Fabrication of As-doped n-type BaSi₂ epitaxial films grown by molecular beam epitaxy

Sho Aonuki, Yudai Yamashita, Kaoru Toko, and Takashi Suemasu

Institute of Applied Physics, University of Tsukuba, Ibaraki 305-8573, Japan

We grow As-doped BaSi₂ epitaxial films by molecular beam epitaxy (MBE) with GaAs granules as an As source and investigated their electrical and optical properties by changing a substrate temperature (T_s) and a crucible temperature of GaAs (T_{GaAs}) during MBE. Secondary ion mass spectrometry revealed that the density of As atoms in BaSi₂ films was surely changed by T_{GaAs} . The full width at half-maximum evaluated by the x-ray ω -scan rocking curve measurement reached a minimum of 0.36 ° at $T_s = 600$ °C. We investigated the T_s dependence of electron concentration (n) and mobility by Hall measurement. n increased with decreasing T_s and reached a maximum of 4.3×10^{18} cm⁻³. The photoresponsivity of the As-doped BaSi₂ films was higher than that of undoped ones at the same bias voltage, probably thanks to the reduction of point defects by As doping.

1. Introduction

Barium silicide (BaSi₂) has been attracting considerable attention as a new candidate for thin film solar cell materials.¹⁾ BaSi₂ consists of Si and Ba, which are abundant elements in the earth's crust, and the band gap of BaSi₂ (1.3 eV) is suitable for solar cell applications.²⁻⁴⁾ Moreover, a large absorption coefficient (3 \times 10⁴ cm⁻¹ at 1.5 eV) exceeding those of Cu(In,Ga)(Se,S)₂ is compatible with an ample minority carrier lifetime (> 10 µs).^{5,6)} Very recently, we achieved the conversion efficiency of 9.9% in p⁺-BaSi₂/n-Si heterojunction solar cells.⁷⁻⁹⁾ In addition, the operation of a BaSi₂ homojunction solar cell was demonstrated on a p-Si(111) substrate.^{10,11} In this structure, an antimony (Sb)-doped n-BaSi₂ layer¹² was used for the topmost layer. This is because a low-temperature-grown Sb-doped n-BaSi₂ layer is suitable only to the topmost layer since the diffusion coefficient of Sb in BaSi₂ is very large.¹³⁾ However, the following problem arises when the layered structure is n-BaSi2/p-BaSi2/p-Si. Due to a small electron affinity of BaSi₂ (0.32 eV),¹⁴ there is a large conduction band offset of approximately 0.8 eV and a large valence band offset of approximately 0.6 eV at BaSi₂/Si heterointerfaces when a Si substrate is adopted.¹⁵⁾ Therefore, the flow of photogenerated carriers is blocked by these band offsets at the p-BaSi₂/p-Si interface as shown in Fig. 1(a). It is therefore necessary to form a p^+ -BaSi₂/ p^+ -Si tunnel junction when a p-type Si substrate is used. However, the crystallinity of p⁺-BaSi₂ films grown on a low-resistivity (ρ) p⁺-Si substrate degrades,¹⁶ leading to the decrease of shunt resistance and thereby much smaller efficiencies than expected.¹⁷⁾ In this study, we propose an alternative structure, that is a BaSi₂ homojunction solar cell on an n-Si substrate as shown in Fig. 1(b). In this structure, a tunnel junction is not necessary since the flow of photogenerated carriers is not blocked at the n-BaSi2/n-Si heterointerface. To realize this structure, it is indispensable to explore n-BaSi₂ films doped with impurities other than Sb.

The valence band maximum of BaSi₂ is composed mainly of Si 3s and 3p orbitals and it is reported that Si atoms are more easily substituted than Ba atoms in the lattice.^{2,18)} Therefore, substitution of Si atoms with group 15 elements such as Sb, arsenic (As), and phosphorous (P) increases the valence electron concentration,^{11,19,20)} and therefore n-type BaSi₂ forms. Regarding As-doped BaSi₂ and P-doped BaSi₂, the n-type conductivity was reported by ion implantation;^{19,20)} however, the electron concentration *n* does not exceed 10¹⁸ cm⁻³ in P-doped BaSi₂ films by molecular beam epitaxy (MBE).²¹⁾ On the other hand, there has been no report thus far on As-doped n-BaSi₂ grown by MBE. We should also note that the diffusion coefficient of As atoms in BaSi₂ films is much smaller than those of Sb.¹²⁾ In this work, we thereby aim to fabricate As-doped n-BaSi₂ epitaxial films grown by MBE and evaluate their electrical and optical properties. We employed GaAs granules as a source of As rather than elemental As. As atoms are supplied in the form of As₂ from GaAs granules, whereas As₄ molecules are supplied from elemental As sources.²²⁾ According to ref. 23, As₂ is more easily decomposed into As atoms than As₄, enabling us to substitute some of Si atoms with As atoms in the BaSi₂ lattice more efficiently. We can neglect the doping effect of Ga atoms. This is because the vapor pressure of Ga is much smaller than that of As₂.²³⁾

2. Experiment method

As-doped Si and BaSi₂ epitaxial films were formed on p-Si(111) substrates by MBE equipped with an electron-beam gun for Si and Knudsen cells for Ba and GaAs. For Hall measurement, high-resistivity ($\rho > 1000 \ \Omega$ cm) p-Si(111) substrates were used. In contrast, low- ρ (< 0.01 Ω cm) n⁺-Si(111) substrates were used for photoresponsivity measurement. The fabrication procedure of As-doped Si films is as follows. After thermal cleaning (TC) of the Si substrate by heating at 900 °C for 30 min in ultrahigh vacuum, As-doped Si films were grown at a fixed substrate temperature $T_{\rm S} = 600$ °C by MBE. The thickness of As-doped Si films was approximately 150 nm. The crucible temperature of GaAs was set at $T_{\rm GaAs} = 550$, 650, and 750 °C. Finally, a 3-nmthick amorphous Si (a-Si) capping layer was formed *in situ* at $T_{\rm S} = 180$ °C. 1-mm-diameter A1 electrodes with a thickness of 150 nm were deposited by sputtering.

We next grew As-doped BaSi₂ epitaxial films as follows. After TC, a few-nm-thick BaSi₂ template layer was formed by reactive deposition epitaxy, in which only Ba was supplied on a heated Si substrate. This layer works as a seed crystal for overlayers.²⁴⁾ After that, As-doped BaSi₂ films were formed by MBE at various values of T_{GaAs} and $T_{s.}^{25, 26)}$ First, T_{GaAs} was varied in the range 250 – 450 °C while T_{s} was fixed at 600 °C. As described later, however, we were not able to control *n* by changing T_{GaAs} . Therefore, we next set T_{GaAs} at 350 °C and varied T_{s} in the range 500 – 700 °C. For photoresponsivity measurement, T_{GaAs} was changed from 250 to 450 °C with keeping T_{s} constant at 600 °C. The thickness of As-doped BaSi₂ films was approximately 500 nm. Then, a 3-nm-thick a-Si capping layer was formed for surface passivation.²⁷⁾ The bond configuration changes abruptly at the BaSi₂ surface. According to an analysis of the surface structure of BaSi₂ epitaxial layers using coaxial-collision ion scattering

spectroscopy conducted by Katayama *et al.*, an *a*-axis-oriented BaSi₂ epitaxial films is terminated by Si₄ tetrahedra.^{28,29)} Therefore, surfaces may contain very high densities of trap states in the band gap.³⁰⁾ Such surface defects deteriorate solar cell performance because short-wavelength light is absorbed close to the surface. Therefore, surface passivation is very important for materials like BaSi₂ that possess large absorption coefficients. Finally, 1-mm-diameter ITO electrodes with the thickness of 80 nm on the surface and Al electrodes with the thickness of 150 nm on the whole back side were formed by sputtering.

Crystalline quality of grown films was characterized by θ -2 θ X-ray diffraction (XRD; Rigaku Smart Lab) using Cu K α radiation, and reflection high-energy electron diffraction (RHEED). Depth profiles of As atoms were evaluated by secondary ion mass spectrometry (SIMS) with Cs⁺ ions. Hall measurement was performed with Van der Pauw method.³¹⁾ Photoresponse spectra were collected at a bias voltage (V_{bias}) of -0.5 V applied to the front ITO electrode with respect to the backside Al electrode by a lock-in technique using a xenon lamp (Bunko Keiki, SM-1700A) and a single monochromator with a focal length of 25 cm (Bunko Keiki, RU-60N). The light intensity of the lamp was calibrated using a pyroelectric sensor (Melles Griot, 13PEM001/J). All the measurement was performed at room temperature.

3. Results and discussion

Figure 2 shows the T_{GaAs} dependences of *n* and mobility μ of As-doped Si films. T_{S} was fixed at 600 °C. Hall measurement revealed that *n* increased with T_{GaAs} , and *n* reached a maximum of 3.7 × 10¹⁸ cm⁻³ at $T_{\text{GaAs}} = 750$ °C. The μ decreased accordingly. This result was in agreement with those reported on As-doped n-Si films by using GaAs as a source of As.³²

After confirming the formation of n-Si films by heating GaAs granules, we next move on to As-doped BaSi₂ films. First, we checked the presence of As atoms in the grown films by SIMS. Figure 3(a) and 3(b) show the depth profiles of As atoms in As-doped BaSi₂ films and secondary ion intensity of Ba + Si in As-doped BaSi₂ films grown at $T_{GaAs} = 350$ and 750 °C, respectively. T_S was set at 600 and 650 °C, respectively. Please note that the measured As concentration (N_{As}) was not corrected because reference samples with a controlled number of As atoms doped in BaSi₂ films have not yet been prepared. In this work, we employed As-doped Si as a reference. N_{As} was approximately 3×10^{18} cm⁻³ in Fig. 3(a) and approximately 10^{22} cm⁻³ in Fig. 3(b). The limit of detection by SIMS is approximately 4×10^{17} cm⁻³. There results mean that the *N*_{As} changes by *T*_{GaAs} in BaSi₂ films.

Figure 4(a) shows the θ -2 θ XRD patterns and RHEED patterns observed along the Si[11-2] azimuth after the growth of As-doped BaSi₂ films. *T*s was varied in the range 500 – 700 °C, while *T*_{GaAs} was fixed at 350 °C. In all the samples, the diffraction peaks corresponding to *a*-axisoriented BaSi₂ films were detected. Therefore, *a*-axis-oriented As-doped BaSi₂ films was grown regardless of *T*s. In the sample grown at *T*s = 500 °C, however, streaky RHEED pattern was not obtained. In contrast, for samples grown at 550 °C \leq *T*s \leq 700 °C, streaky RHEED patterns were observed. On the basis of these results, we can state that *a*-axis-oriented As-doped BaSi₂ films were grown epitaxially in the range of *T*s = 550 – 700 °C. To find the optimum *T*s among them, we evaluated the *T*s dependence of the full width at half-maximum (FWHM) of BaSi₂ 600 peak by ω -scan x-ray rocking curve measurement. The result is presented in Fig. 4(b). The FWHM decreased with *T*s, reached a minimum of 0.36 ° at *T*s = 600 °C, and increased for higher *T*s, suggesting that the optimum *T*s was 600 °C from the viewpoint of crystalline quality. Similar tendency of FWHM values against *T*s was reported for undoped BaSi₂ films.³³⁾

We therefore set *T*s at 600 °C and changed T_{GaAs} from 250 to 450 °C to form As-doped n-BaSi₂ films. In contrast to our prediction, however, we could not control *n* by changing T_{GaAs} at $T_S = 600$ °C. Figure 3(a) shows the presence of As atoms in the BaSi₂ films grown at $T_S = 600$ °C and $T_{GaAs} = 350$ °C. The increase of T_{GaAs} increases the concentration of As atoms in the BaSi₂ films. Therefore, the fact that the *n* of As-doped BaSi₂ films cannot be controlled by T_{GaAs} means that doped As atoms did not occupy the Si sites in the lattice of BaSi₂. Similar results were obtained in Sb-doped BaSi₂ films in ref. 12. Thereby, we next fixed T_{GaAs} at 350 °C and varied T_S from 500 to 700 °C for As-doped BaSi₂ films. Figure 5 shows the T_S dependence of *n* and μ of As-doped BaSi₂ films. *n* increased with decreasing T_S , and reached 4.3×10^{18} cm⁻³ at $T_S =$ 550 °C. This value of *n* is acceptable for the bottom layer of a BaSi₂ homojunction solar cell. *n* decreased sharply when T_S was 600 °C and over. This result shows that the value of *n* can be controlled by T_S . The value of μ decreased with increasing T_S . As shown in Fig. 4(b), the crystalline quality of BaSi₂ films degraded for samples grown at $T_S > 600$ °C. We therefore attribute such reduction of μ partly to the degradation of crystalline quality of As-doped BaSi₂ films.

Figure 6 shows the photoresponse spectra of As-doped BaSi₂ films grown with T_{GaAs} = 250 – 450 °C. T_s was fixed at 600 °C. A V_{bias} of -0.5 V was applied to the front ITO electrode with respect to the backside Al electrode. Photoresponsivity was increased with T_{GaAs} , and reached a maximum of approximately 0.8 A/W at a wavelength of 800 nm for sample grown at $T_{\text{GaAs}} = 350$ °C. The obtained photoresponsivity was higher than that of undoped BaSi₂ films at the same value of V_{bias} .³⁴⁾ We attribute this improvement of photoresponsivity to the reduction of point defects in As-doped BaSi2 films. In undoped BaSi2 films, photoresponsivity and carrier lifetime were improved significantly by hydrogen (H) passivation.³⁵⁾ H atoms in BaSi₂ films are considered to inactivate Si vacancies, which are most likely to form in BaSi2.36) Likewise, we speculate that inactivation of Si vacancies by doping As atoms in As-doped BaSi₂ films occurs. The photoresponsivity is proportional of the ratio of carrier lifetime to carrier transit time,³⁷⁾ meaning that the reduction of carrier mobility decreases the photoresponsivity. As shown in Fig. 5, the electron mobility of As-doped BaSi₂ films decreases with $T_{\rm S}$. This is caused by the degradation of crystalline quality of As-doped BaSi₂ films as shown in Fig. 4(b), suggesting that the mobility of photogenerated holes also decreases with $T_{\rm S}$. Therefore, we consider the reason why the photoresponsivity reaches a maximum at a certain value ($T_{GaAs} = 350$ °C) as follows. The photoresponsivity increases with T_{GaAs} because of the reduction of point defects by doped As atoms. However, further increase of As atoms degrades the crystalline quality of As-doped BaSi2 films, leading to the reduction of carrier mobilities and therefore photoresponsivity.

4. Conclusion

We fabricated As-doped n-BaSi₂ films grown by MBE and evaluated their electrical and optical properties. Highly *a*-axis-oriented As-doped BaSi₂ films were grown epitaxially on Si(111) substrates. The optimum T_S of As-doped BaSi₂ was 600 °C in terms of crystalline quality. *n* increased with decreasing T_S , and reached a maximum of 4.3×10^{18} cm⁻³ at $T_S = 550$ °C and $T_{GaAs} = 350$ °C. Moreover, photoresponsivity was enhanced by As doping and the highest photoresponsivity was obtained for As-doped BaSi₂ films at $T_S = 600$ °C and $T_{GaAs} = 350$ °C. We ascribe the higher photoresponsivity of As-doped BaSi₂ films compared to undoped BaSi₂ films to the reduction of point defects by As doping as is the case with atomic hydrogen passivated BaSi₂ films.

ACKNOWLEDGEMENTS

This work was financially supported by JSPS KAKENHI Grant Numbers 17K18865 and 18H03767 and JST MIRAI. One of the authors (Y. Y.) was financially supported by Grant-in-Aid for JSPS Fellows (19J21372).

Captions of figures

Fig. 1. Schematic of band alignments and the flow of photogenerated carriers in (a) n-BaSi₂/p-BaSi₂ on p-Si and (b) p-BaSi₂/n-BaSi₂ on n-Si under illumination.

Fig. 2. T_{GaAs} dependence of *n* and μ of As-doped Si grown with $T_{\text{GaAs}} = 550 - 750$ °C. *T*s is 600 °C.

Fig. 3. SIMS depth profile of N_{As} and secondary ions (Ba + Si) of BaSi₂ films grown with (a) $T_{GaAs} = 350 \text{ °C}$, (b) $T_{GaAs} = 750 \text{ °C}$. T_S is 600 °C in (a) and 650 °C in (b).

Fig. 4. (a) θ -2 θ XRD and RHEED patterns of As-doped BaSi₂ films taken along the Si [11-2] azimuth for samples grown at $T_{\rm S} = 500 - 700$ °C. $T_{\rm GaAs}$ is 350 °C, and (b) $T_{\rm S}$ dependence of FWHM values of BaSi₂ 600 peaks for samples grown at $T_{\rm S} = 500 - 700$ °C, evaluated by x-ray ω -scan rocking curve measurement.

Fig. 5. T_S dependences of *n* and μ of As-doped BaSi₂ films grown with T_S of 500 – 700 °C. T_{GaAs} is 350 °C.

Fig. 6. Photoresponse spectra of As-doped BaSi₂ films grown with $T_{GaAs} = 250 - 450$ °C and $T_S = 600$ °C at $V_{bias} = -0.5$ V.

References

- 1) T. Suemasu, and N. Usami, J. Phys. D. Appl. Phys. 50, 023001 (2017).
- D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Status Solidi B 244, 2611 (2007).
- 3) M. Kumar, N. Umezawa, and M. Imai, J. Appl. Phys. 115, 203718 (2014).
- 4) M. Kumar, N. Umezawa, and M. Imai, Appl. Phys. Express 7, 071203 (2014).
- 5) K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011).
- M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012).
- S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, Appl. Phys. Lett. 109, 072103 (2016).
- 8) D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. **108**, 152101 (2016).
- 9) T. Deng, T. Sato, Z. Xu, R. Takabe, S. Yachi, Y. Yamashita, K. Toko, and T. Suemasu, Appl. Phys. Express 11, 062301 (2018).
- K. Kodama, R. Takabe, S. Yachi, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 57, 031202 (2018).
- 11) K. Kodama, Y. Yamashita, K. Toko, and T. Suemasu, Appl. Phys. Express 12, 041005 (2019).
- 12) M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada, and T. Suemasu, Appl. Phys. Express 1, 051403 (2008).
- 13) N. Zhang, K. Nakamura, M. Baba, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 53, 04ER02 (2014).
- T. Suemasu, K. Morita, M. Kobayashi, M. Saida, and M. Sasaki, Jpn. J. Appl. Phys. 45, L519 (2006).
- 15) K. Kodama, R. Takabe, T. Deng, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 57, 050310 (2018).
- 16) Y. Yamashita, S. Yachi, R. Takabe, T. Sato, M. E. Bayu, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys. 57, 025501 (2018).
- 17) T. Suemasu, Jpn. J. Appl. Phys. 54, 07JA01 (2015).
- 18) Y. Imai, and A. Watanabe, Intermetallics 15, 1291 (2007).
- 19) K. O. Hara, N. Usami, M. Baba, K. Toko, and T. Suemasu, Thin Solid Films 567, 105 (2014).
- K. O. Hara, Y. Hoshi, N. Usami, Y. Shiraki, K. Nakamura, K. Toko, and T. Suemasu, Thin Solid Films 557, 90 (2014).
- R. Takabe, M. Baba, K. Nakamura, W. Du, M. A. Khan, S. Koike, K. Toko, K. O. Hara, N. Usami, and T. Suemasu, Phys. Status Solidi C 10, 1753 (2013).
- 22) J. R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967).
- 23) C. T. Foxon, J. A. Harvey, and B. A. Joyce, J. Phys. Chem. Solids 34, 1693 (1973).
- 24) Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, 4155 (2004).
- 25) Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L478 (2004).
- 26) Y. Inomata, T. Suemasu, T. Izawa, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L771 (2004).
- 27) R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. Suemasu,

J. Appl. Phys. 115, 193510 (2014).

- 28) S. Okasaka, O. Kubo, D. Tamba, T. Ohashi, H. Tabata, and M. Katayama, Surf. Sci. 635, 115 (2015).
- O. Kubo, T. Otsuka, S. Okasaka, S. Osaka, H. Tabata, and M. Katayama, Jpn. J. Appl. Phys. 55, 08NB11 (2016).
- D. B. Migas, V. O. Bogorodz, A. V. Krivosheeva, V. L. Shaposhnikov, A. B. Filonov, and V. E. Borisenko, Jpn. J. Appl. Phys. 56, 05DA03 (2017).
- 31) L. J. van der Pauw, Philips Res. Reports 13, 1 (1958).
- 32) R. A. A. Kubiak, W. Y. Leong, and E. H. C. Parker, Appl. Phys. Lett. 46, 565 (1985).
- 33) R. Takabe, K. Nakamura, M. Baba, W. Du, M. A. Khan, K. Toko, M. Sasase, K. O. Hara, N. Usami, and T. Suemasu, Jpn. J. Appl. Phys. **53**, 04ER04 (2014).
- 34) R. Takabe, T. Deng, K. Kodama, Y. Yamashita, T. Sato, K. Toko, and T. Suemasu, J. Appl. Phys. **123**, 045703 (2018).
- 35) Z. Xu, D. A. Shohonov, A. B. Filonov, K. Gotoh, T. Deng, S. Honda, K. Toko, N. Usami, D. B. Migas, V. E. Borisenko, and T. Suemasu, Phys. Rev. Mater. 3, 065403 (2019).
- 36) M. Kumar, N. Umezawa, W. Zhou, and M. Imai, J. Mater. Chem. A 5, 25293 (2017).
- 37) S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

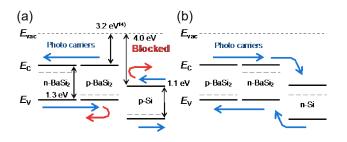


Fig. 1

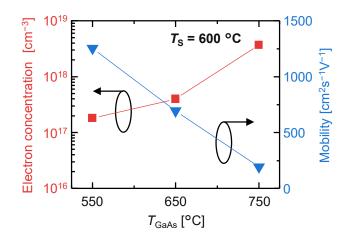


Fig. 2

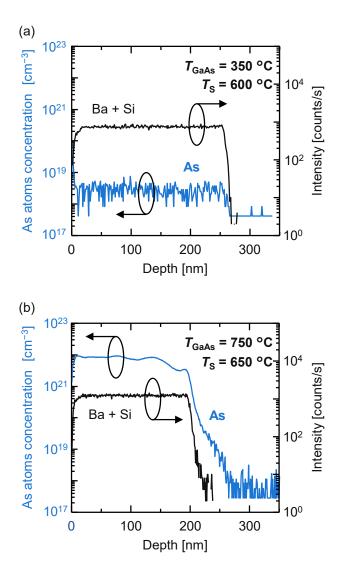


Fig. 3

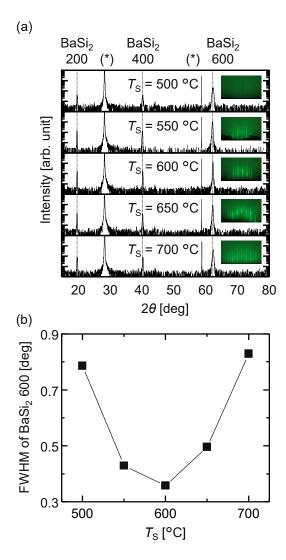


Fig. 4

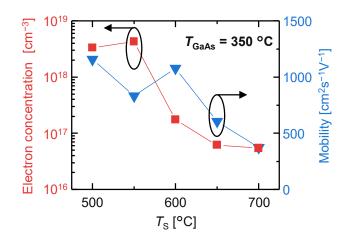


Fig.5

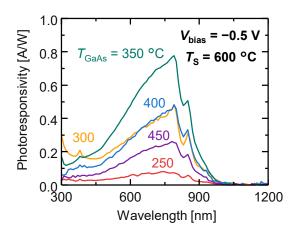


Fig. 6