇔
dissipation) [F. P. Kelly, Reversibility and stochastic networks. Chichester etc.: John Wiley & Sons
(1979; Zbl 0422.60001); Reversibility and stochastic networks. With a new preface. Reprint of the 1979
ed. Cambridge: Cambridge University Press (2011; Zbl 1260.60001); J. F. C. Kingman, J. Appl. Probab.
6, 1–18 (1969; Zbl 0177.21807); C. St. J. A. Nash-Williams, Proc. Camb. Philos. Soc. 55, 181–194 (1959;
Zbl 0100.13602)].
The authors have studied electrical circuits by introducing a framework for black boxing a circuit and
extracting the relations it determines between potential-current pairs at the input amd output terminals
[J. C. Baez and B. Fong, Theory Appl. Categ. 33, 1158–1222 (2018; Zbl 1402.18005)]. The relation depicts
the external behavior as can be observed by someone who is to perform measurements at the terminals.
It is significant that black boxing is compositional in the sense that if one builds a circuit from smaller
pieces, the external behavior of the entire circuit can be determined from those of the pieces. This paper
exploits this framework to detailed balanced Markov processes.
The paper consists of 14 sections together with a tutorial appendix on decorated cospans [B. Fong, Theory
Appl. Categ. 30, 1096–1120 (2015; Zbl 1351.18003)]. §II is an overview of main ideas. §III is a review of
Markov processes. §IV defines open Markov processes and the open master equation. §V introduces the
concept of detailed balance for open Markov processes. §VI recalls the principle of minimum power for
open circuits of linear registors and expounds how to black box them. §VII introduces the principle of
minimum dissipation for open detailed balanced Markov processes and explicate how to black box them.
§VIII claims the analogy between electrical circuits and detailed balanced Markov processes formally. §IX
describes how to compose open Markov processes, while §X does the same for detailed balanced Markov
processes. §XI describes the black box functor sending any open detailed balanced Markov process to
the linear relation which describes its external behavior. §XII makes the analogy between open detailed
balanced Markov processes and open circuits a functor. It is shown in §XIII that the linear relations in
the image of these black box functors are Lagrangian relations between symplectic vector spaces, being
shown also that the master equation is to be seen as a gradient flow equation. §XIV summarizes the main
findings in the paper.
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