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Spin Current Generation as a Nonequilibrium Kondo Effect in a Spin-orbit
Mesoscopic Interferometer
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We study nonequilibrium generation of spin-dependent transport through a single-level quantum dot embedded in
a ring with the Rashba spin-orbit coupling. We consider nonmagnetic systems, involving no magnetic field nor ferro-
magnetic leads. It is theoretically predicted that large spin-dependent current occurs as a combined effect of the Rashba
spin-orbit interaction, the Kondo effect, and nonequilibrium effect, without using magnetic field or material. The phe-
nomenon is viewed as a new nonequilibrium correlation effect that disappears when either interaction or finite bias is
absent. We show how the Kondo physics is connected with such emergent spin phenomenon by employing the finite
interaction slave-boson approach.
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1. Introduction

In semiconducting devices, the Rashba spin-orbit (SO) in-
teraction is generated by the potential asymmetry in the di-
rection perpendicular to the semiconductor plane. By uti-
lizing tunable spin-orbit interaction, there has been grow-
ing interest in manipulating electron spins toward realizing
controllable semiconductor spintronics devices nonmagneti-
cally. In coherent transport through a nanostructure or a quan-
tum dot, the Coulomb interaction plays a fundamental role.
Among such striking many-body effects is the Kondo effect
of semiconductor quantum dots.1–3 Whereas the dot block-
ades the coherent channel by its repulsive interaction on the
dot (the Coulomb blockade effect), decreasing temperature
helps develop a strong singlet correlation between electrons
on the dot and in the leads, showing conductance enhance-
ment (the Kondo effect). The phenomenon is characterized by
the Kondo temperature, which is also controllable in semicon-
ductor nanostructures. Such a strongly coupled quantum dotis
known to produce large spin polarized currents once magnetic
field applies.4 We explore the possibility of spin transport of a
similar naturenonmagnetically, being maintained electrically
by the spin-orbit interaction.

Controllable quantum interference effect enables us to reg-
ulate coherent charge and spin transport. Since one may de-
scribe the effect of Rashba spin-orbit interaction effectively
as a spin-dependent phaseφσ = σφso (with σ = ±1) for an
interferometer,5 the Rashba spin-orbit interferometer (SOI)
shares much similarity with the Aharonov-Bohm interferome-
ter (ABI) where the Aharonov-Bohm (AB) phaseφAB is spin-
independent. In the ABI, the conductance enhancement due
to the Kondo effect is easily deformed by quantum interfer-
ence by a direct hopping channel (the Fano-Kondo effect6–10);
Charge current can be controlled by adjusting gate voltage,
the AB flux, and bias voltage. We expect similar controllabil-
ity is attainable on spin current in the SOI.

Several kinds of suggestions have been made to realize spin
transport by using the Rashba spin-orbit coupling. The two
systems (SOI and ABI) produce exactly the samelinear con-
ductance (and no spin-dependent conductance), becauseφσ
appears only in the form of cosφσ in linear transport. Hence
one should go into a nonequilibrium regime with finite bias

voltage to realize spin-dependent phenomena. Alternatively
one uses magnetic systems such as systems with ferromag-
netic leads or systems with both the AB and the Rashba fluxes.
Indeed, the formation of spin moment was studied in nonequi-
librium Rashba dots;11, 12 Spin-charge filtering was proposed
by combining with the AB effect;13 bias-induced generation
of spin polarization current was predicted.14 Particularly chal-
lenging is the possibility to generate and regulate spin trans-
port only via electric field in nonmagnetic systems. Yet, elec-
trically emergent spin transport is still a largely unexplored
phenomena in a nonequilibrium many-body system. It is cru-
cial to understand whether and how the SO interaction and
strong correlation effect such as the Kondo physics are re-
sponsible for it.

In this paper, we investigate the nonequilibrium electric
generation of spin transport in a mesoscopic spin-orbit inter-
ferometer. The system we consider is nonmagnetic, involving
no magnetic field nor ferromagnetic leads. We are particularly
interested in how spin transport can be spontaneously realized
in a ring geometry as a result of combined effect of nonequi-
librium nature (finite bias voltage), the Rashba SO interaction,
and many-body effect (the Kondo physics). We employ the fi-
nite interaction slave-boson approach on the single-levelAn-
derson model with the SO interaction and direct hopping be-
tween leads. The approximation is valid up to the order of the
Kondo temperature, beyond which the Kondo effect is sup-
pressed. Within its validity, we will find that spin transport
through a single-level quantum dot occurs in the Kondo val-
ley if all the following three conditions are met: (1) strong
Coulomb interaction is present on the dot, (2) under finite bias
voltage whereeV is roughly on the order of the Kondo tem-
perature or less, (3) at temperature lower than the Kondo tem-
perature. It will also be confirmed that either too large bias
voltage or temperature (comparing to the Kondo characteris-
tic temperature) destroys this spin-dependent transport along
with suppressing the Kondo effect.

In recognizing emergent phenomena as related to the
Kondo physics, we need to know a concrete knowledge of the
energy scale characterizing the Kondo physics of the system
in the presence ofφσ, which we designate asT∗ for the sake
of clarity; it is nothing but the standard Kondo temperature
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QD

φσ

Fig. 1. (Color online) Schematic illustration of the model. On the quantum
dot (QD), Coulomb interaction is present and the Rashba spin-orbit interac-
tion is incorporated as a spin-dependent fluxφσ (see the text).

for the single impurity Anderson model (SIAM). The Kondo
temperature represents a crossover (not a transition) separat-
ing the weak-coupling and strong-coupling regions, the defi-
nition has some ambiguity on principle. Moreover, as for the
ABI system, the presence of the AB flux is known to affect
the Kondo temperature considerably;15–17 the same goes for a
system with the SO interaction. To resolve the issue of ambi-
guity, we resort to the idea of universal scaling of conductance
on the temperature18 or on the bias voltage19 in the Kondo
regime.

The paper is organized as follows. In Sec. 2, we introduce
the model of quantum transport of a mesoscopic spin-orbit in-
terferometer. The exact formulae of charge and spin currents
are presented in terms of nonequilibrium Green functions, and
our choice of the approach, the finite interaction slave-boson
mean field theory, is briefly summarized. Section 3 clarifies
how the spin-dependent phase induces finite spin density on
a noninteracting or interacting dot when finite bias voltageis
applied to the system. It is pointed out that spin moment on
the dot under finite bias voltage does not necessarily produce
spin polarized current. We stress the role of strong correlation
for realizing it. After identifying the proper characteristic tem-
perature by universal scaling in Sec. 4, which is imperativeto
identify and understand the range of validity of our approx-
imation scheme, we present numerical results regarding spin
transport by using the finite interaction slave-boson approach
in Sec. 5. The generation and suppression of spin-dependent
transport are discussed. Finally we conclude in Sec. 6.

2. Theory

2.1 Model
We assume a single dot orbital to predominantly contribute

to transport near the Fermi level, and ignore the Zeeman split-
ting. Accordingly, our theoretical model is the single-level
Anderson model augmented by the direct hopping between
left and right leads (ℓ = L,R) and the Rashba SO interaction
asφσ (see Fig. 1 and below). The total Hamiltonian of the
system is composed ofH = HD + HT +

∑

ℓ Hℓ + HA, where
HD represents the dot Hamiltonian;HT , the hopping between
the dot and the leads;Hℓ, the noninteracting electron on the
lead (ℓ = L,R), andHA, for the arm with direct hopping be-
tween left and right leads. We treatHℓ within the wide-band
approximation (see eq. (23)), and other terms are specified by

HD =
∑

σ

ǫd nσ + Un↑n↓, (1)

HT =
∑

ℓ,σ

(

Vdσℓ d
†
σcℓσ + Vℓdσ c†

ℓσ
dσ

)

, (2)

HA =
∑

σ

[

VLR c†LσcRσ + VLR c†RσcLσ

]

, (3)

wherenσ = d†σdσ is the dot electron number operator. Fi-
nite bias voltage is applied byµR,L = ±eV/2 between the
two chemical potentials of the leads, and we control the gate
voltage by shifting the dot levelǫd. The average dot number
nd = 〈n↑ + n↓〉 roughly corresponds to 2, 1, 0 forǫd . −U,
−U . ǫd . 0, and 0 . ǫd respectively. We incorporate
the local Rashba spin-orbit interaction effectively as a spin-
dependent phaseφσ = σφso (for σ = ±1) through the interfer-
ometer,5 whereφso is proportional to the asymmetric electric
field perpendicular to the semiconductor interface. We adopt
the convention

VRdσVdσLVLR =
∣

∣

∣VRdVdLVLR

∣

∣

∣ eiφσ , (4)

where|Vℓdσ| = |Vdσℓ| etc. are spin-independent and we omit
writing the suffix σ.

2.2 Charge and spin currents
We briefly summarize the formulae of charge and spin cur-

rents in terms of nonequilibrium Green functions, which can
be derived along the standard line of treatment.6–8 Here so as
to clarify the role ofφAB andφso, we proceed for a more gen-
eral case of coexistingφAB andφso, that is,φσ = φAB + σφso

through the interferometer. The system is characterized bythe
following spin-independentparameters:

γ = γL + γR; γℓ = π|Vdℓ|2ρℓ, (5)

ξ = 4π2ρLρR|VRL|2, (6)

as well as asymmetry factor of the leadsα = 4γRγL/γ
2. In the

following, we use the wide-band limit approximation exten-
sively, assuming constant DOS and relaxation rate.

The current formula usually involves the lesser and re-
tarded parts of nonequilibrium Green function. The present
Hamiltonian, however, conserves both the total charge andz-
component of total spin respectively, so we may eliminate the
dependence of the lesser Green function by using the con-
servation laws. As a result, we can express the spin-resolved
currentIσ ≡ ILσ = −e〈ṅLσ〉 in terms of only the retarded dot
Green function. The formula reads

Iσ = −
e
h

∫

dε
[

fL(ε) − fR(ε)
]

Tσ(ε), (7)

where fℓ(ε) is the Fermi distribution on the leadℓ. Transmis-
sionTσ(ε) = Tb + T1σ(ε) consists of two contributions: the
background transmissionTb = 4ξ/(1+ξ)2 due to the arm, and
T1σ through the dot, which is spin-dependent in general and
found to be expressed in terms of theexactretarded Green
functionGR

σσ of a dot electron with spinσ as

T1σ(ε) = Tb Γ Im
[

(1+ iqσ)(1+ iq∗σ)G
R
σσ(ε)

]

. (8)

HereΓ = γ/(1+ ξ) is the reduced relaxation rate in a ring ge-
ometry, and the parameter andqσ =

√

α/ξ(eiφσ − ξe−iφσ )/2 is
the spin-dependent Fano parameter. Nonlinear spin-resolved
conductanceGσ is obtained by

Gσ =
dIσ
dV
= Gb + G1σ, (9)

whereGb = (e2/h)Tb is the background conductance due to
the arm. Charge conductanceG =

∑

σ Gσ oscillates with vary-
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ing φσ, that is,φAB or φso. Such phenomena were experimen-
tally observed.20, 21

The above formula of spin-resolved current, eq. (7), is ex-
act; a correction such as a two-particle Green function does
not appears even if the strong correlation is present on a
dot. The situation is the same as the Meir-Wingreen formula
of the charge current,22 which we reproduce in the limit of
ξ → 0 andTb|q|2 → α. The formula encodes full account of
the strong correlation effect in the exact one-particle retarded
Green functionGR

σσ(ε). Another observation is that the pres-
ence of the interaction does not affect the Fano parameterq;
it is determined entirely by the geometry of conducting leads.

Seeing the exact formula eq. (7), we get a basic idea of
how to generate spin transport electrically in a nonmagnetic
system (φσ = σφso). The factor (1+ iqσ)(1 + iq∗σ) depends
only on cosφσ, hence spin-independent. The formation of
spin moment on the dot does not immediately ensure the spin
polarized current. We cannot anticipate any spin-dependent
transport until the retarded Green functionGR

σσ acquires spin-
dependence.

2.3 Finite U slave-boson mean field approach
In order to examine spin transport, our remaining task is

to evaluate the exact one-particle retarded Green function
GR
σσ(ε) appearing in eq. (8) in the presence of the Coulomb

interaction and finite bias voltage, which is far from being
trivial. The two powerful methods successful in equilibrium
systems, the Bethe ansatz approach and numerical renormal-
ization group calculations, have some difficulty in applying to
nonequilibrium systems with finite bias voltage. To the bestof
our knowledge, the exact evaluation has not been so far avail-
able. Accordingly we need to seek an appropriate approxi-
mation scheme; we choose to adopt the Kotliar-Ruckenstein
(KR) formulation of the finiteU slave-boson mean field the-
ory (SBMT), originally introduced in equilibrium systems23

and extended to nonequilibrium transport later.24

The KR formulation of slave-boson approach enables us to
evaluate the Green functionGR approximately, which leads
to a Fermi-liquid form (see eq. (18) below), satisfying the
Friedel-Langreth sum rule. It is known to reproduce correctly
various low-temperature behaviors including conductanceen-
hancement due to the Kondo effect. It gives reliable results not
only qualitatively but also quantitatively, agreeing withlinear
conductanceG obtained by numerical renormalization group
methods below the Kondo temperature.10, 24, 25The approach,
retaining finite Coulomb interaction, can access the full gate
voltage dependence of conductance, which is important in ex-
periments. One of the authors recently applied the approach
to a quantum dot with two-fold level degeneracy, successfully
giving a reasonably good account of linear and nonlinear con-
ductance observed in experiments in the entire range of gate
voltage.25, 26

Following a standard treatment of the KR-SBMT, we in-
troduce four bose fields associated to each state of the dot:e
for the empty,pσ for one electron with spinσ andd for the
doubly occupied state. In the physical subspace, fermion op-
eratorsdσ andd†σ are replaced by quasiparticle operatorfσzσ
andz†σ f †σ with the renormalization factorzσ, which is chosen
to be23

zσ = (1−d†d−p†σpσ)−
1
2 (e†pσ+p†σ̄d)(1−e†e−p†σ̄pσ̄)−

1
2 . (10)

In order to eliminate unphysical states, the completeness con-
ditione†e+

∑

σ p†σpσ+d†d = I , and the charge correspondence
f †σ fσ = p†σpσ +d†d must be imposed by Lagrange multipliers
λ(1) andλ(2)

σ . Accordingly, the Hamiltonian becomes, in terms
of these slave boson fields and quasiparticle operators,

HD 7→
∑

σ

ǫd f †σ fσ + Ud†d, (11)

HT 7→
∑

ℓ,σ

(

Ṽdσℓ f
†
σcℓσ + Ṽℓσd c†

ℓσ
fσ

)

, (12)

with the constraint Hamiltonian

Hλ = λ
(1)(e†e+

∑

σ

p†σpσ + d†d − 1
)

+
∑

σ

λ(2)
σ

(

p†σpσ + d†d− f †σ fσ
)

. (13)

Within the mean field approximation, all the boson fields are
replaced by their expectation values; then the Hamiltonianis
reduced to the renormalized resonant level model with the ef-
fective dot level ˜εdσ = ǫd−λ(2)

σ as well as the effective hopping
Ṽdσℓ = zσVdℓ. The self-consistent equations to solve in conju-
gation with the constraint are10, 24

ε̃dσ − ǫd =
∑

σ′

(

∂Zσ′

∂|pτ|2
− ∂Zσ

′

∂|e|2

)

M̃σ
Zσ′
, (14)

U +
∑

σ















∂Zσ
∂|e|2

−
∑

σ′

∂Zσ
∂|pσ′ |2

+
∂Zσ
∂|d|2















M̃σ
Zσ
= 0. (15)

whereZσ = |zα|2, and M̃σ is defined by the quasi-particle
Green functionG̃σσ as

M̃σ =
∫ ∞

−∞

dε
2πi

(ε − ε̃dσ)G̃<σσ(ε). (16)

We determine numerically self-consistent bose fields
(e, pσ, d) satisfying eqs. (14) and (15) at each temperature
and bias voltage.

Once self-consistent boson fields are obtained, we see that
the Green function has a form of the renormalized Fermi liq-
uid with the quasiparticle weightZσ. Namely, the renormal-
ized relaxation rate becomesΓ̃σ = ZσΓ and the renormalized
energy, ˜εd. We recastGR as

GR
σσ(ε) =

1
ε − ǫd − Σσ(ε)

(17)

≈ Zσ
ε − ε̃dσ + Γ̃σ

√
αξ cosφσ + iΓ̃σ

. (18)

When we plug the above form in eq. (8), we seeTσ take a
form of the Fano formula,6, 10, 27

Tσ(ε) = Tb
|eσ + qσ|2

e2
σ + 1

. (19)

Note qσ is the (spin-dependent) Fano parameter previously
defined, andeσ = (ε − ε̃dσ)/Γ̃σ +

√
αξ cosφσ is a dimen-

sionless detuning from the resonance energy, which includes
interaction effect. It is stressed that interaction affects the de-
tuningeσ but not the Fano parameterqσ.
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3. Spin Moment Induced by φσ and Its Transport

As a prerequisite to realizing spin transport, we now exam-
ine how the local Rashba SO phase induces finite spin mo-
ment on the dot once finite bias voltage is applies in nonmag-
netic systems despite apparent time-reversal symmetry. We
might often expect transport to become spin-dependent once
finite moment emerges because the latter normally is asso-
ciated with spin-dependent shift and/or relaxation. However,
as we see immediately in§3.1, a noninteracting SOI system
turns out exception to this rule; finite spin moment on a non-
interacting SOI arises no spin transport. Accordingly we need
some additional effect — correlation effect — to realize it. In
this section, we will clarify the effect by deriving an effective
Keldysh action of the dot under finite bias.

3.1 Effective Keldysh action of the dot under finite bias
Since conducting electrons on the leads are assumed to be

noninteracting, it is straightforward to integrate exactly over
those degrees of freedom. The resulting effective action de-
scribes the nonequilibrium formation of spin polarizationon
an open quantum dot. By assuming the spin dependent phase
φσ = φAB + σφso for the sake of generality, integrating over
the lead degrees of freedom produces the effective Keldysh
action of the dot

Seff =

∫

c
dtdt′

∑

σ

Ψ̄σ(t)
(

Ĝ−1
iso− Σ̂0

)

(t, t′)Ψσ(t′)

− U
∫

c
dt Ψ̄↑(t)Ψ̄↓(t)Ψ↓(t)Ψ↑(t). (20)

HereΨ is a spinor field associated with the dot electron of the
Keldysh doublet structure;̂Giso is the 2×2 Green function ma-
trix describing a noninteracting, isolated dot. The self-energy
Σ̂0 is an outcome of integrating the lead degrees of freedom,
which is found to become in terms of Green functions of a
decoupled leadgℓ:

Σ̂0 =
∑

ℓ,ℓ′=L,R

V̂dℓ ˆ̄gℓℓ′ V̂ℓ′d, (21)

ˆ̄g−1 =

(

g−1
L −V̂LR ⊗ τ3

−V̂RL⊗ τ3 g−1
R

)

, (22)

whereτi are the Pauli matrices in the Keldysh structure. In the
wide-band limit,g approximates to

ĝℓ ≈ −iπρℓ

(

1− 2 fℓ 2 fℓ
2(1− fℓ) 1− 2 fℓ

)

, (23)

so that one finds the retarded (R), advanced (A), Keldysh (K)
parts of the self-energyΣ0 to be

Σ
R,A
0,σ = −Γ

√

αξ cosφσ ∓ iΓ, (24)

ΣK
0,σ = −2iΓ(1− 2 f̄σ). (25)

Here, we have introduced the effective dot spin distribution
f̄σ28 by

f̄σ(φσ) =
Σ<0,σ

ΣA
0,σ − Σ

R
0,σ

=
1
Γ

∑

ℓ

fℓ Γ
′
ℓσ(φσ), (26)

and relaxation rates

Γ =
∑

ℓ

Γ′ℓσ =
γ

1+ ξ
, (27)

Γ′Lσ(φσ) =
γL + ξγR − γ

√
αξ sinφσ

(1+ ξ)2
, (28)

Γ′Rσ(φσ) =
γR + ξγL + γ

√
αξ sinφσ

(1+ ξ)2
. (29)

We note that the relaxation rateΓ does not depend on spinσ.
AccordinglyΣ0 in eq. (20) is equal to

Σ̂0 =
1
2

(

1 1
−1 1

) (

ΣK
0 ΣR

0
ΣA

0 0

) (

1 −1
1 1

)

. (30)

3.2 Noninteracting dot
WhenU = 0, the effective actionSeff with Σ̂0 provides a

full solution of the problem. In this case, all of the nonequi-
librium Green functions can be evaluated exactly byG0 =

(G−1
iso− Σ0)−1, to find12

G<0,σσ(ε) = −2i f̄σ(ε) ImGR
0,σσ(ε), (31)

GR
0,σσ(ε) =

1

ε − εd + Γ
√
αξ cosφσ + iΓ

. (32)

Spin part of the distributions0(ε) = f̄↑(ε) − f̄↓(ε) is

s0(ε) =
2
√
αξ

1+ ξ
[

fR(ε) − fL(ε)
]

cosφAB sinφso. (33)

It is clear that even after switching off φAB having the sys-
tem nonmagnetic, finite spin polarization remains.12 Spin po-
larizationm0 = 〈n↑ − n↓〉 in this case becomes

m0 =
2
√
αξ sinφso

π(1+ ξ)
Im log













µL − εd − ΣR
0

µR − εd − ΣR
0













. (34)

We come to the conclusion that finite spin polarization ap-
pears on a noninteracting dot when the following three con-
ditions are met: (1) in a ring geometryξ , 0, (2) under finite
bias voltagefR − fL , 0, and (3) with finite Rashba SO cou-
pling,φso , 0.

By contrast, switching off φAB renders transport spin-
independent in spite of the above finite spin polarization.
This is seen becauseGR

σσ(ε) loses all the spin-dependence in
this case (see eqs. (7,8) and the Fano parameterqσ is spin-
independent), leading toI↑ = I↓ . Finite spin polarization with
vanishing spin current is a peculiar feature of a noninteracting
SOI system.

3.3 Nonmagnetic interacting dot
When one turns on interactionU on the dot in nonmagnetic

systems (φAB = 0), one may expect spin-dependent transport
due to finite spin polarization. This is because finite spin po-
larization affects the system through interaction channel in-
ducing spin-dependent shift and relaxation process in the ex-
act one-particle retarded functionGR

σσ(ε).
One can confirm the above statement by the lowest-order

perturbation calculation regarding interaction, and by the self-
consistent extension of it. Such perturbational result canbe
justified at the temperature higher than the Kondo tempera-
ture, though. When one writes the exact Green function sym-
bolically asĜ = (Ĝ−1

0 − Σ̂0 − Σ̂U)−1 in the Keldysh space,
the Hartree contribution leads toΣU,σ = U〈nσ̄〉0 where〈· · · 〉0
is the noninteracting average. Up to this order, spin current

4
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Is = I↑ − I↓ is found to be

Is = I↑ − I↓ = −
e
h

∫

dε [ fL(ε) − fR(ε)] ∆T (ε), (35)

∆T (ε) ≈ −Tb
m0U
Γ

Im
[

(1+ iq)(1+ iq∗)(ΓGR
0(ε))2

]

, (36)

whereGR
0 is the noninteracting Green function of eq. (32)

with φAB = 0; m0, the spin polarization of eq. (32). Spin cur-
rentIs behaves asm0U(eV)2/Γ3 for small bias voltage, so that
though the effect may be small, it should be counted as truly
a “nonequilibrium correlation effect.” One may further cal-
culate spin polarizationm self-consistently, to find finite spin
polarization is stable.12 Hence finite spin current withm0 be-
ing replaced bym.

We argue that spin polarization remains finite at the tem-
perature much lower than the Kondo temperature, where the
system enters the strong-coupling regime. Indeed the Fermi
liquid quasiparticle picture, which is effective for the lower
temperature, justifies the form eq. (33) of the effective distri-
bution as a reasonably good approximation, if not exact. The
argument is as follows. When we incorporate the self-energy
ΣU(ε) up to linearε in terms of the renormalization factor
Zσ = [1 − ∂εΣU,σ(ε)]−1, we can write the action as (with sup-
pressing spin indices)

Ψ̄
(

G−1
0 − Σ0 − ΣU

)

Ψ ≈ Ψ̄Z−1G̃−1Ψ, (37)

where we have introduced the quasiparticle Green function
G̃ = G/Z = (G−1

0 − Σ0 − ΣU )−1/Z and the renormalized self-
energyΣ̃ = ZΣ0 on the right hand side (with suppressing
spin indices). In this quasiparticle picture, effective distribu-
tion f̄σ = Σ̃<σ/(Σ̃

A
σ − Σ̃R

σ) is well approximated by its bare one,
since the renormalization factorZσ is cancelled out between
the numerator and the denominator.

f̄σ(ε; U) ≈
Σ<0,σ

ΣA
0,σ − Σ

R
0,σ

= f̄σ(ε; U = 0), (38)

It means that finite spin polarization is persistent at very low
temperature. This type of approximation is often called the
Ng’s ansatz and is often utilized in evaluating the lesser Green
functionG< in the presence of interaction.29, 30

Having established that finite spin polarization is present
on the interacting SOI system both in the higher and the lower
temperature regimes, we now argue that large spin transportis
expected atT = 0 within the Kondo valley regionεd ≈ −U/2.
This is because strong correlation is known to enhance con-
ductance as well as provide spin-dependent shift and relax-
ation due to finite moment on the dot that the Rashba SO in-
teraction induces. Apparently, some aspect is similar to a large
spin filtering effect of linear conductance proposed in the An-
derson system in a magnetic field.4 Once finite spin moment
is present whether due to magnetic field or the bias voltage,
large spin dependence appears in transport. The difference is
that in nonmagnetic SOI systems, we do need finite bias to
sustain spin moment, so that such spin transport only appears
as a nonlinear response.

4. Characteristic Temperature T∗(φ) and Universal Scal-
ing

In order to explore spin-dependent phenomena of the inter-
ferometer atT = 0 or very low temperature and to show an

unambiguous connection to the Kondo physics, we first need
to identify the characteristic temperature of the system, sep-
arating the weak-coupling and strong-coupling regions. This
also enables us to correctly identify the range of validity of the
slave-boson approach. The scale usually corresponds to the
Kondo temperature. The characterization, however, is not so
transparent particularly in a ring geometry. Firstly, the Kondo
temperature characterizes a crossover, not a transition, so that
one can only determine the scale modulo numerical factor.
Secondly, the flux phase eitherφAB and/orφso through the in-
terferometer is known to affect the Kondo temperature in a
substantial and nontrivial way.

For this purpose, we will use the scaleT∗, defined by
eq. (39) below, which is endorsed by confirming universal
scaling of conductance. It is known that conductance through
a single quantum dot exhibits the universal dependence on
temperature or on bias voltage, once scaled by the Kondo
temperature.18, 19, 31By putting the other way round, observed
universal dependence justifies the choice of the characteristic
temperature. Recalling low-temperature physics is dominated
by the Fermi liquid picture, we introduce the characteristic
temperatureT∗ at each gate voltage by the inverse scale of
quasiparticle Green functioñG = G/Z at zero temperature in
equilibrium,32 which according to eq. (18) leads to the phase-
dependent characteristic temperature

T∗(φ) =
∣

∣

∣

∣

−ε̃d + Γ̃
√

αξ cosφ + iΓ̃
∣

∣

∣

∣

T=0,V=0
. (39)

When φAB and φso coexist, there are two scalesT(φσ) for
σ =↑, ↓. If only eitherφAB or φso is present (this is the sit-
uation we are concerned with), we have only one scale of
the characteristic temperature. In the single impurity Ander-
son model (SIAM), the above definition reduces to the Kondo
peak width,T∗ = Γ̃.

Figure 2 shows numerical results of typical behavior of
linear conductanceG = G↑ + G↓ by using the KR-SBMT
approach. Depending on a choice ofξ, conductance is en-
hanced atξ = 0.1 (the Kondo effect), or suppressed (the
anti-Kondo effect) atξ = 0.3 and 0.7 with decreasing tem-
perature. In Fig. 3, we take a closer look at the temperature
dependence at the center of the Kondo valleyǫ = −U/2, by
varyingφ = 0, π/4, π/2, and 3π/4. Although we see linear
conductance increase or decrease with increasing tempera-
ture, it clearly tends to approach the value corresponding to
Gb. Hence one expects such crossover behavior is dominated
by the characteristic temperature of the system, and that when
scaled by it, it exhibits a universal dependence.

We support this assertion by examining the scaling function

F(t = T/T∗(φ)) =
∣

∣

∣

∣

∣

G(T, φ) − 2Gb

G(0, φ) − 2Gb

∣

∣

∣

∣

∣

. (40)

(Factor 2 in front ofGb comes from the spin degeneracy.) As
shown in Fig. 4, they exhibit universal temperature depen-
dence for five different values ofφ. It is noted that if one alter-
natively scaled temperature by the characteristic temperature
of SIAM T∗SIAM , one could not attain such universal behavior
(see the inset of Fig. 4 (a)).

We regardT∗(φ) as the proper scale of how the Kondo
physics takes effect in the present interferometer system. By
utilizing this scale, we will see how spin-dependent transport
is related to the Kondo physics.
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Fig. 2. Temperature evolution of linear conductance profile atφ = 0, for
(a) ξ = 0.1, (b)ξ = 0.3, and (c)ξ = 0.7. Energies are measured in unit ofU.

5. Spin-dependent Transport

We are now going to examine how spin-dependent trans-
port appears electrically as a nonequilibrium effect by the
Rashba coupling phaseφσ = σφso in nonmagnetic systems
φAB = 0. We evaluate spin-resolved conductanceGσ =
dIσ/dV and∆G = G↑ −G↓ numerically within the KR-SBMT
approach according to eq. (7). In the following, we focus on a
moderately strong Coulomb interaction caseU/γ = 2.0, and
we measure energy in unit ofU = 1. We will discuss our
results in light of the characteristic temperatureT∗(φso) intro-
duced and examined in the previous section.

5.1 Finite bias voltage effect
Figure 5 demonstrates how finite bias voltage induces spin-

dependence conductanceGσ at zero temperature, with the
choice of the Rashba SO phaseφso = π/4. While there is
no spin-dependence in linear conductance (shown by thin
solid lines in Fig. 5 (a) and (b)), we see applying finite volt-
age gradually develop the spin-dependent conductance in (a)
eV = 0.05U, and (b)eV = 0.15U. One further observes
that such spin-dependent transport is conspicuous only in the
singly-occupied region of the dot (nd ≈ 1), where the Kondo
physics takes effect.

We next show in Fig. 6 the Rashba SO phase dependence of
spin conductance∆G = G↑ − G↓ at the middle of the Kondo
valley ǫd = −U/2. The results forξ = 0.3 and 0.7 are pre-
sented. One sees∆G oscillates as a function ofφso. It vanishes
not only atφso = 0 andπ when no spin density is on the dot
(see eq. (33)), but also aroundπ/2 and 3π/2, where the shift

0.0

0.2

0.4

0.6

0.8

1.0

T
10
−5

0.001 0.01 0.1

(a) ξ=0.3

0.0

0.2

0.4

0.6

0.8

1.0

(b) ξ=0.7

T
10
−5

0.001 0.01

Fig. 3. (Color online) Temperature dependence of linear conductance at
ǫd = −U/2, for (a)ξ = 0.3 and (b)ξ = 0.7. Behaviors are plotted at values
φ = 0 (△), π/4 (▽), π/2 (�), 3π/4 (©), andπ (×). Dashed lines correspond to
Gb.

of the renormalized level vanishes altogether. Furthermore, a
closer look reveals that applying the larger biasdoes notnec-
essarily produce the larger spin dependence. Indeed, the mag-
nitude of the spin conductance forV = 0.4 (dash-dotted line)
turns out smaller than that forV = 0.2 (dotted line) over the
entire value ofφso atξ = 0.3 and 0.7. It shows that there is an
optimal value to attain maximal spin-dependence.

5.2 Temperature dependence
To clarify further the nature of the observed spin-dependent

transport, we examine its temperature evolution. Figure 7 rep-
resents spin conductance∆G as a function of gate voltage
by varying temperature. Here, to clarify a connection with
the Kondo physics, we scale temperature by the characteris-
tic temperatureT∗(φso). One observes a few things immedi-
ately: spin-dependence is maximal aroundǫd = −U/2; Spin-
dependence is eminent at temperature lower thanT∗(φso),
but it gets reduced considerably toward approachingT∗(φso).
These observations strongly suggest that the Kondo physicsis
responsible for the emergent spin transport.

5.3 Spin-dependent transport as a nonequilibrium Kondo
effect

Finally, we demonstrate in Fig. 8 the overall structure of
spin conductance atǫd = −U/2, by varying bias voltage and
temperature. We here scale both temperature and bias voltage
by the characteristic scaleT∗(φso). As is seen, while temper-
ature always reduces spin dependence, one finds an optimal
value of bias voltage attaining the maximal amplitude of spin-
dependence aroundeV ∼ 0.6T∗(φso) , as denoted by ‘∗’ in
Fig. 8.

We argue that all of our numerical results are fully consis-
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0.01 0.1 1
0.0

0.2

0.4

0.6

0.!

1.0

T/T ∗(φ)

F
(a) ξ=0.3 

0.01 0.1 10.0

0.2

0.4

0.6

0.�

1.0 (b) ξ=0.,

F

10.01 0.1
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Fig. 4. (Color online) Universal temperature dependence of linearconduc-
tance for (a)ξ = 0.3, and (b)ξ = 0.7, scaled byT∗(φ). Behaviors are plotted
at valuesφ = 0 (△), π/4 (▽), π/2 (�), 3π/4 (©), andπ (×). Inset: No universal
dependence is observed if one normalizes temperature by thecharacteristic
temperature of SIAMT∗SIAM .

tent with the picture that this electrically generated large spin-
dependent transport can be taken as a new type of nonequilib-
rium Kondo effect that is only observed at finite bias voltage:
Either temperature or bias voltage larger than the character-
istic scaleT∗ suppressed the Kondo effect. What is different
from the standard (equilibrium) Kondo effect is that wedo
need finite bias voltage to support spin moment on the dot
(See§3). Technically speaking, we may see the Kondo effect
as the process that strong correlation on the dot produces the
density dependent relaxation in the retarded dot Green func-
tion. Hence if the distribution is spin-dependent as in eq. (26),
the same Kondo mechanism makeGR

σσ spin-dependent. In
this sense, finite bias voltage has two-sided effect: it is the ori-
gin of the spin polarization density; yet it destroys the Kondo
effect, which is vital to produce large spin-dependent trans-
port. Competition of these two effects leads to the optimal
bias voltage.

Our results are sharply contrasted with previous results
of a similar mesoscopic SOI system studied by Lu et al.,14

where spin-dependent transport is observed more eminently
around the Coulomb blockade peaks (nd ≈ 0.5, 1.5), and
larger bias voltage induces larger spin-dependence. Appar-
ently the Kondo effect barely plays an important role in their
phenomena. Indeed our estimate of the characteristic temper-
ature T∗ for their parameters infers that their applied bias
voltage is much largerT∗. So we reduce their observed spin-
dependent phenomena to large nonlinear bias effect producing
spin-dependent Coulomb blockade, not to a nonequilibrium
Kondo effect and spin-dependent transport by that.

6. Conclusion

In conclusion, we have investigated spin dependent trans-
port in nonmagnetic systems through a mesoscopic spin-orbit
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0.8
(a) eV=0.05
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G↓

nd ≈ 2 nd ≈ 1 nd ≈ 0

Fig. 5. Spin-resolved conductanceGσ (in unit of e2/h) at zero temperature
(dashed lines forG↑; dashed-dotted lines forG↓) as a function of the gate
voltageǫd for (top) eV = 0.05U and (bottom)eV = 0.15U. Thin solid lines
refer to linear conductance, where one see no spin-dependence. ξ = 0.3 is
chosen.
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Fig. 6. The Rashba phase dependence of spin conductance∆G = G↑ − G↓
(in unit of e2/h) for (a) ξ = 0.3 and (b)ξ = 0.7. Different values of bias
voltage are plotted byeV = 0 (solid line), 0.05 (dashed line), 0.2 (dotted
line), and 0.4 (dash-dotted line),

interferometer at low temperature. We have shown that, even
for a single-level dot, spin dependent transport can occur elec-
trically as a result of an intertwining effect of the Rashba SO
interaction, Coulomb interaction, and finite bias voltage.We
have shown that this spin-dependent transport can be well un-
derstood as a new type of nonequilibrium Kondo effect; such
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Fig. 7. Temperature evolution of spin conductance profile∆G = G↑−G↓ as
a function of gate voltageǫd. Temperature is scaled byt = T/T∗(φso). Other
parameters are the same as in Fig. 5 (b).
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T
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Fig. 8. (Color online) Dependence of∆G = G↑ − G↓ (in unit of e2/h) by
varying bias voltage and temperature. Other parameters arethe same as in
Figs. 5 (b) and 7. Both axes are normalized by the characteristic temperature
T∗(φso). Symbol∗ refers to the location at maximal amplitude of∆G.

phenomenon does not appear in noninteracting dot, or in lin-
ear conductance. The phenomenon is suppressed either by
temperature or by bias voltage larger than the Kondo scaleT∗,
properly defined in the present model. In this regard, we view
this spin-related phenomenon as a manifestation of “nonequi-
librium strong-correlation effect.” Our results indicate that the
interplay between the Kondo effect and the SO coupling in
the interferometer system provides a viable option of ma-
nipulating spin degrees of freedom, especially as a possible
electrically-generated spin filtering. At the same time, webe-
lieve that quantum dots provide a unique opportunity to study
non-equilibrium many-body effects in a well-controlled set-
ting.
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