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There is a rich analogy between quantum mechanics and so-called stochastic mechanics, where prob-
abilities take place of amplitudes [J. C. Baez and J. D. Biamonte, Quantum techniques in stochastic
mechanics. Hackensack, NJ: World Scientific (2018; Zbl 1405.81005)]. In quantum mechanics, the state
of a system is specified by an element ψ of a Hilbert space, and its time evolution is described by the
Schrödinger equation

d

dt
ψ = −iHψ

where H is a self-adjoint linear operator called the Hamiltonian. For Markov processes, the state of a
system is specified by a probability distribution ψ on some measure space, and its time evolution is
described by the so-called master equation

d

dt
ψ = Hψ

where H is linear operator known as a stochastic Hamiltonian, transition rate matrix or intensity matrix.
It is well-known in quantum mechanics that conserved quantities correspond to self-adjoint operators
commuting with the Hamiltonian. The principal objective in this paper is to present a similar result for
Markov processes. In the Hamiltonian approach to classical mechanics, an observable having vanishing
Poisson bracket with the Hamiltonian both generate symmetries of the Hamiltonian and is a conserved
quantity, which extends to quantum mechanics if Poisson brackets are replaced by commutators. For a
Markov process, an observable commutes with the Hamiltonian iff both its expected value and that of
its square are constant in time for every state.
The main results of the paper are the following three theorems.
Theorem. Let X be a finite set, H : RX → RX an infinitesimal stochastic operator, and O an observable.
Then the following are equivalent:

1. [O,H] = 0.
2. d

dt (f (O) , ψ (t)) = 0 for all polynomials f : R → R and all ψ obedient to the master equation with
the Hamiltonian H.

3. d
dt (O,ψ (t)) = d

dtfO
2, ψ (t) = 0 for all ψ obedient to the master equation with the Hamiltonian H.

4. Oi = Oj if i and j lie in the same connected component of the transition graph H.
Theorem. Suppose X is a σ-finite measure space and

U (t) : L1 (X) → L1 (X)

is a Markov semigroup. Suppose O is an observable. Then

[O,U (t)] = 0

for all t ≥ 0 iff for all probability distributions ψ on X, the expected values (O,U (t)ψ) and
(
O2, U (t)ψ

)
are constant as a function of t.
Theorem. Suppose X is a σ-finite measure space and

U : L1 (X) → L1 (X)

is a stochastic operator. Suppose O is an observable. Then [O,U ] = 0 iff for all probability distributions
ψ on X, we have

(O,Uψ) = (O,ψ)
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and (
O2, Uψ

)
=

(
O2, ψ

)
.
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