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This paper studies operads suitable for designing networks. The authors want a malleable framework
that can handle networks of various kinds, described at a level of detail that the user is free to adjust.
To achieve this malleability, the authors introduce, as a generalization of the concept of colored directed
multigraphs, a general concept of network model, which gives an operad whose operations are ways to
build larger networks of this kind from smaller ones. Formally, given a set C' of vertex colors, a network
model is a lax symmetric monoidal functor

F:S(C)— Cat

where S(C) is the free strict symmetric monoidal category on C' and Cat is the category of small
categories endowed with its cartesian monoidal structure. The main result of the paper is that any network
model gives rise to a typed operad, also known as a colored operad or symmetric multicategory [D. Yau,
Colored operads. Providence, RI: American Mathematical Society (AMS) (2016; Zbl 1348.18014)].

By assuming that F' takes values in the category Mon of monoids and simultaneously that C' is a
singleton so that S(C) is the groupoid S, we get what is called a one-colored network model, which is a
lax symmetric monoidal functor

F:S8— Mon

Joyal initiated an extensive study of functors
F:S5— Set

under the name of species [F. Bergeron et al., Combinatorial species and tree-like structures. Transl.
from the French by Margaret Readdy. Cambridge: Cambridge University Press (1998; Zbl 0888.05001);
A. Joyal, Adv. Math. 42, 1-82 (1981; Zbl 0491.05007); Lect. Notes Math. 1234, 126-159 (1986; Zbl
0612.18002)]. It can be said that a one-colored network model is a species with some extra operations.

The paper consists of 8 sections. §2 studies one-colored network models. §3 describes a systematic pro-
cedure for getting one-colored network models from monoids. §4 studies network models with examples.
§5 describes a category NetM od of network models, showing that the procedure for network models
from monoids is functorial. Making NetMod a symmetric monoidal category, the authors give exam-
ples of how to build new network models by tensoring old ones. §6 is the technical heart of the paper,
providing the machinery to construct operads from network models in a functorial way and describing
enhancements of the well-known Grothendieck construction of thei category of elements [ F of a functor
F : C — Cat, where C is any small category. It is shown that, given a symmetric monoidal category C'
and a lax symmetric monoidal functor ' : C' — Cat, f F' is symmetric monoidal. It is also shown that
the construction sending the lax symmetric monoidal functor F' to the symmetric monoidal category [ F
is functorial. §7 applies the machinery to build operads from network models. §8 describes some algebras
of these operads, discussing an algebra whose elements are networks of range-limited communication
channels (Example 8.4).
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