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Two-dimensional non-Hermitian delocalization transition as a probe for the localization length
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When one applies a type of non-Hermitian effect, constant imaginary vector potential, to disordered systems,
delocalization is induced even in two or lower dimensions. By using the non-Hermitian induced transition as
a probe, we propose a procedure of estimating localization in arbitrary-dimensional systems. By examining
numerically the two-dimensional non-Hermitian tight-binding model with onsite disorder, it is shown that the
failure of absorbing the non-Hermitian effect, namely the breakdown of the imaginary gauge transformation,
characterize the inverse localization length near the band center.
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In noninteracting disordered systems with time-reversatonnection between the average density of stdXxS) and
symmetry, all the states are believed to be localized in two othe localization length has been successfully managed in one
lower dimensions. Often one encounters situations wherdimension, it is not the case in higher dimensfofsee the
non-Hermitian effect emerges effectively through couplingargument below Our proposed procedure is principally ap-
with the reservoir, interaction between particles, or non-plicable in arbitrary-dimensional systems. By using the two-
equilibrium relaxation processes. This type of non-Hermitiardimensional(2D) non-Hermitian model with time-reversal
effect is taken into account as a finite inelastic scatteringgymmetry, we will confirm our proposal numerically. The
time, hence following the scaling theory idea, localizationnon-Hermitian delocalization in 2D systems is far from com-
will be truncated halfway only to exhibit a graduabssover ~ Plete understanding, and it is still at issue whether the tran-
into metallic behavior. Recently, in a vortex pinning problemSition is continuous or abruBt.’ On this regard, we also
in a bulk Superconductor by columnar defectS, it has beehrieﬂy mention our pOint of view based on numerical results.
stressed that the non-Hermitian term coupled with the first- The Hamiltonian considered for numerical calculations is
order differential, i.e., the imaginary vector potential, gives athe d-dimensional non-Hermitian tight-binding model,
fundamentally different effect on localization states in disor-
dered systems.The term appears to take account for the )
in-plane magnetic field component. Along with subsequent __ - ENTIVE i\ /i
numerical and analytical studiés? it has been recognized H(h)= 2 (.2, exph r”)|l><1|+2i vilixil, - @
that sufficiently large constant imaginary vector potential in-
duces states with complex eigenenergies even in one dimen-
sion. The phenomenon has later been understood as a noMbereh is the directed hopping, i.e., a lattice analog of the
Hermitian induced delocalizatiomansition not a crossover. imaginary vector potentia{V;} is a random on-site potential
The same class of non-Hermitian terms is ubiquitous in dichosen from a box distribution over-(\W,W). |i) denotes
verse problems: classic&lastic, electromagnetic, or acous- the state bound at, and the lattice summation,() is re-
tic) wave propagation with absorptive medidnrandom  stricted over nearest-neighboring pairs of sites. We work on
walks in random media with drifting forcéspr Burgers tur-  the two-dimensional case, where we particularly chdoas
bulence through a Cole-Hopf transformation. h,=hy=h to avoid unnecessary troubles from lattice period-

While non-Hermitian effect is usually hard to control, the icity. In the rest of the paper, we adopt the convention of the
strength of the imaginary vector potential is relatively easy tounit lattice constant ant=2 as well asi = 1. Using an exact
regulate not only in numerical studies but also in experi-diagonalization technique, we have calculated a complete set
ments. For instance, one changes the tilt angle of the ma@f eigenvalues and eigenwavefunctions on a two-
netic field in the vortex pinning problem, or tunes an incidentdimensional 2 20 lattice.(Eigenfunctions are needed later
frequency and change the absorption rate in electromagnetio justify our interpretation.Ensemble average is taken over
wave propagation. It has been suggested that the norO samples.

Hermitian induced delocalization process can be detected by The possibility to detect localization by using the non-
the energy spectrum. So with its drastic consequence on Iddermitian dependence of the spectrum has already been no-
calization, the phenomenon provides a great opportunity t&iced in Ref. 1. The reasoning is as follows. Suppose an
investigate the localization property without resorting to anyeigenstatep,_q(r) is localized exponentially aroung with
transport phenomenon, i.e., neither attaching leads nor cothe localization lengtlt, that is, po~e~I"""’é. When one
pling with the reservoir. turns onh gradually, its eigenenergy does not change in

In this Rapid Communication, pursuing the above possivalue, while the right eigenwavefunction progresses follow-
bility, we propose a proceduf&qg. (2) below] appropriate to ing the imaginary gauge transformation ¢u(r)
extract the inverse localization length out of the non-~e™ ("™ ¢(r) up to a small correction by the boundary
Hermitian dependence of the energy spectrum. Whereas trmondition. Such “absorption” of the non-Hermitian influence
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FIG. 1. A typical example of the energy spectrum for a given
configuration of random site energiésnly the upper half plane
shown herg Random on-site potential is chosen from a box distri-
bution[ —10,10. The value ot is adjusted tdh=0.21, where only
one pair of stategindicated by the arroyvget complex. Inset: A
typical structure of the DOS for a largei(h=0.60). Both localized . - o .
and delocalized states are mixed up in the same energy range. P(E.€) alwaysretains a finite contribution proportional to

6(€) hence real energy states persist in existing for suffi-
on the spectrum can take effect only whefs smaller than ciently largeh, even near the band center. The feature of
the inverse localization length. Beyond that, the state undern(E,€) in higher dimensions makes it highly dubious to
goes such a drastic change that it transforms into a compleseek the breakdown of the imaginary gauge transformation at
energy (delocalized state. Putting it the other way round, a fixed E. Moreover, numerical calculations on two-
one uses the breakdown of the imaginary gauge transformalimensional systems suggest thg(E) will estimate an in-
tion to characterize and give a practical estimate of the inverse localization length at more than one order of magni-
verse localization length. tude larger than that obtained by any other method such as

A naive way to estimate the breakdown of the imaginarythe recursion methotf.
gauge transformation is to examine the average DOS defined Resolving problems above to answer whether the non-
on the complex energy plane;(E,&)=(8(E—ReE,)8(¢  Hermitian effect characterizes the localization length or not,
—ImE,)). When all the states are localized at sufficiently We propose an alternative criterion to extract the localization
small h, energies are all real ang,(E,&)x8(E). With in-  length. Our solution is to find the breakdown of the imagi-
creasingh, the support ofp,(E,£) extends into &#0 re-  nary gauge transformation in a more faithful and careful
gion in the presence of complex energy states. By definingvay: First we identify the smallest directed hopping strength
ho(E) by the point having a finite density &t 0 for eachE . whereany of the eigenenergies gets complex in a certain
one seedy(E) indicates the breakdown of the imaginary configuration of the random potentiedee Fig. ], and next
gauge transformation. Accordingly, it is suggested that thave take the ensemble average of to obtain the inverse
inverse localization length may be estimated by the formuldocalization length b¥
LE(E) =ho(E) .2

While the above argument is conceptually simple and at- (he)y=1/£(0). 2
tractive, the estimate of the localization length by using the
average DOS has been successful only in one dimensiofhe estimated localization length corresponds to that around
whose success is traced to a special structure of the energf§e band center, since states near the band center tend to be
spectrum. In one dimension, irrespective of the valué,of delocalized first. Equatiof®) and the procedure leading to it
the support ofp,(E,£) becomes one-dimensional on the iS our main result in the paper. The advantage of @yis
complex energy plane, i.e., consisting of two line segmentglear. In any localized system, we can assign an unambigu-
along the real axis plus a “bubble” part in-between corre-ous value ofh. for each configuration, and perform the en-
sponding to complex energy stafeé. The shape of the semble average dfi.. It should be stressed that although
bubble turns out quite insensitive to disorder configurationsthere is no discrepancy betweén,) andhy(0) for one di-
Because of it, one can readily read off the valuehgfE)  mension,(h;) becomes much smaller thdm(0) in higher
from the endpoints of the arcs of the bubble. dimensions, since the latter cannot detect a weakly-broken

By contrast, the DOS support on higher dimensions is neituation as in Fig. 1. Unliky(E) (if at all correctly defined
longer one-dimensional but much more involved. A typicalin higher dimensions we cannot obtairgh,) from the aver-
structure of the two-dimensional DOS for a sufficiently largeage DOS.

h is shown in the inset of Fig. 1. As one can see, localized It is worth discussing a little more the definition lof and
and delocalized states coexist unpredictably over the entirtinite volume effect. Although we have initially intended to
energy range, showing that DOS suffers large fluctuationsassignh. as the point where the imaginary gauge transfor-
The system has no clear-cut mobility edge distinguishing bemation fails to absorb all the non-Hermitian effect, we
tween real-energylocalized and complex-energydelocal-  should keep in mind that such a mechanism works only ap-
ized states. In fact, judging from existing numeritaind  proximately in a finite system. Figure 2 represents a typical
analyticat® results, it is very likely that the average DOS evolution of the first pair of levels getting complex. It shows

FIG. 2. An evolution of the first pair of levels turning complex
values, by increasing. In this configuration, we assign the critical
value h, ash,=0.21. The ImME=0 plane is drawn as a shaded
plane for a guide to the eye.
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FIG. 4. (h;) versus the disorder strengi to confirm Eq.(2).
Data points € ) are obtained from 40 ensembles of ax2D lat-
tice. The solid line is the inverse localization length foroa<
lattice, and the dashed line for a6 one. Excerpted from Ref.

FIG. 3. The validity of the imaginary gauge transformation in
the right wave functionr ~* log|Re®(r,+r)| is plotted as a func-
tion of the imaginary vector potentilwherer is the localization
center. The value is normalized by thahat 0. Squares refer to the
values atr =1, and open triangles to thoserat 9. A solid line is

what is expected by the imaginary gauge transformation. Inset: . . o
lIm d(ro+1)| for r=1 as a function oh. A jump ath, is clearly ~ €nSemble average to obtain the inverse localization length.

observed. Our numerical results are compared with the ones obtained
from the recursion method combined with finite scaling

that complex energy states appear through merging two agwnalysis:* which is known among the most reliable esti-
jacent levels, but well before it, the pair of levels shift gradu-mates of the localization length. Since our numerical param-
ally without gaining any imaginary part. Strictly speaking, eters reside in a strongly localized region, we take the
the effect ofh partially remains for any smah, hence the Lyapunov exponent directly as the inverse localization length
gauge transformation is already broken down for infinitesi-with little finite size correction.
mal h. Nevertheless, we assign the valuehgfby a merging Figure 4 shows the ensemble-averaged vahye and its
point. The shift of energies befole, arises from finite-size variance from a 2820 lattice, compared with the inverse
effect, the consistency with the periodic boundary conditionlocalization length for aec X lattice denoted by the solid
in a finite system. line (for 16X lattice by the dashed lineexcerpted from

To justify the statement above, Fig. 3 illustrates the spatiaRef. 14. The agreement betwe@n.) and the inverse local-
dependence of the right eigenwavefunctig(r) of the cor- ization is clear, and the variané,, is relatively small, con-
responding levels of Fig. 1. When we look at the amplitudesidering the fact we work on a comparatively small system
next to a localization center, it evolves precisely in the formsize and ensembles. This shows the effectiveness of the
predicted by the imaginary gauge transformatitme solid present approach. Our data points show a systematic drift,
line in the figuré. However, such dependence fails appreciathough relatively small, from thee X« line to the 16<~
bly at a point sufficiently far away from a localization center line in approachinch.— 1. The tendency is consistent be-
(r=9 on a 20X 20 lattice. The deviation is responsible for cause the finite-size effect becomes increasingly prominent
the level shift observed ih<<h., and has nothing to do with in this limit. It is emphasized that the agreement is substan-
any precursor to delocalization. Simultaneously, Fig. 3 redtial and the ability to predict the localization length quanti-
veals clearly that it is almost impossible, at least numericallytatively is the virtue of Eq(2), while other numerical objects
to detect the poini, by examining the spatial dependence of such as the participation ratio are often lacking.
the wave function amplitude, in contrast to the one- As for the nature of the two-dimensional non-Hermitian
dimensional systert®. The overall shape is barely changed delocalization transition, our view based on the present nu-
through the critical valuéh, since the contribution of the merical results is as follows. By attributing the level shift in
imaginary part is too small to give a visible deviatiGee the regionh<h, to finite-size effect, it is natural to infer that
the inset. It is remarked that on a few occasions some abrupthe transition is not continuous but abrupt in the limit of
movement of the localized center is observed before reachinigfinite size at least for a given configuration. Bgsuming
h. without any finite imaginary part. We still find, however, further the self-averaging property, one is tempted to reach
the spatial dependence following the gauge transformatiothe conclusion that the two-dimensional non-Hermitian delo-
close to a localization center both before and after it, so thealization transition is abrupt for bulk systems. It should be
phenomenon should be attributed as well to an artifact ofecalled, however, that in our particular choice of averaging
finite-system sizé® procedure, we hardly respect the additional symmetry

To obtainh, from numerical data, we need to distinguish present at the band center. So we believe as a possible sce-
between energies with vanishing and nonvanishing imaginario, that the transition away from the band center is dis-
nary parts. Such type of estimate is usually hard in numericg;ontinuous but continuous at the band center, which is con-
but in our problem, we can unambiguously identify it, be-sistent both with the nonperturbative analysis by the
cause complex energy states always emerge by gsés  supermatriX’ and with the symmetry argument applicable to
Fig. 2. the band centetHowever, the present results are not suffi-

Following the procedure leading to E@®), we findh. for ~ cient to conclude this clearly, and it requires further studies
a given configuration of the random potential, and take thén the future to draw a decisive conclusion on the issue.
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In conclusion, we have shown, to the best of our knowl-and it needs much more labor or fine tuning to fing.
edge, for the first time how the two-dimensional localizationHowever, it surely serves as a useful alternative that one may
can be probed by using the non-Hermitian transition inducedbe able to apply even in experimental settings. Furthermore,
by the imaginary vector potential, proposing a practical pro-as the present method need not increase the system size, it
cedure to make an estimation of the inverse localizatiormay be advantageous in numerical studies on more compli-
length. By checking the level shifting through the transition,cated systems such as the disordered interacting systems.
it has been understood clearly that the two-dimensional non-

Hermitian delocalization transition occurs through merging

adjacent levels. It is true at present that the evaluation of the We acknowledge the support in the initial stage of the
localization length by using the non-Hermitian effect has notresearch from the Grant-in-Aid for Scientific research No.
yet fulfilled such accuracy as the recursion method enjoys]1216204 by Japanese Ministry of Education.
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