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We study an interplay of disorder and correlation in the one-dimensional hole-doped Hubbard-model
with disorder (Anderson-Hubbard model) by using the density-matrix renormalization group method.
Concentrating on the doped-hole-density profile, we find in a large U=t regime that the clean system
exhibits a simple fluidlike behavior whereas finite disorders create locally Mott regions which expand
their area with increasing the disorder strength contrary to the conventional sense. We propose that such an
anomalous Mott phase formation assisted by disorder is easily observable in atomic Fermi gases by setting
up the box-shape trap.
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Recently, atomic Fermi gas loaded on an optical lattice
(FGOL) has attracted a lot of attention, since FGOL is
expected to be an excellent testbed to resolve controversial
issues in condensed matter physics [1]. One of the advan-
tages of FGOL is a tunability of the interaction between
two atoms associated with the Feshbach resonance [2],
which opens up a pathway to systematically study not
only BCS-BEC crossover but also strongly correlated be-
haviors. Another advantage is the flexibility in making
playgrounds such as the periodical lattice, which provides
various stages including disorder effects for many-body
interacting systems [1].

Among a huge number of proposals on FGOL, one of the
unique challenges is a study of interplay between random-
ness and strong correlation [1]. This is one of the most
difficult but important problems in real solids because
high-Tc superconductor is a typical reality. In high-Tc
superconductors, their common mother phase is the Mott
insulator showing antiferromagnetism [3]. The carrier is
doped by chemical substitution, which inevitably brings a
random potential. However, the disorder effects in strongly
correlated systems have been too complicated issues to
study theoretically and experimentally in condensed mat-
ters. Thus, its interplay has remained as an unsolved issue.
On the other hand, FGOL is a very good experimental
reality in systematically examining such a complex issue
due to the wide tunability and flexibility.

In this Letter, we study the doped Mott insulator with
disorder in a form of the Anderson-Hubbard model [see
Eq. (1) below], and predict experimental results on FGOL
by means of the density-matrix renormalization group
(DMRG) method [4,5]. Consequently, we find that the
disorder does not destroy the Mott insulator but help the
growth of the Mott phase domains contrary to our naive
expectation. Such a nontrivial feature is kept and amplified
until the disorder amplitude fully exceeds over the repul-
sive interaction strength.

So far, the harmonic trapped FGOL has been considered
in theoretical studies. For instance, Gao et al. have reported

their DMRG calculation results for the 1D Anderson-
Hubbard model [6,7] with the harmonic trap potential
[8]. However, the harmonic trap induces spatially inhomo-
geneous filling which is different from usual situations in
solid state matters. On the other hand, the box trap with
disorder provides almost equivalent stages. Thus, our tar-
get reality is one-dimensional (1D) FGOL confined in a
box-shaped trap with lattice including randomness. In its
experimental setup, see Ref. [9] for the box-shape trap and
Ref. [1] for the random potential.

The Hamiltonian of the 1D Anderson-Hubbard model is
given by

 HAH � �t
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cyi�cj� �
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i
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where hi; ji refers to the nearest neighbors i and j � i� 1,
t is the hopping parameter between the nearest neighbor
lattice sites, U is the on-site repulsion, ci� (cyi�) is the
annihilation (creation) operator with spin index � �"; # ,
ni;��� cyi�c�� is the site density operator, and the random
on-site potential �i is chosen by a box probability distri-
bution P ��i� � ��W=2� j�ij�=W, where ��x� is the step
function and the parameter W controls the disorder
strength. In all DMRG calculations, we employ the open
boundary condition for the box-shape trap, and focus on
the site density of fermions as ni � ni;" � ni;#.

The 1D Anderson-Hubbard model has been intensively
investigated in the context of the transition between the
Anderson and Mott insulators [10–12]. To our knowledge,
however, this model has not been fully studied in a range of
slight to under doping. Although the model may look
simple, the interplay among the disorder, the interaction,
and the doped holes requires more accurate and more
systematic studies. This Letter provides the first systematic
results of doped-hole profiles under a full accuracy.

In order to calculate the ground state of the Hamiltonian
(1), we use the DMRG method [4,5]. The validity of our
DMRG results was verified by results of the exact diago-

PRL 101, 016407 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

0031-9007=08=101(1)=016407(4) 016407-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.016407


nalization in a case of (8 " , 8 # ) with 18 sites (L � 18) at
U=t � W=t � 30. Both the results give a good agreement.
The size dependence in terms of doped-hole profiles is
checked for L � 50, 100, 150, and 200, which reveal that
L � 50 is enough to characterize hole profiles. In the
following, we present results of 1D system with the length
L � 50 in three fillings, �n �

PL
i�1 ni=L � 0:96, 0.88, and

0.52. In the use of DMRG, the number of states kept m is
set maximum 256 for several cases, and m � 100 is con-
firmed to be enough to obtain convergent results because
the largest deviation of the local density between them is
below 10�4.

First, let us show DMRG results of density profiles when
2 holes ( " , # ) are doped and the filling �n � 0:96.
Figures 1(a)–1(d) display typical profiles obtained by
varying W in a fixed U=t � 30 under a certain random
configuration as depicted at the bottom. In the clean limit
(W � 0), one finds a fluidlike density profile as Fig. 1(a),
which belongs to the Tomonaga-Luttinger liquid with open
boundary conditions. With switching on W, flat density
regions whose site density equals to a unit emerge with two
clear dips as Fig. 1(b). The locations of the dips do not shift
by choice of the boundary condition, i.e., open or periodic
boundary condition. We also confirm the fact by using the
exact diagonalization in L � 18 sites. Here, we name the
flat density region and the dip ‘‘Mott plateau’’ and ‘‘hole
valley’’, respectively. We note that the number of observed

hole valleys equals to that of doped holes. This implies that
holes tend not to collect but to localize separately.
Furthermore, one finds from Figs. 1(b) and 1(c) that the
edges of the Mott plateaus become sharper and the hole
valleys become deeper as the randomness strength W in-
creases from W=t � 2 to 18 [see also Figs. 3(b) and 3(c)
for another doping case]. This clearly indicates that the
randomness assists the formation of Mott plateaus rather
than breaking the structure. This is quite nontrivial because
disorder is usually believed to break flat homogeneous
distribution. Since the clean system exhibits Tomonaga-
Luttinger liquid except for the half-filling, these results
clearly illustrate that the randomness is essential for the
local development of the Mott state, where the strong
interaction and the randomness cooperatively form the
Mott plateaus with localizing the doped holes. This is
suggestive for the fact that the insulator phase in high-Tc
superconductors survives tiny doping.

When the randomnessW increases and approachesW �
U, the Mott plateaus are disturbed partly by disorder [see
Fig. 1(d)]. By further increase of W above U, the Mott
plateau with localized holes breaks down. Figures 1(e)–
1(h) show typical density profiles in a weaker interaction
U=t � 10. Similar to Figs. 1(b) and 1(c), the structure of
the Mott plateau with localized holes is seen forW <U, as
Figs. 1(f) and 1(g). The structure is, however, completely
destroyed by the strong random potentialW >U as seen in
Fig. 1(h). Under the strong randomness, the local density
takes values close to 2 (the double occupation) at several
sites, and the Mott plateaus are too small to be identified as
a region.

The W dependent density profiles seen in Fig. 1 suggest
that there is an optimumW (U) for a fixedU (W) in making
the Mott plateaus as wide as possible and the hole valleys
as sharp as possible. To evaluate an optimum set of pa-
rameters (U, W), we introduce a function M�U;W� in the
two variable space to characterize the extent of the Mott
plateau in the total density profile, which is defined by a
summation of ‘‘closeness’’ of the local density to unit
expressed as

 M�U;W��
�XL
i�1

exp
�
��ni��;U;W��1�2

2�2

��
� �nL�

�
�
; (2)

where ni��;U;W� � ni;" � ni;# means the local site density
under a realization of the random potential at a certain set
of U, W and a local potential �, and h	i� is the algebraic
average for multiple random realizations. � characterizes
the peak width of the function, for which we fix � � 0:05.
We note that the factor 1=� �nL� is the normalization con-
stant which is adjusted to make M�U;W� ’ 1 when the ex-
tent of the Mott plateaus is the maximum, e.g., M�U;W� ’
1 when ni � 0 at two lattice points and ni � 1 at other 48
lattice points if two holes are doped in L � 50.

Figure 2 shows a contour plot of M�U;W� obtained by
the arithmetical average over ten realizations of random

FIG. 1 (color online). The randomness W dependent density
profiles n�i� for 2-holes doped case ( �n � 0:96) at two fixed
interaction strengths, (a)–(d) for U=t � 30, and (e)–(h) for
U=t � 10, under a random potential depicted in the bottom of
each figure in arbitrary unit (gray dashed line).
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potentials for �n � 0:96 (2 holes doped) case. Along a fixed
W=t line, one finds that the value of M�U;W� increases
monotonically with increasing U=t. This is consistent with
what one sees in Fig. 1; i.e., the width of the Mott plateaus
in theU=t � 30 case [Fig. 1(c)] is wider than that inU=t �
10 case [Fig. 1(h)] on the same randomness strength
W=t � 18. On the other hand, along a fixed U line, the
value of M�U;W� initially increases with increasing W,
reaches the maximum values close to W � 2t�U=2 line,
and then decreases after crossing the maximum value.
Thus, one finds in the slightly doped case that holes are
confined as compactly as possible when W is about a half
of U so that the width of the hole valley is almost a unit
lattice constant. It indicates that doped holes almost lose
their quantum delocalizing character.

Here, we turn our attention to the cases in which more
holes are doped. Figures 3(a)–3(d) show the total density
distributions of fermions in �n � 0:88 (6 holes) case with
U=t � 20, where we can confirm almost the same behav-
iors as �n � 0:96 (2 holes) case. Namely, the introduction of
disorder results in the formation of both the Mott plateaus
and hole valleys, and further increase of W makes the Mott
plateaus wider and hole valleys deeper [compare Fig. 3(b)
(W=t � 2) with (c) (W=t � 14)]. One also finds that the
number of valleys is exactly the same as that of doped holes
at W=t � 2 case while the number becomes smaller than
that of doped holes at W=t � 14 and W=t � 20. The
tendency to create the Mott plateau still remains even for
far away from the half-filling. Figures 3(e)–3(h) show the
density profile for �n � 0:52 (24 holes, i.e., close to the
quarter filling) at U=t � 10. Although the number of val-
leys is no longer the same as that of doped holes in all cases
(W=t � 2, 12, and 20) and the number of fermions is not
enough to simply form the Mott plateau at this filling, the
maximum density is nearly a unit [see Figs. 3(g) and 3(h)].
This suggests even in such a high doping level that both the
interaction and randomness cooperatively work.

Figures 4(a) and 4(b) show contour plots ofM�U;W� for
�n � 0:88 (6 holes) and �n � 0:52 (24 holes) cases, respec-
tively. These essentially show the same tendency as �n �
0:96 (2 holes) case. The value of M�U;W� increases with

FIG. 2 (color online). A contour plot of M�U;W� in 2 holes
doped case ( �n � 0:96) as a function of U=t and V=t. Arithmetic
average over ten realizations of random potentials is taken. The
step values are 2 for both U=t and W=t axes.

FIG. 4 (color online). Contour plots of the value ofM�U;W� in
(a) �n � 0:88 (6 holes) and (b) �n � 0:52 (24 holes) cases with the
arithmetic average of ten realizations of random potentials. The
step value for both U=t and W=t is 2.

FIG. 3 (color online). The randomness W dependent density
profiles n�i� of (a)–(d) 6 ( �n � 0:88) and (e)–(h) 24 ( �n � 0:52)
holes doped cases under a random potential shown in the bottom
of each figure in arbitrary unit (gray dashed line).
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increasing U=t at a fixed W=t, and the optimum value of
M�U;W� exists for a fixed U=t. On the other hand, one
finds in more details that the maximum of M�U;W� shifts
to W � 2t > U=2 side with increasing the number of
doped holes. This is because, in high hole-density cases,
the random potential magnitude required to push the local
density up to the unit becomes larger. In addition, high
hole-density causes the reduction of the maximum value of
M�U;W�, because it suppresses the correlation effect and
works unfavorably in forming the Mott plateaus.

We also examine fluctuations of M�U;W� on different
randomness by evaluating the standard deviation per aver-

age D�U;W� �
��������������������������������������������������������������
h�M��U;W�=M�U;W� � 1�2i�

p
, where

M��U;W� �
PL
i�1 exp�� 
ni��;U;W� � 1�2=2�2�=� �nL�.

As expected, one finds in Fig. 5(a) (2 holes doped case) that
D�U;W� becomes relatively small when M�U;W� shows
large values, and vice versa. This clearly demonstrates that
the formation of Mott plateaus does not depend on the
realization of random potential and M�U;W� is a good
measure to know it. We also obtain almost the same
behavior of D�U;W� in the 24 holes case as shown in
Fig. 5(b).

In conclusion, we calculated the density profiles of
fermions in the 1D Anderson-Hubbard model by varying
interaction strengths, random potential amplitudes, and
fillings below the half-filling by means of DMRG. We
found a clear signature that the presence of disorder assists
the local formation of the Mott state in the weak disorder
region whereas the Mott phase is destroyed by strong
disorder. As a characterization of the width of the Mott
phase, we calculated the function M�U;W� from the den-
sity profiles, and found that the increase of the doping rate
shifts the maximum of M�U;W� from W � 2t � U=2 line
to W � 2t > U=2 side. These nontrivial behaviors of
doped holes like the present DMRG works can be system-
atically examined by FGOL with the box trap. The experi-
mental confirmation will give a crucial contribution to
studies for doped Mott insulators.
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FIG. 5 (color online). Contour plots of D�U;W� in (a) 2 holes
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a function of U=t and V=t. Arithmetic average over ten realiza-
tions of random potentials is taken. The step values are 2 for both
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