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Network diagrams are often used to represent and reason about interconnected systems, having meaning
in the relevant semantics of diagrams. Recently hypergraph categories are used to describe the algebraic
structure of interconnected systems such as electric circuits, signal flow graphs, Markov processes, au-
tomata and so on [J. C. Baez and B. Fong, Theory Appl. Categ. 33, 1158–1222 (2018; Zbl 1402.18005);
F. Bonchi et al., Inf. Comput. 252, 2–29 (2017; Zbl 1355.68188); Zbl L. de Francesco Albasini et al.,
Appl. Categ. Struct. 19, No. 1, 425–437 (2011; Zbl 1225.18006); L. de Francesco Albasini et al., RAIRO,
Theor. Inform. Appl. 45, No. 1, 117–142 (2011; Zbl 1216.18005); J. C. Baez et al., J. Math. Phys. 57, No.
3, 033301, 30 p. (2016; Zbl 1336.60147); A. Gianola et al., LIPIcs – Leibniz Int. Proc. Inform. 72, Article
2, 17 p. (2017; Zbl 1433.68223)], where the syntax is represented by morphisms in a hypergraph category
while the semantics is represented by another hypergraph category. Since semantics interpretation has
the effect of wrapping the network in a black box, a hypergraph functor describing the semantics of a
system is called a black box functor. This paper describes a general method for constructing such functors.
To extract from an open dynamical system a relation between input and output concentration in steady
states, J. C. Baez and B. S. Pollard [Rev. Math. Phys. 29, No. 9, Article ID 1750028, 41 p. (2017; Zbl
1383.68053)] introduced a strong symmetric monoidal functor (called the black-boxing functor)

■ : Dynam→ Rel

where Dynam is a category of finite sets X as objects and cospans of finite sets X → N ← Y together
with a suitably well-behaved vector field on N as morphisms, while Rel is the category of sets of binary
relations. This paper provides a general recipe for constructing such functors, providing a streamlined
proof of the functoriality of the fucntor ■, which is to be understood as a hypergraph functor.
Baez and Polland exploited what is known as a decorated cospans construction [B. Fong, Theory Appl.
Categ. 30, 1096–1120 (2015; Zbl 1351.18003)] to define Dynam. The main theme of this paper is a
careful investigation of a generalization of this construction introduced in [B. Fong, Theory Appl. Categ.
33, 608–643 (2018; Zbl 1400.18011)] under the name of decorated correlations. Decorated cospans construct
a hypergraph category from a finitely cocomplete category C and a lax symmetric monoidal functor

F : (C, +)→ (Set,×)

Decorated correlations generalize this by also requiring a factorization sytem on C, and extending F to a
functor on a certain subcategory of Cospan (C).
The main results of this paper are the following two theorems (Theorem 3.25 and Theorem 5.4).
Theorem. The decorated correlations construction defines a functor

(−) Corel : DecData→Hyp

where DecData is the category of decorating data and Hyp is the category of hypergraph categories
as objects and hypergraph functors as morphisms.
Theorem. The functor (−) Corel factors as the composite Φ ◦Kan, where these fucntors are part of
adjunctions

Hyp

Alg
−−−→
⊥
←−−
Φ

CospanAlg

ι−→
⊤

←−−−−
Kan

DecData

with CospanAlg being a full subcategory of DecData and the embedding ι : CospanAlg →
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DecData being of its left adjoint Kan.
Reviewer: Hirokazu Nishimura (Tsukuba)
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