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Two-dimensional non-Hermitian delocalization transition as a probe for the localization length
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When one applies a type of non-Hermitian effect, constant imaginary vector potential, to disordered systems,
delocalization is induced even in two or lower dimensions. By using the non-Hermitian induced transition as
a probe, we propose a procedure of estimating localization in arbitrary-dimensional systems. By examining
numerically the two-dimensional non-Hermitian tight-binding model with onsite disorder, it is shown that the
failure of absorbing the non-Hermitian effect, namely the breakdown of the imaginary gauge transformation,
characterize the inverse localization length near the band center.
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In noninteracting disordered systems with time-rever
symmetry, all the states are believed to be localized in two
lower dimensions. Often one encounters situations wh
non-Hermitian effect emerges effectively through coupli
with the reservoir, interaction between particles, or no
equilibrium relaxation processes. This type of non-Hermit
effect is taken into account as a finite inelastic scatter
time, hence following the scaling theory idea, localizati
will be truncated halfway only to exhibit a gradualcrossover
into metallic behavior. Recently, in a vortex pinning proble
in a bulk superconductor by columnar defects, it has b
stressed that the non-Hermitian term coupled with the fi
order differential, i.e., the imaginary vector potential, give
fundamentally different effect on localization states in dis
dered systems.1 The term appears to take account for t
in-plane magnetic field component. Along with subsequ
numerical and analytical studies,2–4 it has been recognize
that sufficiently large constant imaginary vector potential
duces states with complex eigenenergies even in one dim
sion. The phenomenon has later been understood as a
Hermitian induced delocalizationtransition not a crossover.
The same class of non-Hermitian terms is ubiquitous in
verse problems: classical~elastic, electromagnetic, or acou
tic! wave propagation with absorptive medium,5 random
walks in random media with drifting forces,6 or Burgers tur-
bulence through a Cole-Hopf transformation.7

While non-Hermitian effect is usually hard to control, th
strength of the imaginary vector potential is relatively easy
regulate not only in numerical studies but also in expe
ments. For instance, one changes the tilt angle of the m
netic field in the vortex pinning problem, or tunes an incide
frequency and change the absorption rate in electromagn
wave propagation. It has been suggested that the n
Hermitian induced delocalization process can be detecte
the energy spectrum. So with its drastic consequence on
calization, the phenomenon provides a great opportunity
investigate the localization property without resorting to a
transport phenomenon, i.e., neither attaching leads nor
pling with the reservoir.

In this Rapid Communication, pursuing the above pos
bility, we propose a procedure@Eq. ~2! below# appropriate to
extract the inverse localization length out of the no
Hermitian dependence of the energy spectrum. Whereas
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connection between the average density of states~DOS! and
the localization length has been successfully managed in
dimension, it is not the case in higher dimensions8 ~see the
argument below!. Our proposed procedure is principally a
plicable in arbitrary-dimensional systems. By using the tw
dimensional~2D! non-Hermitian model with time-reversa
symmetry, we will confirm our proposal numerically. Th
non-Hermitian delocalization in 2D systems is far from co
plete understanding, and it is still at issue whether the tr
sition is continuous or abrupt.9,10 On this regard, we also
briefly mention our point of view based on numerical resu

The Hamiltonian considered for numerical calculations
the d-dimensional non-Hermitian tight-binding model,

H~h!52
t

2 (
( i , j )

exp~h•r i j !u i &^ j u1(
i

Vi u i &^ i u, ~1!

whereh is the directed hopping, i.e., a lattice analog of t
imaginary vector potential.$Vi% is a random on-site potentia
chosen from a box distribution over (2W,W). u i & denotes
the state bound atr i , and the lattice summation (i , j ) is re-
stricted over nearest-neighboring pairs of sites. We work
the two-dimensional case, where we particularly chooseh as
hx5hy5h to avoid unnecessary troubles from lattice perio
icity. In the rest of the paper, we adopt the convention of
unit lattice constant andt52 as well as\51. Using an exact
diagonalization technique, we have calculated a complete
of eigenvalues and eigenwavefunctions on a tw
dimensional 20320 lattice.~Eigenfunctions are needed late
to justify our interpretation.! Ensemble average is taken ov
40 samples.

The possibility to detect localization by using the no
Hermitian dependence of the spectrum has already been
ticed in Ref. 1. The reasoning is as follows. Suppose
eigenstatefh50(r) is localized exponentially aroundr0 with
the localization lengthj, that is,f0;e2ur2r0u/j. When one
turns on h gradually, its eigenenergy does not change
value, while the right eigenwavefunction progresses follo
ing the imaginary gauge transformation fh(r)
;eh•(r2r0)f0(r) up to a small correction by the bounda
condition. Such ‘‘absorption’’ of the non-Hermitian influenc
©2001 The American Physical Society21-1
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on the spectrum can take effect only whenh is smaller than
the inverse localization length. Beyond that, the state un
goes such a drastic change that it transforms into a com
energy ~delocalized! state. Putting it the other way round
one uses the breakdown of the imaginary gauge transfor
tion to characterize and give a practical estimate of the
verse localization length.

A naive way to estimate the breakdown of the imagina
gauge transformation is to examine the average DOS defi
on the complex energy plane,rh(E,E)5^d(E2ReEn)d(E
2Im En)&. When all the states are localized at sufficien
small h, energies are all real andrh(E,E)}d(E). With in-
creasingh, the support ofrh(E,E) extends into aEÞ0 re-
gion in the presence of complex energy states. By defin
h0(E) by the point having a finite density atEÞ0 for eachE
one seesh0(E) indicates the breakdown of the imagina
gauge transformation. Accordingly, it is suggested that
inverse localization length may be estimated by the form
1/j(E)5h0(E).1,12

While the above argument is conceptually simple and
tractive, the estimate of the localization length by using
average DOS has been successful only in one dimens
whose success is traced to a special structure of the en
spectrum. In one dimension, irrespective of the value oh,
the support ofrh(E,E) becomes one-dimensional on th
complex energy plane, i.e., consisting of two line segme
along the real axis plus a ‘‘bubble’’ part in-between corr
sponding to complex energy states.1–4 The shape of the
bubble turns out quite insensitive to disorder configuratio
Because of it, one can readily read off the value ofh0(E)
from the endpoints of the arcs of the bubble.

By contrast, the DOS support on higher dimensions is
longer one-dimensional but much more involved. A typic
structure of the two-dimensional DOS for a sufficiently lar
h is shown in the inset of Fig. 1. As one can see, localiz
and delocalized states coexist unpredictably over the en
energy range, showing that DOS suffers large fluctuatio
The system has no clear-cut mobility edge distinguishing
tween real-energy~localized! and complex-energy~delocal-
ized! states. In fact, judging from existing numerical1 and
analytical13 results, it is very likely that the average DO

FIG. 1. A typical example of the energy spectrum for a giv
configuration of random site energies~only the upper half plane
shown here!. Random on-site potential is chosen from a box dis
bution @210,10#. The value ofh is adjusted toh50.21, where only
one pair of states~indicated by the arrow! get complex. Inset: A
typical structure of the DOS for a largerh (h50.60). Both localized
and delocalized states are mixed up in the same energy range
20132
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r(E,E) always retains a finite contribution proportional t
d(E) hence real energy states persist in existing for su
ciently largeh, even near the band center. The feature
rh(E,E) in higher dimensions makes it highly dubious
seek the breakdown of the imaginary gauge transformatio
a fixed E. Moreover, numerical calculations on two
dimensional systems suggest thath0(E) will estimate an in-
verse localization length at more than one order of mag
tude larger than that obtained by any other method such
the recursion method.14

Resolving problems above to answer whether the n
Hermitian effect characterizes the localization length or n
we propose an alternative criterion to extract the localizat
length. Our solution is to find the breakdown of the imag
nary gauge transformation in a more faithful and care
way: First we identify the smallest directed hopping stren
hc whereany of the eigenenergies gets complex in a cert
configuration of the random potential~see Fig. 1!, and next
we take the ensemble average ofhc to obtain the inverse
localization length by11

^hc&51/j~0!. ~2!

The estimated localization length corresponds to that aro
the band center, since states near the band center tend
delocalized first. Equation~2! and the procedure leading to
is our main result in the paper. The advantage of Eq.~2! is
clear. In any localized system, we can assign an unamb
ous value ofhc for each configuration, and perform the e
semble average ofhc . It should be stressed that althoug
there is no discrepancy between^hc& andh0(0) for one di-
mension,^hc& becomes much smaller thanh0(0) in higher
dimensions, since the latter cannot detect a weakly-bro
situation as in Fig. 1. Unlikeh0(E) ~if at all correctly defined
in higher dimensions!, we cannot obtain̂hc& from the aver-
age DOS.

It is worth discussing a little more the definition ofhc and
finite volume effect. Although we have initially intended t
assignhc as the point where the imaginary gauge transf
mation fails to absorb all the non-Hermitian effect, w
should keep in mind that such a mechanism works only
proximately in a finite system. Figure 2 represents a typi
evolution of the first pair of levels getting complex. It show

-

FIG. 2. An evolution of the first pair of levels turning comple
values, by increasingh. In this configuration, we assign the critica
value hc as hc50.21. The ImE50 plane is drawn as a shade
plane for a guide to the eye.
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that complex energy states appear through merging two
jacent levels, but well before it, the pair of levels shift grad
ally without gaining any imaginary part. Strictly speakin
the effect ofh partially remains for any smallh, hence the
gauge transformation is already broken down for infinite
mal h. Nevertheless, we assign the value ofhc by a merging
point. The shift of energies beforehc arises from finite-size
effect, the consistency with the periodic boundary condit
in a finite system.

To justify the statement above, Fig. 3 illustrates the spa
dependence of the right eigenwavefunctionf(r) of the cor-
responding levels of Fig. 1. When we look at the amplitu
next to a localization center, it evolves precisely in the fo
predicted by the imaginary gauge transformation~the solid
line in the figure!. However, such dependence fails apprec
bly at a point sufficiently far away from a localization cent
(r 59 on a 20320 lattice!. The deviation is responsible fo
the level shift observed inh,hc , and has nothing to do with
any precursor to delocalization. Simultaneously, Fig. 3
veals clearly that it is almost impossible, at least numerica
to detect the pointhc by examining the spatial dependence
the wave function amplitude, in contrast to the on
dimensional system.15 The overall shape is barely change
through the critical valuehc since the contribution of the
imaginary part is too small to give a visible deviation~see
the inset!. It is remarked that on a few occasions some abr
movement of the localized center is observed before reac
hc without any finite imaginary part. We still find, howeve
the spatial dependence following the gauge transforma
close to a localization center both before and after it, so
phenomenon should be attributed as well to an artifac
finite-system size.16

To obtainhc from numerical data, we need to distinguis
between energies with vanishing and nonvanishing ima
nary parts. Such type of estimate is usually hard in numer
but in our problem, we can unambiguously identify it, b
cause complex energy states always emerge by pairs~see
Fig. 2!.

Following the procedure leading to Eq.~2!, we findhc for
a given configuration of the random potential, and take

FIG. 3. The validity of the imaginary gauge transformation
the right wave function.r 21 loguReF(r01r)u is plotted as a func-
tion of the imaginary vector potentialh wherer0 is the localization
center. The value is normalized by that ath50. Squares refer to the
values atr 51, and open triangles to those atr 59. A solid line is
what is expected by the imaginary gauge transformation. In
uIm F(r01r)u for r 51 as a function ofh. A jump at hc is clearly
observed.
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ensemble average to obtain the inverse localization len
Our numerical results are compared with the ones obtai
from the recursion method combined with finite scali
analysis,14 which is known among the most reliable es
mates of the localization length. Since our numerical para
eters reside in a strongly localized region, we take
Lyapunov exponent directly as the inverse localization len
with little finite size correction.

Figure 4 shows the ensemble-averaged value^hc& and its
variance from a 20320 lattice, compared with the invers
localization length for à 3` lattice denoted by the solid
line ~for 163` lattice by the dashed line! excerpted from
Ref. 14. The agreement between^hc& and the inverse local-
ization is clear, and the variancedhc is relatively small, con-
sidering the fact we work on a comparatively small syst
size and ensembles. This shows the effectiveness of
present approach. Our data points show a systematic d
though relatively small, from thè 3` line to the 163`
line in approachinghc→1. The tendency is consistent be
cause the finite-size effect becomes increasingly promin
in this limit. It is emphasized that the agreement is subst
tial and the ability to predict the localization length quan
tatively is the virtue of Eq.~2!, while other numerical objects
such as the participation ratio are often lacking.

As for the nature of the two-dimensional non-Hermitia
delocalization transition, our view based on the present
merical results is as follows. By attributing the level shift
the regionh,hc to finite-size effect, it is natural to infer tha
the transition is not continuous but abrupt in the limit
infinite size at least for a given configuration. Byassuming
further the self-averaging property, one is tempted to re
the conclusion that the two-dimensional non-Hermitian de
calization transition is abrupt for bulk systems. It should
recalled, however, that in our particular choice of averag
procedure, we hardly respect the additional symme
present at the band center. So we believe as a possible
nario, that the transition away from the band center is d
continuous but continuous at the band center, which is c
sistent both with the nonperturbative analysis by t
supermatrix10 and with the symmetry argument applicable
the band center.9 However, the present results are not suf
cient to conclude this clearly, and it requires further stud
in the future to draw a decisive conclusion on the issue.

t:

FIG. 4. ^hc& versus the disorder strengthW to confirm Eq.~2!.
Data points (L) are obtained from 40 ensembles of a 20320 lat-
tice. The solid line is the inverse localization length for a`3`
lattice, and the dashed line for a 163` one. Excerpted from Ref
14.
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In conclusion, we have shown, to the best of our kno
edge, for the first time how the two-dimensional localizati
can be probed by using the non-Hermitian transition indu
by the imaginary vector potential, proposing a practical p
cedure to make an estimation of the inverse localizat
length. By checking the level shifting through the transitio
it has been understood clearly that the two-dimensional n
Hermitian delocalization transition occurs through merg
adjacent levels. It is true at present that the evaluation of
localization length by using the non-Hermitian effect has
yet fulfilled such accuracy as the recursion method enjo
e
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and it needs much more labor or fine tuning to findhc .
However, it surely serves as a useful alternative that one m
be able to apply even in experimental settings. Furtherm
as the present method need not increase the system si
may be advantageous in numerical studies on more com
cated systems such as the disordered interacting system
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