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Spin Current Generation asa Nonequilibrium Kondo Effect in a Spin-or bit
M esoscopic | nterferometer
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We study nonequilibrium generation of spin-dependentspart through a single-level quantum dot embedded in
a ring with the Rashba spin-orbit coupling. We consider nagnetic systems, involving no magnetic field nor ferro-
magnetic leads. It is theoretically predicted that large-sigpendent current occurs as a combin@eloe of the Rashba
spin-orbit interaction, the Kondafect, and nonequilibriumfiect, without using magnetic field or material. The phe-
nomenon is viewed as a new nonequilibrium correlatiieat that disappears when either interaction or finite bias is
absent. We show how the Kondo physics is connected with senglrgent spin phenomenon by employing the finite
interaction slave-boson approach.
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1. Introduction voltage to realize spin-dependent phenomena. Alterrgtive

In semiconducting devices, the Rashba spin-orbit (SO) ifPN€ Uses magnetic systems such as systems with ferromag-
teraction is generated by the potential asymmetry in the dietic leads or systems Wlth_both the AB andthe_Ra_shbaquxe_s.
rection perpendicular to the semiconductor plane. By ut'deed, the format|or11 ?;Sp'_” moment was studied in nonequi-
lizing tunable spin-orbit interaction, there has been growPrium Rashba dots; Spln-chgrge filtering was proposed
ing interest in manipulating electron spins toward reafizi PY cOmbining with the AB ffect;™ bias-induced generation
controllable semiconductor spintronics devices nonmtgne®f SPin polarization currentwas predictétParticularly chal-

cally. In coherent transport through a nanostructure oragqu €n9ing is the possibility to generate and regulate spinstra
tum dot, the Coulomb interaction plays a fundamental rol®°rt Only via electric field in nonmagnetic systems. Yetcele
Among such striking many-bodyffects is the Kondo féect trically emergent spin trensport is still a largely unexphb

of semiconductor quantum ddts Whereas the dot block- p_henomena in a nonequilibrium many-body system. It. is cru-
ades the coherent channel by its repulsive interaction en tfid! {0 understand whether and how the SO interaction and
dot (the Coulomb blockadeffect), decreasing temperatureStrong_ correletlon féect such as the Kondo physics are re-
helps develop a strong singlet correlation between elastroSPONSible for it. _ _ . _
on the dot and in the leads, showing conductance enhance!n this paper, we investigate the nonequilibrium electric
ment (the Kondofect). The phenomenon is characterized byEneration of spin transport in a mesoscopic spin-orbarint
the Kondo temperature, which is also controllable in semico 'erometer. The system we consider is nonmagnetic, invglvin
ductor nanostructures. Such a strongly coupled quantuis dof!© Magnetic field nor ferromagnetic leads. We are partitular
known to produce large spin polarized currents once magneffitérested in how spin transport can be spontaneouslyeehl

field applies’ We explore the possibility of spin transport of allé @ ing geometry as a result of combinefeet of nonequi-
similar naturenonmagneticallybeing maintained electrically liPrium nature (finite bias voltage), the Rashba SO intéoact
by the spin-orbit interaction. and many-bodyféect (the Kondo physics). We employ the fi-

Controllable quantum interferencéiect enables us to reg- Nite interaction slave-boson approach on the single-lavel
ulate coherent charge and spin transport. Since one may §§/Son model with the SO interaction and direct hopping be-
scribe the @ect of Rashba spin-orbit interactioffectively tween leads. The apprOX|mat|0n.|s valid up to the qrder of the
as a spin-dependent phage = s, (With o = +1) for an Kondo temperature, beyond which the Kondieet is sup-

interferometef, the Rashba spin-orbit interferometer (SOIPressed. Within its validity, we will find that spin transpor

shares much similarity with the Aharonov-Bohm interferemethrough a single-level quantum dot occurs in the Kondo val-
ley if all the following three conditions are met: (1) strong

ter (ABI) where the Aharonov-Bohm (AB) phaggg is spin-

independent. In the ABI, the conductance enhancement df@Ulomb interaction is present on the dot, (2) under finiéesbi
voltage whereeV is roughly on the order of the Kondo tem-

to the Kondo €ect is easily deformed by quantum interfer-

ence by a direct hopping channel (the Fano-Korfeeé19); perature or less, (3) at temperature lower than the Konde tem

Charge current can be controlled by adjusting gate V0|taggerature. It will also be confirmed that either too large bias
|voltage or temperature (comparing to the Kondo charaeteris

the AB flux, and bias voltage. We expect similar controllabil ¥ i !
ity is attainable on spin current in the SOI. tic temperature) destroys this spin-dependent transpmrga
jth suppressing the Konddtect.

Several kinds of suggestions have been made to realize s >
transport by using the Rashba spin-orbit coupling. The twg N r€cognizing emergent phenomena as related to the
systems (SOI and ABI) produce exactly the sdimear con- Kondo physics, we need to know a concrete knowledge of the

ductance (and no spin-dependent conductance), begguseENergy scale characterizing the Kondo physics of the system

appears only in the form of c@s. in linear transport. Hence 1N the presence af,, which we designate &b’ for the sake
o o af elarityv it e nothina birit the etandard Kondo temneratiire


http://arxiv.org/abs/1210.6428v1

J. Phys. Soc. Jpn. DRAFT

@ Ha = Z [VLR ¢ Crr+ ViR CTR(TCLU] ) 3)

o

wheren, = d;‘;d(, is the dot electron number operator. Fi-

nite bias voltage is applied byr, = +eV/2 between the

two chemical potentials of the leads, and we control the gate

voltage by shifting the dot level;. The average dot number

Fig. 1. (Color online) Schematic illustration of the model. On thagtum  Ng = Ny + N}) roughly corresponds to 2, 1, O feg < —U,

dot (QD), Coulomb interaction is present and the Rashbaaitinterac- —-U < e < 0, and 0 < ¢y respectively. We incorporate

tion is incorporated as a spin-dependent flux(see the text). the local Rashba spin-orbit interactioffextively as a spin-
dependent phagk. = o¢so (for o = +1) through the interfer-
ometer? wheregs, is proportional to the asymmetric electric
field perpendicular to the semiconductor interface. We adop

for the single impurity Anderson model (SIAM). The Kondothe convention

temperature represents a crossover (not a transitionjaepa ;

ing the weak-coupling and strong-coupling regions, the-defi VrarVart Vir = [VrdValVig| €7, 4)

nition has some ambiguity on principle. Moreover, as for thvhere|V,q4,| = V4ol €tC. are spin-independent and we omit

ABI system, the presence of the AB flux is known tibeat writing the sufix o

the Kondo temperature considerabby!’ the same goes for a

system with the SO interaction. To resolve the issue of amt®.2 Charge and spin currents

guity, we resort to the idea of universal scaling of condacta  We briefly summarize the formulae of charge and spin cur-
on the temperatut€ or on the bias voltad€ in the Kondo  rents in terms of nonequilibrium Green functions, which can
regime. be derived along the standard line of treatnfehtlere so as

The paper is organized as follows. In Sec. 2, we introdugg clarify the role ofpag andés,, We proceed for a more gen-
the model of quantum transport of a mesoscopic spin-orbit ikral case of coexistingag andeso, that is,¢, = das + Tdso

terferometer. The exact formulae of charge and spin ci8renhrough the interferometer. The system is characterizetldy
are presented in terms of nonequilibrium Green functiond, a following spin-independergarameters:

our choice of the approach, the finite interaction slaveshos )

mean field theory, is briefly summarized. Section 3 clarifies Y=Y TR ve = Vel pe, )
how tr_le spin-.deper?dent phase induces f_in.ite spin density on & = 4n%0L prIViL, (6)

a noninteracting or interacting dot when finite bias voltage

applied to the system. It is pointed out that spin moment o&s Well as asymmetry factor of the leads: 4ygy./y*. In the

the dot under finite bias voltage does not necessarily pedul®!lowing, we use the wide-band limit approximation exten-
spin polarized current. We stress the role of strong cdicela  Sively, assuming constant DOS and relaxation rate.

for realizing it. After identifying the proper charactdiistem- The current formula usually involves the lesser and re-
perature by universal scaling in Sec. 4, which is imperatve tarded parts of nonequilibrium Green function. The present
identify and understand the range of validity of our approxHamiltonian, however, conserves both the total chargezand
imation scheme, we present numerical results regardimy sgiomponent of total spin respectively, so we may eliminage th
transport by using the finite interaction slave-boson apgino dependence of the lesser Green function by using the con-
in Sec. 5. The generation and suppression of spin-depend&ffvation laws. As a result, we can express the spin-regolve

transport are discussed. Finally we conclude in Sec. 6. currentl, = I, = —&fL,) in terms of only the retarded dot
Green function. The formula reads

2. Theory o

21 Model o=f [elh@- T O

We assume a single dot orbital to predominantly contributgnere f, (¢) is the Fermi distribution on the lead Transmis-
to transport near the Fermi level, and ignore the Zeeman splijon 7 (5) = 77, + 73, (¢) consists of two contributions: the
ting. Accordingly, our theoretical mod_el is the §ingleéév background transmissiof, = 4¢/(1+¢£)? due to the arm, and
Anderson model augmented by the direct hopping betweg _ through the dot, which is spin-dependent in general and

left and right leads{ = L, R) and the Rashba SO interactionfoung to be expressed in terms of theactretarded Green
as¢, (see Fig. 1 and below). The total Hamiltonian of thg,nctionGR _ of a dot electron with spimr as

system is composed &f = Hp + Hy + >, H; + Ha, where
Hp represents the dot Hamiltonialdy, the hopping between T1:(e) = T T'Im [(1 +ig,) (1 + iqj;)Gﬁ(,(a)] . (®
the dot and the leadsi,, the noninteracting electron on theHerer — y/(1+ &) is the reduced relaxation rate in a ring ge-

lead ¢ = L,R), andHa, for the arm with direct hopping be- ometry, and the parameter aggd = \/a_/f(ei% _ geit)/20s

tween I_eft a_nd right leads. We trekte within the wide-ba_n_d he spin-dependent Fano parameter. Nonlinear spin-regolv
approximation (see eg. (23)), and other terms are specified onductance,, is obtained by

Hp = &N, +Unng, Q) dl,
; m Go = 57 = Go + G ©)
Hr = Z (Vcw di cro + Vedor ngdg), (2) whereg, = (€#/h)7y, is the background conductance due to

to the arm. Charae conductange= 3 _ G- oscillates with varv-
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ing ¢, that is,pag Or ¢so. Such phenomena were experimenin order to eliminate unphysical states, the completenass c

tally observed? 2! ditione’e+Y, pi-p,+did = I, and the charge correspondence
The above formula of spin-resolved current, eq. (7), is ext. f, = p p, + d'd must be imposed by Lagrange multipliers

act; a correction such as a two-particle Green function dog&) and/lfrz). Accordingly, the Hamiltonian becomes, in terms

not appears even if the strong correlation is present oncdthese slave boson fields and quasiparticle operators,

dot. The situation is the same as the Meir-Wingreen formula + +

of the charge currerfg which we reproduce in the limit of Ho — Z e fo + Ud'd, (11)

£ — 0 and7p|g? — «. The formula encodes full account of 7

the strong correlationfiect in the exact one-particle retarded Hr — Z (VW fice + VisaCl, fg), (12)

Green functiorGR (&). Another observation is that the pres- to

ence of the interaction does ndfect the Fano parametqr

it is determined entirely by the geometry of conducting kead

with the constraint Hamiltonian

Seeing the exact formula eq. (7), we get a basic idea of Hy = A0(e'e + Z phps+did-1)
how to generate spin transport electrically in a nonmagneti o
system ¢, = o¢so). The factor (1+ iq,)(1 + iq},) depends " Z/lfrz)(pj,pg +did-fi f(r). (13)
only on cosp,, hence spin-independent. The formation of =

spin moment on the dot does not |.m.med|ately ensure the SR¥thin the mean field approximation, all the boson fields are
polarized current. We cannot anticipate any spin-depende

; ) . . r@placed by their expectation values; then the Hamiltorsan
gzg:Egretnucrgll the retarded Green funct@ﬁU acquires spin- reduced to the renormalized resonant level model with the ef

fgctive dotleveky, = ¢4 —/lff) as well as theféective hopping
V4re = Z-Vge- The self-consistent equations to solve in conju-

2.3 Finite U slave-boson mean field approach i%ation with the constraint a4

In order to examine spin transport, our remaining task .
to evaluate the exact one-particle retarded Green function ~ _ _ _ Z( 0z, 32(7/) M (14)
GR (¢) appearing in eq. (8) in the presence of the Coulomb dor — d ~ olpl2 e
interaction and finite bias voltage, which is far from being .
trivial. The two powerful methods successful in equilitmiu U+ Z [% B Z 0Z, N %] M, _ 0 (15)
systems, the Bethe ansatz approach and numerical renormal- ~ dle2 ~ dlp-2  06|d?2) Z, '
ization group calculations, have soméidulty in applying to ) .. , ) )
nonequilibrium systems with finite bias voltage. To the lnést WhereZs = 1|, andM, is defined by the quasi-particle
our knowledge, the exact evaluation has not been so far avai€en functior,; as
able. Accordingly we need to seek an appropriate approxi- ~ * de R
mation scheme; we choose to adopt the Kotliar-Ruckenstein Mo = Im %(3 = 8a0)G5o (€)- (16)
(KR) formulation of the finiteU slave-boson mean field the-

z

We determine numerically self-consistent bose fields

ory (SBMT), originally introduced in equilibrium systefis ( L
o e p., d) satisfying eqgs. (14) and (15) at each temperature
and extended to nonequilibrium transport l&ter. and bias voltage.

Tlhe J:<Rtr1:or2ulat|0;1 of ilélg/Re-boson _apptrolach ﬁ_nf;\]bllesdus 0 Once self-consistent boson fields are obtained, we see that
cvaluate e reen functl approximately, Which 1€ads yna Green function has a form of the renormalized Fermi lig-
to a Fermi-liquid form (see eq. (18) below), satisfying theuid with the quasiparticle weigt®,. Namely, the renormal-

andel-:.angzreth SUT rultta). E'S _knO\_/vn ltodr_eproduc;:e ?OWECI ized relaxation rate becomé&s = Z,T and the renormalized
various low-temperature behaviors including conductamee energy.;. We recasGR as

hancement due to the Kondfiect. It gives reliable results not

only qualitatively bgt also quantitgtively, agreeing v_vliﬂrear GR (¢) = 1 (17)
conductancg obtained by numerical renormalization group £—e—Zos(8)

methods below the Kondo temperatdfe* 25The approach, Z

retaining finite Coulomb interaction, can access the fuléga ~ & — Bay + [y VA COSPy + Ty (18)

voltage dependence of conductance, which is importantin ex ]
periments. One of the authors recently applied the approaf€n we plug the above form in eq. (8), we seetake a
to a quantum dot with two-fold level degeneracy, succefssfulform of the Fano formuld, 27

giving a reasonably good account of linear and nonlinear con
ductance observed in experiments in the entire range of gate les + 0.2
voltage?> 26

e€+1
Following a standard treatment of the KR-SBMT, we in_Note is the (spin-dependent) Fano parameter previous|
troduce four bose fields associated to each state of theedot; G P pende P P y

for the empty,p,- for one electron with spi- andd for the defined, ande, = (& - &4,)/Tr + Vagcos, is a dimen
! . . sionless detuning from the resonance energy, which inslude
doubly occupied state. In the physical subspace, fermien o . . . .
T . nteraction &ect. It is stressed that interactiofiects the de-
eratorsd, andd,; are replaced by quasiparticle operator,, tunin but not the Fano parametgy
andz’ . with the renormalization facta,, which is chosen 9 P '
to be?3

> —(1—d'd—n' n. ) 3(e'n +oid(1_ee_nin-3 (10)

To(e) = To (19)
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3. Spin Moment Induced by ¢, and Its Transport I, (¢s) = nt &R(:gg_f Sm%, (28)
As a prerequisite to realizing spin transport, we now exam- )

ine how the local Rashba SO phase induces finite spin mo- I (o) = BT éy+yVagsing, (29)

ment on the dot once finite bias voltage is applies in nonmag- (1+¢)7

netic systems despite apparent time-reversal symmetry. W@ note that the relaxation rafedoes not depend on spin
might often expect transport to become spin-dependent onsgcordingly=, in eq. (20) is equal to

finite moment emerges because the latter normally is asso- 11 1\/K SR1 -1

ciated with spin-dependent shift god relaxation. However, So== ( )( 2 0)( - ) (30)
as we see immediately §8.1, a noninteracting SOI system 2\-1 1\%y OJA1 1

turns out exception to this rule; finite spin moment on a non- . .

interacting SOI arises no spin transport. Accordingly weche 3:2 Noninteracting dot . , o .
some additionalfiect — correlation flect — to realize it. In ~ WhenU = 0, the dfective actionSer with Xo provides a

this section, we will clarify the fect by deriving an fiective full solution of the problem. In this case, all of the nonequi
Keldysh action of the dot under finite bias. librium Green functions can be evaluated exactlyGy =
(GL - =0)™, to find*?

Iso

3.1 Hfective Keldysh action of the dot under finite bias G; . (e) = —2i {T(e) lmGgw(e), (31)
Since conducting electrons on the leads are assumed to be ' '

noninteracting, it is straightforward to integrate exactver GR, (&) = 1 __ (32)

those degrees of freedom. The resultiipetive action de- ' & —&q + I Vaé cosp, +iT

scribes the nonequilibrium formation of spin polarizatmm Spin part of the distributiosy(s) = f;(g) _ fI(s) is
an open quantum dot. By assuming the spin dependent phase
b = dpp + TPso fOr the sake of generality, integrating over S(e) = 2+aé [fa(e) — fiL(e)] cOSPAB SiNdso (33)

the lead degrees of freedom produces tiieative Keldysh 1+¢
action of the dot It is clear that even after switchingfapag having the sys-
_ 7 213 / / tem nonmagnetic, finite spin polarization remaif§pin po-
Serr = j;dtdf Z(r: Fo () (G'SO ZO) (L) (1) larizationmg = (ny — ;) in this case becomes

- - € si ) - - ZR
~U f dtF; (O)F (O, (6 (1), (20) - 2\7/7(_5?2)(]) Imlog[z ;_: _Zg}. (34)
c 0

Here' is a spinor field associated with the dot electron of thge come to the conclusion that finite spin polarization ap-
Keldysh doublet structur&;so is the 2<2 Green function ma- pears on a noninteracting dot when the following three con-
trix describing a noninteracting, isolated dot. The selé®y ditions are met: (1) in a ring geometgy 0, (2) under finite

%o is an outcome of integrating the lead degrees of freedomias voltagefg — f. # 0, and (3) with finite Rashba SO cou-
which is found to become in terms of Green functions of @ling, ¢, # 0.

decoupled lead: By contrast, switching 6 ¢ag renders transport spin-

a Noa e independent in spite of the above finite spin polarization.
%o = z;_ Rvdf Gee View, (1) This is seen becausa! (&) loses all the spin-dependence in
T R this case (see egs. (7,8) and the Fano paramgtés spin-
gtl= ( R 9[1 -Vir® Ta) 22) independent), leading g = |, . Finite spin polarization with
~VRL® T3 g§1 ’ vanishing spin currentis a peculiar feature of a nonintérgc

wherer; are the Pauli matrices in the Keldysh structure. In thg©! System.

wide-band limit,g approximates to . )
3.3 Nonmagnetic interacting dot

A ~ —i 1-2f, 2f, 23 When one turns on interactidhon the dot in nonmagnetic
Ge==mec\oa- ) 1-2f) (23) i
( 0) ¢ systemsdag = 0), one may expect spin-dependent transport
so that one finds the retarde)( advancedA), Keldysh ) due to finite spin polarization. This is because finite spin po

parts of the self-energyp to be larization dfects the system through interaction channel in-
RA _ ducing spin-dependent shift and relaxation process inxthe e
Yo, =T Vaé cosg, F 1T, (24)  act one-particle retarded functi®g,, (¢).
25’” — _2ir(1- 2f,). (25) One can confirm the above statement by the lowest-order

_ _ S perturbation calculation regarding interaction, and keysalf-
Here, we have introduced thefective dot spin distribution consistent extension of it. Such perturbational result lean

f-% by justified at the temperature higher than the Kondo tempera-
_ =5 1 ture, though. When one writes the exact Green function sym-
fr(por) = ﬁ =T Z f I (o), (26) bolically asG = (Gy* - Xo — Zy)™* in the Keldysh space,

00 — <0 7 the Hartree contribution leads Ry, = U{(nz)o where(: - )q
and relaxation rates is the noninteracting average. Up to this order, spin cdirren

_ A 4
F"ZF“’ =T (27)
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Is=1y -1, is found to be unambiguous connection to the Kondo physics, we first need
e to identify the characteristic temperature of the systeap; s
ls=lh—1, = T fds[fL(g) — fr(€)] AT (&), (35) arating the weak-coupling and strong-coupling regionss Th

also enables us to correctly identify the range of validfthe
AT () ~ —TbM Im [(1+ i) (L + iq*)(l"GS(a))z], (36) slave-boson approach. The scale ysu_ally correspoqu to the
r Kondo temperature. The characterization, however, is mot s
whereGR is the noninteracting Green function of eq. (32)ransparent particularly in a ring geometry. Firstly, thenkio
with ¢as = 0; mg, the spin polarization of eq. (32). Spin cur-temperature characterizes a crossover, not a transiodhas
rentls behaves asyU (eV)2/T3 for small bias voltage, so that One can only determine the scale modulo numerical factor.
though the &ect may be small, it should be counted as trulypecondly, the flux phase eithgxg andor ¢s, through the in-
a “nonequilibrium correlation féect” One may further cal- terferometer is known toféect the Kondo temperature in a
culate spin polarizatiom self-consistently, to find finite spin substantial and nontrivial way.
polarization is stablé? Hence finite spin current withn be- For this purpose, we will use the scal€, defined by
ing replaced byn. eg. (39) below, which is endorsed by confirming universal
We argue that spin polarization remains finite at the ten$caling of conductance. Itis known that conductance throug
perature much lower than the Kondo temperature, where tReSingle quantum dot exhibits the universal dependence on
system enters the strong-coupling regime. Indeed the Feriemperature or on bias voltage, once scaled by the Kondo
liquid quasiparticle picture, which isfiective for the lower temperaturé® 3By putting the other way round, observed
temperature, justifies the form eq. (33) of thEeetive distri- Universal dependence justifies the choice of the charatiteri
bution as a reasonably good approximation, if not exact. THemperature. Recalling low-temperature physics is dotatha
argument is as follows. When we incorporate the self-enerdyy the Fermi liquid picture, we introduce the charactegisti
Tu(e) up to lineare in terms of the renormalization factor temperaturel* at each gate voltage by the inverse scale of
Z, = [1 - 8,Zu. ()] %, we can write the action as (with sup- quasiparticle Green functicd = G/Z at zero temperature in
pressing spin indices) equilibrium 2 which according to eq. (18) leads to the phase-
dependent characteristic temperature

where we have introduced the quasiparticle Green function @)= '_gd * F\/ECO‘% * IF'T:O,V:O' (39)

G = G/Z = (Gy*' - Zo — Zy)/Z and the renormalized self- \When ¢as and ¢s, coexist, there are two scal@q{¢,) for
energyX = ZZX, on the right hand side (with suppressing,r =1, |. If only either gag or ¢so is present (this is the sit-
spin indices). In this quasiparticle picturefeztive distribu- yation we are concerned with), we have only one scale of
tion f, = X5 /(X% - XF) is well approximated by its bare one, the characteristic temperature. In the single impurity émd
since the renormalization factdy, is cancelled out between son model (SIAM), the above definition reduces to the Kondo

¥(Gyl-Zo-Zu) ¥~ ¥ZIGTY, (37)

the numerator and the denominator. peak widthT* = .
_ e _ Figure 2 shows numerical results of typical behavior of
fr(eiU) » x—<g = f(e:U = 0), (38) linear conductanc& = G; + G, by using the KR-SBMT
by ) T l
0,0 0,0

approach. Depending on a choice &fconductance is en-
It means that finite spin polarization is persistent at vewy | hanced a# = 0.1 (the Kondo &ect), or suppressed (the
temperature. This type of approximation is often called thanti-Kondo dfect) at¢ = 0.3 and 07 with decreasing tem-
Ng’s ansatz and is often utilized in evaluating the less@e@r perature. In Fig. 3, we take a closer look at the temperature
functionG= in the presence of interactict.° dependence at the center of the Kondo valley —U/2, by
Having established that finite spin polarization is presemarying¢ = 0, 7/4, 7/2, and %/4. Although we see linear
on the interacting SOI system both in the higher and the lowebnductance increase or decrease with increasing tempera-
temperature regimes, we now argue that large spin tranisporture, it clearly tends to approach the value corresponding t
expected al = 0 within the Kondo valley regioay ~ -U/2.  G,,. Hence one expects such crossover behavior is dominated
This is because strong correlation is known to enhance coly the characteristic temperature of the system, and thathwh
ductance as well as provide spin-dependent shift and relagealed by it, it exhibits a universal dependence.
ation due to finite moment on the dot that the Rashba SO in- We support this assertion by examining the scaling function
teraction induces. Apparently, some aspect is similar sogel G(T.4) - 2Gs
spin filtering dfect of linear conductance proposed in the An- Ft=T/T*¢)) = |=="—=
derson system in a magnetic fiél@nce finite spin moment G(0.¢) - 26y
is present whether due to magnetic field or the bias voltagé;actor 2 in front ofg, comes from the spin degeneracy.) As
large spin dependence appears in transport. Tifierdihce is  shown in Fig. 4, they exhibit universal temperature depen-
that in nonmagnetic SOI systems, we do need finite bias @gnce for five dierent values o#. Itis noted that if one alter-
sustain spin moment, so that such spin transport only appeagtively scaled temperature by the characteristic tentpera

' . (40)

as a nonlinear response. of SIAM Tg,,\,» One could not attain such universal behavior
(see the inset of Fig. 4 (a)).

4. Characteristic TemperatureT*(¢) and Univer sal Scal- We regardT*(¢) as the proper scale of how the Kondo

Ing physics takesfeect in the present interferometer system. By

In order to explore spin-dependent phenomena of the inteitilizing this scale, we will see how spin-dependent tramsp
ferometer aff = 0 or very low temperature and to show anis related to the Kondo physics.
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Fig. 3. (Color online) Temperature dependence of linear conduoetaxt
e = —-U/2, for (a)¢ = 0.3 and (b)¢ = 0.7. Behaviors are plotted at values
¢ =01(a), n/4(v),n/2 @), 3r/4 (O), andr (x). Dashed lines correspond to
Gb-

Fig. 2. Temperature evolution of linear conductance profile at 0, for
()¢ =0.1, (b)¢ = 0.3, and (c)¥¢ = 0.7. Energies are measured in unitf

of the renormalized level vanishes altogether. Furtheemar

closer look reveals that applying the larger bi@es nonec-

essarily produce the larger spin dependence. Indeed, the ma

nitude of the spin conductance fdr= 0.4 (dash-dotted line)
We are now going to examine how spin-dependent trangirns out smaller than that faf = 0.2 (dotted line) over the

port appears electrically as a nonequilibriufieet by the entire value ofs, at& = 0.3 and 07. It shows that there is an

Rashba coupling phage, = o¢s, in nonmagnetic systems optimal value to attain maximal spin-dependence.

¢oaz = 0. We evaluate spin-resolved conductage =

dl,-/dVandAg = G, — G, numerically within the KR-SBMT 52 Temperature dependence

approach according to eq. (7). In the following, we focus on a To clarify further the nature of the observed spin-depehden

moderately strong Coulomb interaction ca$gy = 2.0, and  transport, we examine its temperature evolution. Figuep? r

we measure energy in unit & = 1. We will discuss our resents spin conductandgs as a function of gate voltage

results in light of the characteristic temperatlif¢pso) intro- by varying temperature. Here, to clarify a connection with

5. Spin-dependent Transport

duced and examined in the previous section. the Kondo physics, we scale temperature by the characteris-
o tic temperaturd *(¢so). One observes a few things immedi-
5.1 Finite bias voltage/eect ately: spin-dependence is maximal around= —U/2; Spin-

Figure 5 demonstrates how finite bias voltage induces spidependence is eminent at temperature lower tha@so),
dependence conductangk at zero temperature, with the but it gets reduced considerably toward approachit(@so).
choice of the Rashba SO phagg = n/4. While there is These observations strongly suggest that the Kondo phigsics
no spin-dependence in linear conductance (shown by thigsponsible for the emergent spin transport.
solid lines in Fig. 5 (a) and (b)), we see applying finite volt-
age gradually develop the spin-dependent conductancg in 633  Spin-dependent transport as a nonequilibrium Kondo
eV = 0.05U, and (b)eV = 0.15U. One further observes effect
that such spin-dependent transport is conspicuous onhein t - Finally, we demonstrate in Fig. 8 the overall structure of
singly-occupied region of the dot{ ~ 1), where the Kondo spin conductance at = —~U/2, by varying bias voltage and
physics takesféect. temperature. We here scale both temperature and bias &oltag

We next show in Fig. 6 the Rashba SO phase dependencegfthe characteristic scalE(¢so). As is seen, while temper-
spin conductancag = G; — G, at the middle of the Kondo ature always reduces spin dependence, one finds an optimal
valley &g = —U/2. The results fog = 0.3 and 07 are pre- yalue of bias voltage attaining the maximal amplitude ofispi
sented. One sees oscillates as a function gk.. It vanishes  gependence aroureV ~ 0.6T*(¢so) , as denoted by’ in
not only atgs, = 0 andzr when no spin density is on the dotig, g.

(see eq. (33)), but also around2 and 3r/2, where the shift  \We arque that all of our numerical results are fully consis-
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Fig. 4. (Color online) Universal temperature dependence of liceaduc- €d
tance for (a) = 0.3, and (b} = 0.7, scaled byl *(¢). Behaviors are plotted
at valuesp = 0 (A), n/4 (v), n/2 (@), 3r/4 (O), andr (x). Inset: No universal
dependence is observed if one normalizes temperature byh#racteristic
temperature of SIAMg -

Fig. 5. Spin-resolved conductangg;, (in unit of €/h) at zero temperature
(dashed lines fog;; dashed-dotted lines faf;) as a function of the gate
voltageey for (top) eV = 0.05U and (bottom)eV = 0.15U. Thin solid lines
refer to linear conductance, where one see no spin-depeaders= 0.3 is
chosen.

tent with the picture that this electrically generated éespgin-
dependent transport can be taken as a new type of nonequilib-
rium Kondo dfect that is only observed at finite bias voltage:
Either temperature or bias voltage larger than the characte
istic scaleT* suppressed the Konddfect. What is dierent
from the standard (equilibrium) Konddfect is that wedo
need finite bias voltage to support spin moment on the dot
(See§3). Technically speaking, we may see the Konffeat

as the process that strong correlation on the dot produees th
density dependent relaxation in the retarded dot Green func
tion. Hence if the distribution is spin-dependent as in 28),(

the same Kondo mechanism ma®&g_ spin-dependent. In
this sense, finite bias voltage has two-sidffde: it is the ori-

gin of the spin polarization density; yet it destroys the Hon
effect, which is vital to produce large spin-dependent trans-
port. Competition of these twoffects leads to the optimal
bias voltage.

Our results are sharply contrasted with previous results
of a similar mesoscopic SOI system studied by Lu et‘l.,
where spin-dependent transport is observed more eminently
around the Coulomb blockade peaks (~ 0.5,1.5), and Fig. 6. The Rashba phase dependence of spin conductsice Gy - G,
larger bias voltage induces larger spin-dependence. App4p unit of &/h for (a) ¢ = 03 and (b)¢ = 0.7. Different values of bias
ently the Kondo &ect barely plays an important role in their:{oltage are plotted bgV = 0 (solid line), 005 (dashed line), .Q (dotted

. L. ine), and 04 (dash-dotted line),
phenomena. Indeed our estimate of the characteristic tempe
ature T* for their parameters infers that their applied bias
voltage is much largef*. So we reduce their observed spin-
dependent phenomenato large nonlinear bi@seproducing
spin-dependent Coulomb blockade, not to a nonequilibriu
Kondo dfect and spin-dependent transport by that.

interferometer at low temperature. We have shown that, even
fora single-level dot, spin dependenttransport can odear e
trically as a result of an intertwiningtect of the Rashba SO

6. Conclusion interaction, Coulomb interaction, and finite bias voltagée.

ave shown that this spin-dependent transport can be well un

In conclusion, we have investigated spin dependent tran% o
oL . ) - 9 X p p X o erstood as a new tvpe of noneauilibrium Kondieet: such



J. Phys. Soc. Jpn.

DRAFT

Acknowledgment The authors appreciate T. Nemoto for
helpful discussion. The work is partially supported by Gran
in-Aid for Scientific Research (Grant No. 22540324) from the
Ministry of Education, Culture, Sports, Science and Te¢hno
ogy of Japan.

0.0 prermmeee
AG |
02}
04
15 10 05 0.0 05
€d

Fig. 7. Temperature evolution of spin conductance prdfig= G, -G, as
a function of gate voltagey. Temperature is scaled lby= T/T*(¢so). Other
parameters are the same as in Fig. 5 (b).
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Fig. 8. (Color online) Dependence &G = G; — G, (in unit of €/h) by
varying bias voltage and temperature. Other parametertharsame as in
Figs. 5 (b) and 7. Both axes are normalized by the charatitetésnperature
T*(¢s0). Symbol:= refers to the location at maximal amplitudeAd.

phenomenon does not appear in noninteracting dot, or in li
ear conductance. The phenomenon is suppressed either
temperature or by bias voltage larger than the Kondo scale

properly defined in the present model. In this regard, we views)
this spin-related phenomenon as a manifestation of “nonequ?®)
librium strong-correlationfect.” Our results indicate that the 27

interplay between the Konddfect and the SO coupling in

the interferometer system provides a viable option of masg)
nipulating spin degrees of freedom, especially as a passibBo)

electrically-generated spin filtering. At the same time hee
lieve that quantum dots provide a unique opportunity totud
non-equilibrium many-bodyfeects in a well-controlled set-
ting.
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