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An n-dimensional topological quantum field theory (TQFT) á la M. Atiyah [Publ. Math., Inst. Hautes
Étud. Sci. 68, 175–186 (1988; Zbl 0692.53053); Turk. J. Math. 21, No. 1, 1–7 (1997; Zbl 0890.57019)] and
G. Segal [Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 359, No. 1784, 1389–1398 (2001;
Zbl 1041.81094)] is a symmetric monoidal functor from Bordn to vector spaces, providing topological
invariants of manifolds in particular. TQFT with defects can provide finer invariants and a far and away
richer theory.
It is completely classical that 2-dimensional closed TQFTs are equivalent to commutative Frobenius
algebras [J. Kock, Frobenius algebras and 2D topological quantum field theories. Cambridge: Cambridge
University Press (2004; Zbl 1046.57001)]. By allowing labelled boundaries, one ascends to open/closed
TQFTs Zoc [C. I. Lazaroiu, Nucl. Phys., B 603, No. 3, 497–530 (2001; Zbl 0983.81090)], which are known
to be equivalent to a commutative Frobenius algebra (which Zoc assigns to S1) together with a Calabi-
Yau category (whose Hom are what Zoc does to intervals with labelled endpoints) and certain relations
between the two. As far as all known examples of open/closed TQFTs are concerned, it is only the
Calabi-Yau category that matters, the Frobenius algebras being recovered as its Hochshild cohomology
[K. Costello, Adv. Math. 210, No. 1, 165–214 (2007; Zbl 1171.14038)]. This means that the transition
from 2-dimensional closed to open/closed TQFTs is from algebras to categories.
This naturally leads us to consider 2-dimensional defect TQFTs, of which closed and open/closed flavors
are special cases. Every 2-dimensional defect TQFT naturally gives rise to pivotal 2-category [A. Davydov
et al., Proc. Symp. Pure Math. 83, 71–128 (2011; Zbl 1272.57023)], subsuming B-twisted sigma models [A.
Căldăraru and S. Willerton, New York J. Math. 16, 61–98 (2010; Zbl 1214.14013)], symplectic manifolds
and Lagrangian correspondences [K. Wehrheim, Assoc. Women Math. Ser. 6, 3–90 (2016; Zbl 1396.57044)]
and affine Landau-Ginzburg models [N. Carqueville and D. Murfet, Adv. Math. 289, 480–566 (2016; Zbl
1353.18004)].
The notion of defect TQFT generalizes to arbitrary dimension in principle. An n-dimensional defect
TQFT should be a symmetric monoidal functor

Borddef
n → Vectk

where Borddef
n is some suitably augmented version of Bordn allowing decorated submanifolds of various

codimensions. Such TQFTs are expected to be described by n-categories with additional structure [A.
Kapustin, in: Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India,
August 19–27, 2010. Vol. III: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan
Book Agency. 2021–2043 (2011; Zbl 1233.57018)], but details have not been worked out for n > 2, nor
even a precise definition of defect TQFT has appeared in the literature for n > 2. The principal objective
in this paper is to remedy both issues for n = 3, paving the way to still higher dimensions.
Inspired constantly by Lurie’s splendid work on the cobordism hypothesis [J. Lurie, in: Current devel-
opments in mathematics, 2008. Somerville, MA: International Press. 129–280 (2009; Zbl 1180.81122)],
higher categories are predominant in extended TQFT, where decompositions along lower-dimensional
subspaces promote Bordn itself to a higher category. This includes the classification of fully extended
3-dimensional TQFTs valued in the (∞, 3)-category of monoidal categories by spherical fusion categories
[C. L. Douglas et al., “Dualizable tensor categories”, Preprint, arXiv:1312.7188], the classification of
3-2-1 extended TQFTs valued in 2-Vect by modular tensor categories [B. Barlett et al., “Modular cat-
egories as representations of the 3-dimensional bordism 2-category”, Preprint, arXiv:1509.06811], and
the work on boundary conditions and surface defects [J. Fuchs et al., Commun. Math. Phys. 321, No.
2, 543–575 (2013; Zbl 1269.81169); A. Kapustin and N. Saulina, Proc. Symp. Pure Math. 83, 175–198
(2011; Zbl 1248.81206)]. Although extended TQFTs assume higher categories and higher functors from
the outset, this paper contends that a defect TQFT is an ordinary symmetric monoidal functor, while
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everything leading to higher-categorical structures is contained in an augmented bordism category.
This paper consists of four sections. The authors claim that the most conceptual and economic way of
systematically studying 3-dimensional defect TQFT is through the notion of defect cobordism, which is
introduced in §2.1. Roughly speaking, defect bordisms are bordisms coming with a stratification whose
1-, 2- and 3-strata are decorated by a choice of label sets D. Defect morphisms form the morphisms
in a symmetric monoidal category Borddef

3 (D), whose objects are compatibly decorated stratified closed
surfaces. §3 defines a 3-dimensional defect TQFT to be a symmetric monoidal functor

Z : Borddef
3 (D) → Vectk

It is well known that every weak 2-category is equivalent to a strict 2-category, but the corresponding
statement does not hold for the 3-dimensional case [R. Gordon et al., Coherence for tricategories. Prov-
idence, RI: American Mathematical Society (AMS) (1995; Zbl 0836.18001)]. As is reviewed in §3.1, the
generically strictest version of a 3-category is what is called a Gray category. The following main result
(Theorem 3.12 and Theorem 3.13) is established in §3.3 and §3.4.
Theorem. Every 3-dimensional defect TQFT Z : Borddef

3 (D) → Vectk gives rise to a k-linear Gray
category with duals TZ .
The Gray category TZ is an invariant associated to Z measuring among other things how closed 3-
dimensional TQFTs associated to unstratified bordisms are glued together. Roughly speaking, the idea
behind the construction of TZ is to directly transport the decorated structure of bordisms in Borddef

3 (D)
into the graphical calculus for Gray categories with duals [J. W. Barrett et al., “Gray categories with
duals and their diagrams”, Preprint, arXiv:1211.0529].
§4 gives three classes examples of 3-dimensional defect TQFTs. In the first example the authors argue
that even the trivial TQFT leads to an interesting tricategory, seeing how the trivial defect functor adds
relations producing a 3-groupoid from the free pre-2-category Fp

dKD associated to given defect data D
(§4.1). In the second example the authors consider the Reshetikhin-Turaev theory [N. Reshetikhin and
V. G. Turaev, Invent. Math. 103, No. 3, 547–597 (1991; Zbl 0725.57007)] associated to a modular tensor
category C, which can be regarded as a special class of defect TQFTs ZC with only 1-dimensional defects
(§4.2). In the last subsection (§4.3) the authors exploit the work on homotopy quantum field theory [V.
Turaev and A. Virelizier, Int. J. Math. 23, No. 9, 1250094, 28 p. (2012; Zbl 1254.57012)] to construct two
classes of 3-dimensional defect TQFTs for every G-graded spherical fusion category, obtaining interesting
surface defects which allows of extending Turaev-Viro theories to defect TQFTs.
The authors conclude §1 (introduction and summary) by providing five topics for future study.

1. It would be interesting to compare the approach in this paper with the correspondence between
TQFTs and higher categories in [S. Morrison and K. Walker, Geom. Topol. 16, No. 3, 1481–1607
(2012; Zbl 1280.57026); Proc. Natl. Acad. Sci. USA 108, No. 20, 8139–8145 (2011; Zbl 1256.18007)].

2. The approach in this paper enables one to extend Reshetikhin-Turaev theory to produce not only
invariants for 3-dimensional manifolds with embedded ribbons but also with embedded surfaces.

3. It was argued in [A. Kapustin et al., Nucl. Phys., B 816, No. 3, 295–355 (2009; Zbl 1194.81224);
A. Kapustin and L. Rozansky, Commun. Number Theory Phys. 4, No. 3, 563–549 (2010; Zbl
1220.81169)] that Rozansky-Witten theory gives rise to a 3-category T RW bringing together al-
gebraic and symplectic geometry. It would be interesting to comprehend T RW as a Gray category
with duals.

4. There is a theory of orbifold completion of pivotal 2-categories [N. Carqueville and I. Runkel,
Quantum Topol. 7, No. 2, 203–279 (2016; Zbl 1360.18007)] generalizing certain group actions on
2-dimensional TQFTs via the algebraic language of defects and leading to new equivalences of
categories [N. Carqueville et al., J. Pure Appl. Algebra 220, No. 2, 759–781 (2016; Zbl 1333.18004);
N. Carqueville and A. Quintero Velez, “Calabi-Yau completions and orbifold equivalences”, Preprint,
arXiv:1509.00880]. The idea of orbifold completion applies to TQFTs of any dimension n and
should be developed for n = 3, which would bring new TQFTs.

5. 3-dimensional TQFTs have applications in quantum computing, where orbifoldable group actions
have received much attention. The approach in this paper would offer a robust and conceptual
framework for generalizations of these constructions.

Reviewer: Hirokazu Nishimura (Tsukuba)
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