1 Title

2	Increased traffic injuries among older unprotected road users following the introduction of an
3	age-based cognitive test to the driver's license renewal procedure in Japan
4	
5	Author names and affiliations
6	Masao Ichikawa ^a , Haruhiko Inada ^b , Shinji Nakahara ^c
7	^a Department of Global Public Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki,
8	Japan
9	^b Johns Hopkins International Injury Research Unit, Johns Hopkins Bloomberg School of Public
10	Health, Baltimore, Maryland, United States of America
11	^c Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki,
12	Kanagawa, Japan
13	
14	Corresponding author
15	Masao Ichikawa
16	Department of Global Public Health, Faculty of Medicine, University of Tsukuba
17	1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
18	Tel/Fax: +81-29-853-3423
19	E-mail address: masao@md.tsukuba.ac.jp

Abstract

21 Background

22	To deal with the	increasing numb	er of motor vehicle	collisions (MVCs) among older drivers, a
		0		· · · · · · · · · · · · · · · · · · ·	

- 23 cognitive test has been introduced to a license renewal procedure for drivers aged \geq 75 years since
- June 2009. This might have prompted the reduction or cessation of driving by older drivers. We
- 25 therefore examined whether older drivers' chance of experiencing MVCs as unprotected road users
- 26 has increased after the test was introduced.

27

28 Methods

Using police-reported national data on MVCs from January 2005 through December 2016, we calculated the monthly injury rates (including deaths, severe injuries, and minor injuries) among unprotected road users (bicyclists and pedestrians) by sex and age group (70–74, 75–79, 80–84, and ≥ 85 years). The ratios of the injury rates of unprotected road users in the three oldest age groups (who were subjected to the test) to those aged 70–74 years (not subjected to the test) were also calculated. Then, we conducted an interrupted time-series analysis based on the injury rate ratios to control for extraneous factors affecting MVCs over the study period.

36

37 Results

38	There was a significant increase in traffic injuries of unprotected road users at the time the test was
39	introduced among females aged 75–84 years, and at a later time among males aged ≥80 years and
40	females aged \geq 85 years.
41	
42	Conclusion
43	Licensing policies for older drivers should be rigorously evaluated, taking into account the safety of
44	older unprotected road users, and should be balanced against it.
45	
46	Keywords
47	Traffic policy; older adults; vulnerable road users; interrupted time series; Japan

1. Introduction

51	With aging in driver populations, particularly in industrialized countries, stringent driver
52	licensing policies have been adopted for older drivers to deal with the increasing number of motor
53	vehicle collisions (MVCs). ¹⁻³ In Denmark; Japan; Ontario, Canada; and Taiwan, from 2006, 2009,
54	2014, and 2017, respectively, cognitive test was introduced to older drivers' license renewal
55	procedures. This cognitive test was intended to reduce older drivers' MVCs by dissuading those
56	cognitively impaired from driving. However, the effectiveness of such a licensing practice in
57	reducing MVCs has remained unclear. ^{1,4,5} Rather, there have been concerns about the deterrent effect
58	of a demanding licensing procedure on premature driving cessation ^{1,6} and adverse health
59	consequences associated with driving cessation. ⁷
60	One of the possible adverse consequences of driving cessation is an increased injury risk
61	because such older adults become unprotected road users due to the modal shift from driving to
62	walking and cycling. A study in the United Kingdom reported that the risk of fatal injuries per trip
63	for pedestrians was higher than that for drivers and passengers among adults aged ≥ 70 , ⁸ suggesting
64	increased risk of fatal injuries per trip after driving cessation. In fact, a pre-post study in Denmark
65	observed an increase in fatal injuries among older unprotected road users after the introduction of a
66	cognitive test to older drivers that is possibly due to their modal shift from driving to non-driving.9
67	The magnitude of the possible adverse consequences, however, could differ between Japan
68	and Denmark or any other Western countries; given the proportion of fatal road injuries shared by

69	pedestrians and bicyclists in Japan (over 50%), which is much higher than that in the Western
70	countries (about 20–30%). ¹⁰ This implies differences in the road environment and exposure to traffic
71	of unprotected road users between the countries, which might influence the consequences. Thus, it is
72	necessary to investigate the degree to which introducing a cognitive test to older drivers' licensing
73	renewal procedure influenced injury risk of the consequent older unprotected road users in Japan.
74	Furthermore, a more rigorous method of evaluation should be employed to confirm findings of
75	previous studies. This is because, some studies, such as the evaluation study conducted in Denmark
76	was simply a pre-post comparison study. ⁹ Causality is hard to claim from the finding of such a study.
77	Licensing policies for older drivers should be balanced against the safety of the consequent
78	older unprotected road users to secure the overall traffic safety of older adults. Therefore, in the
79	present study, we compared traffic deaths and injuries by type of road users among older adults, to
80	identify the most vulnerable road users and to examine the relevance of the current traffic safety
81	policies. Then, we conducted an interrupted time-series analysis, a more rigorous method than a
82	pre-post comparison, to evaluate the impact of introducing the cognitive test to older drivers' license
83	renewal procedure on traffic deaths and injuries in older unprotected road users. An interrupted
84	time-series analysis is one of quasi-experimental study designs, and this design has been used for the
85	evaluation of traffic safety interventions such as cycle helmet legislation and traffic speed zones. ¹¹
86	

2. Methods

88 2.1 Study settings

In Japan, a cognitive test at license renewal of drivers aged \geq 75 years began nationwide in June 2009. 89 For these drivers, the interval of license renewal is 3 years and the age and month of license renewal 90 differs between drivers. However, all those subjected to the test had taken it at least once by June 912012. The purpose of the test was to identify older drivers that are suspected of having dementia and 9293 to discourage such from driving. Those suspected of having dementia during the test who subsequently committed a traffic violation were obliged to see a physician and had their license 94 revoked if they were diagnosed with dementia. In 2017, this regulation was revised, and those 95suspected of having dementia during the test have to see a physician before license renewal.¹⁰ 96 Therefore, older people who reduced or stopped driving or had their license revoked might make 97more trips as unprotected road users such as bicyclists and pedestrians than before. The detail of the 98cognitive test and license renewal procedures was described previously, and the introduction of the 99 cognitive test had no intended safety benefits of reducing MVCs by older drivers.⁵ 100

101

102 **2.2 Study design**

- 103This is an interrupted time-series study, which is based on police-reported MVC national104data from 2005 to 2016, consisting of pre-introduction of a cognitive test (53 months, from January1052005 to May 2009), during-introduction (36 months, from June 2009 to May 2012), and
- 106 post-introduction periods (55 months, from June 2012 to December 2016).

108 2.3 Data

109	We obtained monthly police-reported MVC national data on the number of deaths, severe
110	injuries, and minor injuries by type of road users (motor vehicle drivers, their passengers, bicyclists,
111	and pedestrians), and by their sex and age between 2005 and 2016. The data were made available by
112	the Institute for Traffic Accident Research and Data Analysis, which compiles the traffic statistics of
113	the National Police Agency. Death was defined as death within 24 hours of the MVC, severe injury
114	was defined as injuries that were estimated to require medical care for 30 days or longer after the
115	MVC by the physician, and minor injury was defined as injuries that were estimated to require care
116	for less than 30 days. The monthly number of population stratified by sex and age was derived from
117	population estimates by the Ministry of Internal Affairs and Communications for the same period. ¹²
118	
119	2.4 Variables
120	Based on the data, we calculated the rates (per person-year) and the proportions of deaths,
121	severe injuries, and minor injuries (as mutually exclusive categories) of both sexes by age group (70-
122	74, 75–79, 80–84, and \geq 85 years) and type of road users for the entire study period, in order to
123	identify by what mode of transportation older adults were most likely to be victimized. The
124	numerator of the rate was the sum of the monthly number of deaths, severe injuries or minor injuries

125 of both sexes by age group and type of road users, and the denominator of the rate was the sum of

126	monthly estimated population of corresponding sex and age group divided by 12 (the number of
127	months per year) to make its unit person-year. The denominator of the proportion was the total
128	number of deaths, severe injuries, and minor injuries, respectively, of both sexes in all ages, which
129	also include those younger than 70 years.
130	Next, we calculated the monthly rates of injuries (including deaths, severe injuries, and
131	minor injuries, hereinafter referred to as injury rates) per person-year among unprotected road users
132	(bicyclists and pedestrians) who were aged \geq 70 years by sex and age group (70–74, 75–79, 80–84,
133	and \geq 85 years). The numerator of the injury rate was the monthly number of injuries (including
134	deaths, severe injuries, and minor injuries) of unprotected road users by sex and age group, and the
135	denominator was the monthly population estimates of corresponding sex and age group divided by
136	12. We used five-year age groups, instead of three-year age groups based on the interval of license
137	renewal (every 3 years), because the age and month of license renewal differs between drivers
138	according to their birthday and age of last renewal (i.e., it is not that all and only drivers aged 75, 78,
139	81, years renew their license and take the cognitive test, but that all drivers aged \geq 75 years whose
140	license is expiring take the test when they renew their license).
141	Then, we calculated the ratios of injury rates (referred to as injury rate ratios) of unprotected
142	road users aged 75–79, 80–84, and \geq 85 years to those aged 70–74 years, as the outcome variable to
143	be used in an interrupted time-series analysis. Here, it should be reminded that those aged ≥75 years
144	are subjected to the cognitive test at their license renewal whereas their adjacent age group of 70-74

145	years are not. The injury rate ratio accounts for the effect of extraneous factors, such as the road
146	environment and traffic volume, other than the cognitive test, influencing the experience of MVCs in
147	unprotected road users. ^{4,5,13,14} The assumption behind the injury rate ratios is that, the injury rate
148	ratios would remain constant even if the extraneous factors changed over the study period given their
149	influence on the injury rate would be irrespective of the age groups. For example, during the study
150	period, a policy of limiting vehicle speed up to 30 km/hour in designated residential areas (called
151	"Zone 30") was introduced in September 2011, but this policy benefited all age groups of
152	unprotected road users, and the magnitude of benefits was similar between age groups 65-74 years
153	and \geq 75 years ¹⁵ ; therefore, the policy would not have affected the injury rate ratios (the injury rate of
154	one age group to that of another) very much. However, the injury rate ratios would change if the
155	cognitive test had any influence on the injury rate because the test was only for those aged \geq 75 years.
156	This is how the injury rare ratio works to control for the potential confounders.
157	
158	2.5 Analysis
159	To examine whether the injury rate of unprotected road users aged \geq 75 years changed after
160	the introduction of the cognitive test for drivers in that age category, we conducted an interrupted
161	time-series analysis by regressing the injury rate ratios stratified by sex and age group on the number
162	of months from January 2005 (predictor: <i>month</i>), June 2009 (predictor: <i>slope_change_at_54</i>), and

163 June 2012 (predictor: *slope_change_at_90*). The predictors allowed an elbow at the 54th and 90th

164	month for the predicted injury rate ratios when these drivers started (June 2009, 54th month) and
165	completed (June 2012, 90th month) the test. We also conducted the same analysis on older aged
166	motor vehicle passengers (non-driver vehicle occupants) of both sexes because drivers might have
167	become passengers as well. The strength of the interrupted time-series analysis is to control for
168	potential confounders that slowly change over time when modelling the underlying long-term
169	trend. ¹¹ So, the trend change, if any, is the net effect of the intervention or event of interest. Moreover,
170	we ensured the validity of this analysis by using the injury rate ratio as the outcome variable to
171	control for history bias that is caused by concurrent interventions such as Zone 30, as explained
172	above.
173	In the analysis, when the residuals of the regression models were autocorrelated, we fitted a
174	seasonal autoregressive integrated moving average (ARIMA) model to the residuals. ¹⁶ All the
175	statistical analyses were conducted with R version 3.4.4, and we used the seasonal autoregressive
176	integrated moving average (sarima) function of the applied statistical time series analysis (astsa)
177	package to fit the seasonal ARIMA models to the residuals.
178	
179	3. Results
180	Table 1 shows the numbers, rates, and proportions of deaths, severe injuries, and minor
181	injuries by age group (70–74, 75–79, 80–84, and ≥85 years) and type of road users for the entire
182	study period. In all age groups, the death rate was the highest among pedestrians. In older age groups

183	(80–84, and \geq 85 years), the severe injury rate was also the highest among pedestrians, but in younger
184	age groups (70–74, and 75–79 years), it was the highest among motor vehicle drivers. The minor
185	injury rate was the highest among motor vehicle drivers except in the oldest age group (≥85 years).
186	Regarding the proportions of deaths, 41% of overall traffic deaths occurred among people aged 70
187	years or older, and it is of note that older pedestrians and bicyclists shared a total of 28% of overall
188	traffic deaths.

Table 1Number, rate per 100,000 person-years, and proportion of deaths, severe injuries, and minor injuries by agegroup and type of road users* over a 12-year period (from 2005 to 2016) in Japan

	Deaths		Severe injuries			Minor injuries			
	n	Rate	%†	N	Rate	%†	n	Rate	%†
70–74 years									
Motor vehicle drivers	1,869	2.17	3.18	17,842	20.71	3.01	155,320	180.26	1.63
Motor vehicle passengers	411	0.48	0.70	4,579	5.31	0.77	62,157	72.14	0.65
Bicyclists	1,086	1.26	1.85	12,941	15.02	2.18	71,924	83.47	0.75
Pedestrians	2,601	3.02	4.42	11,917	13.83	2.01	39,025	45.29	0.41
75–79 years									
Motor vehicle drivers	1,900	2.67	3.23	14,142	19.87	2.39	85,138	119.65	0.89
Motor vehicle passengers	494	0.69	0.84	4,399	6.18	0.74	44,873	63.06	0.47
Bicyclists	1,257	1.77	2.14	11,485	16.14	1.94	52,710	74.08	0.55
Pedestrians	3,196	4.49	5.43	12,933	18.18	2.18	34,862	48.99	0.37
80–84 years									
Motor vehicle drivers	1,407	2.70	2.39	8,011	15.40	1.35	34,665	66.64	0.36
Motor vehicle passengers	466	0.90	0.79	3,112	5.98	0.52	26,648	51.23	0.28
Bicyclists	1,051	2.02	1.79	7,447	14.32	1.26	28,355	54.51	0.30
Pedestrians	3,424	6.58	5.82	10,452	20.09	1.76	24,145	46.42	0.25
85 years+									
Motor vehicle drivers	718	1.51	1.22	3,012	6.32	0.51	9,937	20.85	0.10
Motor vehicle passengers	440	0.92	0.75	2,088	4.38	0.35	16,191	33.97	0.17
Bicyclists	704	1.48	1.20	3,781	7.93	0.64	12,410	26.04	0.13
Pedestrians	2,968	6.23	5.05	7,212	15.13	1.22	14,637	30.71	0.15
All ages (including <70 years)	58,814	3.84	100	592,914	38.76	100	9,550,391	624.30	100

*Motor vehicle includes cars, motorcycles, and mopeds. †The denominator is the total number of deaths, severe injuries, and minor injuries, respectively (as mutually exclusive categories), of both sexes in all ages, which also include those younger than 70 years.

191	Figure 1 shows the injury rates (including deaths, severe injuries, and minor injuries) of
192	unprotected road users (i.e., bicyclists and pedestrians) per 100,000 person-years by sex and for the
193	four oldest age groups over the study period. The injury rates showed a longitudinal decrease without
194	any apparent effects of the introduction of the cognitive test. Age had a differential effect on the
195	injury rates by sex. Among males, the injury rates were similar across the four age groups; among
196	females, increasing age was associated with substantially decreased injury rates and those aged 70-
197	74 years seemed to have had a larger longitudinal decrease in injury rate than the other age groups.
198	

200 Figure 1 Injury rates* of older unprotected road users in Japan in 2005–2016

The vertical dashed lines are the 54th (June 2009) and 90th months (June 2012) when the new policy that mandated all drivers aged \geq 75 years to take the cognitive test at license renewal was introduced, and when all drivers who were aged \geq 75 years in June 2009 renewed or surrendered their license, respectively.

* The numerator of the injury rate was the monthly number of injuries (including deaths, severe injuries, and minor

205 injuries) of unprotected road users (bicyclists and pedestrians) by sex and age group, and the denominator was the

corresponding population size divided by 12.

207

```
Figure 2 shows the injury rate ratios of unprotected road users by sex in the three oldest age
groups. Among males, there are no apparent effects of the introduction of the cognitive test; however,
the injury rate ratios in females aged 75–79 and 80–84 years seemed to have increased slightly after
```


The vertical dashed lines are the 54th (June 2009) and the 90th months (June 2012) when the new policy that mandated all drivers aged \geq 75 years to take the cognitive test at license renewal was introduced and when all drivers who were \geq 75

all drivers aged \geq 75 years to take the cognitive test at license renewal was introduced and when all drivers who were \geq 75 years in June 2009 renewed or surrendered their license, respectively.

* The numerator of the injury rate is the monthly number of injuries (including deaths, severe injuries, and minor

219 injuries) of unprotected users (bicyclist or pedestrian) by sex and age group, while the denominator is the corresponding

population size. The numerator of the injury rate ratio was the monthly injury rate by sex and age group (75–79, 80–84,

and \geq 85 years), and the denominator was that of those aged 70–74 years in the corresponding month.

223	Table 2 shows the results of the interrupted time-series analysis of the injury rate ratios in
224	male and female unprotected road users in the three oldest age groups. During the three years since
225	the introduction of the cognitive test (<i>slope_change_at_54</i>), the injury rate ratio in females aged 75–
226	79 and 80–84 years showed an additional increase of 2.1×10^{-3} and 2.6×10^{-3} per month, respectively,
227	to the trend represented by the regression coefficient for the variable month. These are equivalent to
228	increases of 0.075 and 0.093 in the injury rate ratios between June 2009 and May 2012 (36 months).
229	Women aged ≥ 85 years experienced a significant increase of 1.4×10^{-3} after the 90th month
230	(represented by the <i>slope_change_at_</i> 90 terms). On the other hand, none of the three age groups in
231	males showed a significant change immediately after the introduction. However, those aged 80-84
232	and ≥ 85 years had a significant increase of 4.1×10^{-3} and 6.0×10^{-3} , respectively, after three years of
233	the introduction (represented by the <i>slope_change_at_</i> 90 terms). These changes are equivalent to an
234	increase of 0.22 and 0.33, respectively, in the injury rate ratios between June 2012 and December
235	2016 (55 months).

The analysis of the injury rate ratios of older motor vehicle passengers revealed a statistically significant monthly decrease of -1.9×10^{-3} (95% confidence interval: -3.8×10^{-3} , -4.4×10^{-5}) among people aged 75–79 years after the introduction of the cognitive test (data not shown in the table).

240

242**Table 2**Results of the interrupted time-series analysis* of potential changes in the injury rate ratios† of older243unprotected road users following the introduction of the cognitive test for drivers aged \geq 75 years to the driver's244license renewal procedure in Japan

			Age group	
		75–79 years	80-84 years	≥85 years
Sex	Variables	Point estimate [95%CI]	Point estimate [95%CI]	Point estimate [95%CI]
	(intercept)	1.01 [0.96, 1.05]	1.19 [1.13, 1.25]	1.17 [1.12, 1.21]
	month	1.6×10 ⁻³ [3.6×10 ⁻⁴ , 2.8×10 ⁻³]	-1.8×10 ⁻³ [-3.4×10 ⁻³ , -1.8×10 ⁻⁴]	-1.8×10 ⁻³ [-3.1×10 ⁻³ , -4.8×10 ⁻⁴]
	slope	-7.5×10 ⁻⁴ [-3.2×10 ⁻³ , 1.7×10 ⁻³]	2.1×10 ⁻³ [-1.1×10 ⁻³ , 5.2×10 ⁻³]	-8.0×10 ⁻⁴ [-3.3×10 ⁻³ , 1.7×10 ⁻³]
Mala	change at			
Male	54‡			
	slope	7.7×10 ⁻⁴ [-1.6×10 ⁻³ , 3.1×10 ⁻³]	4.1×10 ⁻³ [1.0×10 ⁻³ , 7.1×10 ⁻³]	6.0×10 ⁻³ [3.5×10 ⁻³ , 8.4×10 ⁻³]
	change at			
	90‡			
	(intercept)	0.86 [0.82, 0.89]	0.71 [0.68, 0.73]	0.35 [0.33, 0.37]
	month	9.3×10 ⁻⁴ [-1.1×10 ⁻⁴ , 2.0×10 ⁻³]	-3.1×10 ⁻⁴ [-1.0×10 ⁻³ , 3.9×10 ⁻⁴]	2.5×10 ⁻⁵ [-5.0×10 ⁻⁴ , 5.5×10 ⁻⁴]
	slope	2.1×10 ⁻³ [5.2×10 ⁻⁵ , 4.1×10 ⁻³]	2.6×10 ⁻³ [1.3×10 ⁻³ , 3.9×10 ⁻³]	2.0×10 ⁻⁴ [-7.9×10 ⁻⁴ , 1.2×10 ⁻³]
Female	change at			
	54‡			
	slope	-1.6×10 ⁻³ [-3.5×10 ⁻³ , 3.9×10 ⁻⁴]	6.9×10 ⁻⁴ [-6.0×10 ⁻⁴ , 2.0×10 ⁻³]	1.4×10 ⁻³ [4.1×10 ⁻⁴ , 2.3×10 ⁻³]
	change at			
	90‡			

245 CI: confidence interval

* The data spanned the first month (January 2005) to the 144th month (December 2016). The residuals were modelled

247 using seasonal autoregressive integrated moving average structures.

the numerator of the injury rate is the monthly number of injuries (including deaths, severe injuries, and minor

249 injuries) of unprotected users (bicyclist or pedestrian) by sex and age group, while the denominator is the corresponding

250 population size divided by 12. The numerator of the injury rate ratio is the monthly injury rate by sex and age group (75–

251 79, 80–84, and \geq 85 years), and the denominator is that of those aged 70–74 years in the corresponding month.

252 ‡ The values of the spline terms were set at zero until the 53rd and 89th months and thereafter, month minus 53 and 89,

253 respectively. The new policy that mandated all drivers aged \geq 75 years to take the cognitive test at license renewal was

introduced in the 54th month (June 2009), and all drivers who were aged \geq 75 years in June 2009 renewed or surrendered

255 their license by the 90th month (June 2012).

256

4. Discussion

259	We found a significant increase in traffic deaths and injuries among unprotected road users
260	aged \geq 75 years in Japan after the cognitive test was introduced to drivers aged \geq 75 years. The
261	increase at the time of test introduction was observed among females aged 75-84 years; the increase
262	occurred at a later time among males aged ≥ 80 years and females aged ≥ 85 years. Since our analyses
263	controlled for extraneous factors influencing the experience of MVCs in unprotected road users,
264	increased deaths and injuries among older unprotected road users were most likely attributable to
265	their increased exposures to road traffic as unprotected road users. This probably resulted from the
266	modal shift from driving to non-driving status, once the test was introduced. Our study, which used a
267	more rigorous method of evaluation, confirmed the previous Danish report, which revealed increased
268	fatal injuries among older unprotected road users after the introduction of an age-based cognitive
269	test. ⁹
270	Sex differences in the trend of increased deaths and injuries among older unprotected road
271	users could be due to sex differences in their perception of driving. In a recent survey among drivers
272	aged ≥ 60 years, women were more likely to have a fear of driving than men, because of their
273	subjective poor driving skills, and it was found that women anticipated retiring from driving at an
274	earlier age than men did. ¹⁷ Therefore, female drivers might be more responsive to the demanding

275 license renewal procedure than male drivers, by giving up on driving, earlier.

276	Deaths and injuries of motor vehicle passengers aged 75–79 years decreased after the
277	introduction of the cognitive test. In contrast, our previous study found that the cognitive test did not
278	change MVC rates among drivers aged \geq 75 years. ⁵ Because older drivers tend to ride with older
279	passengers, ¹⁸ we expected similar changes in both drivers and passengers. This contrast implies
280	differential trends in exposure to road traffic. Older drivers who were suspected of having impaired
281	cognitive function during the cognitive test may continue to drive a car, while their spouses and
282	friends rode less frequently with them after learning about the test results.
283	Probably, older drivers' family members, who are also likely to have learnt about the test
284	results, may reduce having to ride when the older driver is driving; or they may even discourage the
285	older drivers' friends from riding when the older driver is driving, for fear of vehicle collisions and
286	injuries. Convincing an older driver with dementia to stop driving can be a challenge for the family
287	members ¹⁹ and the family members experience various kinds of stress including safety concerns
288	posed by their neighbours in the community. ²⁰ This experience could motivate the family members to
289	pay extra attention to the safety of non-family members.
290	Our study raised two issues regarding Japan's traffic safety policies that are aimed at
291	reducing traffic injuries among older adults. First, while attempting to encourage older drivers with
292	possible cognitive function impairments to desist from driving, there is need to pay more attention to
293	the safety of older unprotected road users. Our findings suggest that the introduction of the cognitive
294	test might have promoted older drivers' modal shift to walking and cycling, resulting in increased

295	deaths and injuries among older unprotected road users. Second, a large proportion of traffic deaths
296	involved older unprotected road users in Japan. During the study period, 28% of overall traffic
297	deaths were observed among unprotected road users age 70 years or older.
298	The strength of the present study was that the analyses were based on national longitudinal
299	data and rigorous evaluation methods. However, the major limitation was the weak inference on
300	causal mechanisms and the lack of exposure information. With our data, we could only speculate that
301	modal shifts from driving to non-driving occurred among older adults after the introduction of the
302	cognitive test. We are unsure whether the distance and patterns of trip as unprotected road users
303	among older adults might have changed after the introduction. However, we still observed increased
304	deaths and injuries among older unprotected road users after the introduction. Traffic safety policies
305	need to deal with such undesirable consequences.
306	Another limitation was that the effect of extraneous factors influencing injury risk of
307	unprotected road users might have not been fully controlled for with the injury rate ratios. As
308	explained earlier, the traffic calming Zone 30 policy was introduced during the study period. If this
309	was more beneficial for older unprotected road users, the injury rate ratios of unprotected road users
310	aged 75–79, 80–84, and ≥85 years to those aged 70–74 years might have decreased with age after the
311	introduction of the policy. In this case, we underestimated the increase in traffic injuries among older
312	unprotected road users. However, the policy had a similar magnitude of safety benefits for

313	pedestrians and cyclists aged 65–74 years and \geq 75 years, ¹⁵ which suggests the potential bias due to
314	this limitation is likely small.
315	In conclusion, traffic deaths and injuries among older unprotected road users increased after

- the cognitive test at driver's license renewal was introduced for older drivers. This means that the
- 317 cognitive test increased traffic deaths and injuries among older people because it lacked intended
- 318 safety benefits for older drivers.⁵ Licensing policies for older drivers should be rigorously evaluated,
- taking into account the safety of older unprotected road users, and such policies should be balanced
- 320 against the findings of such evaluations.

322 Acknowledgements

- 323 This work was supported by the Japan Society for the Promotion of Science KAKENHI [grant
- 324 number 18K10081].

References 326

327	1	Siren A, Haustein S. Driving licences and medical screening in old age: Review of literature
328		and European licensing policies. J Transp Heal 2015;2:68–78. doi:10.1016/j.jth.2014.09.003
329	2	Tay R. Ageing driver licensing requirements and traffic safety. <i>Ageing Soc</i> 2012; 32 :655–72.
330		doi:10.1017/S0144686X11000535
331	3	Tefft BC. Driver license renewal policies and fatal crash involvement rates of older drivers,
332		United States, 1986–2011. Inj Epidemiol 2014;1:1–11. doi:10.1186/s40621-014-0025-0
333	4	Ichikawa M, Nakahara S, Inada H. Impact of mandating a driving lesson for older drivers at
334		license renewal in Japan. Accid Anal Prev 2015;75:55-60. doi:10.1016/j.aap.2014.11.015
335	5	Ichikawa M, Inada H, Nakahara S. Effect of a cognitive test at license renewal for older
336		drivers on their crash risk in Japan. Inj Prev 2019. doi:10.1136/injuryprev-2018-043117
337	6	Mitchell CGB. The licensing of older drivers in Europe - A case study. Traffic Inj Prev
338		2008; 9 :360–6. doi:10.1080/15389580801895160
339	7	Chihuri S, Mielenz TJ, DiMaggio CJ, et al. Driving Cessation and Health Outcomes in Older
340		Adults. J Am Geriatr Soc 2016;64:332-41. doi:10.1111/jgs.13931
341	8	Rolison JJ, Hewson PJ, Hellier E, et al. Risk of Fatal Injury in Older Adult Drivers,
342		Passengers, and Pedestrians. J Am Geriatr Soc 2012;60:1504-8.
343		doi:10.1111/j.1532-5415.2012.04059.x

344	9	Siren A, Meng A. Cognitive screening of older drivers does not produce safety benefits. Accid
345		Anal Prev 2012;45:634-8. doi:10.1016/j.aap.2011.09.032
346	10	Cabinet Office. Heisei 29 nen ban kotsu anzen hakusho (the white paper on traffic safety,
347		2017), 2017. Available:
348		http://www8.cao.go.jp/koutu/taisaku/h29kou_haku/index_zenbun_pdf.html [accessed 16 July
349		2019].
350	11	Lopez Bernal J, Cummins S, Gasparrini A. Interrupted time series regression for the
351		evaluation of public health interventions: a tutorial. Int J Epidemiol 2017;46:348–55.
352		doi:10.1093/ije/dyw098
353	12	Statistics Bureau, Ministry of Internal Affairs and Communications. Jinkou suikei, chouki
354		jikeiretsu data, heisei 12–27 nen (population estimates, time series 2000–2015). 2017.
355		Available: http://www.stat.go.jp/english/data/jinsui/2.htm [accessed 16 July 2019].
356	13	Nakahara S, Ichikawa M. Effects of high-profile collisions on drink-driving penalties and
357		alcohol-related crashes in Japan. Inj Prev 2011;17:182-8. doi:10.1136/ip.2010.027680
358	14	Voas RB, Tippetts AS, Fell J. The relationship of alcohol safety laws to drinking drivers in
359		fatal crashes. Accid Anal Prev 2000; 32 :483–92.
360	15	Inada H, Tomio J, Nakahara S, Ichikawa M. Area-wide traffic-calming Zone 30 policy of Japan
361		and incidence of road traffic injuries among cyclists and pedestrians. Am J Public Health 2019.

362doi: 10.2105/AJPH.2019.305404

Shumway RH, Stoffer DS. Time Series Analysis and Its Applications. Fourth Edi. Springer 36316 3642017.

Japan Automobile Manufacturers Association. 2017 nendo jidosha shijo doukou chousa 36517 (passenger car market trends survey in the fiscal year 2017). 2018. Available:

http://www.jama.or.jp/lib/invest_analysis/pdf/2017PassengerCars.pdf [accessed 16 July 367

2019]. 368

366

Institute for Traffic Accident Research and Data Analysis. Kuruma ni hito wo noseru toki wa 36918

konnakoto nimo chui (Safety in a car with passengers). ITARDA Information 2012;93:1-8. 370

371Available: https://www.itarda.or.jp/itardainfomation/info93.pdf [accessed 16 July 2019].

National Center for Geriatrics and Gerontology. Ninchisho koureisha no jidousha unten wo 19 372

kangaeru, kazoku kaigosha no tame no shien manual, dai 2 han (manual for supporting 373

informal family caregivers of older drivers with dementia, 2nd ed.). Available: 374

http://www.dgp2005.com/downloadpage.files/manual 2nd160322.pdf [accessed 16 July 375

2019]. 376

Nomura C, Toyota Y, Nakahira Y, et al. The process of driving cessation of clients with early 20 377 dementia and the related factors. J Jpn Acad Com Heal Nurs 2007;9:53-9. 378

379