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Abstract

Using density functional theory, we study the energetics and electronic struc-

tures of graphene with monovacancies, which are surrounded by three pyridinic N

atoms, in terms of their density and arrangement. Our calculations demonstrated

that the detailed geometric structure and the formation energy of the defects do

not depend on the mutual arrangement of the defects but on their density. The

electronic structure of graphene with defects, in contrast, is sensitive not only to

the defect density but also to the defect arrangement whether or not the graphitic

π network that consists of C and N satisfies the Clar structure (full-benzenoide

structure). Graphene with a defect that satisfies the Clar structure has a small

energy gap between bonding and antibonding π states at the Γ point, while that

without the Clar structure has a moderate gap between the bonding and antibond-

ing π states at the K point. Furthermore, the gap monotonically decreases with

decreasing the defect density. A non-bonding π state is induced at the Fermi level

because of the sublattice imbalance of the graphitic π network of C and N atoms,

which implies that the pz state of pyridinic N atoms takes part in the π electron
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network of C atoms. According to the extended nature of non-bonding states, its

bandwidth slowly decreases upon increasing the defect-defect spacing.

1. Introduction

A honeycomb network of sp2 carbon atoms with single-atom thickness causes

a pair of linear dispersion bands at the Fermi level [1, 2, 3], which results in a

remarkable carrier mobility up to a few hundred thousand cm2/Vs. This makes

graphene an emerging material for the design of functional devices in the wide5

area of modern technologies [4]. In addition to the technological views, the linear

dispersion bands lead to the unusual quantum Hall effect, which makes graphene

a unique material for exploring the fundamental phenomena in a two-dimensional

electron system [5]. Because of the bipartite network of π electron distributed nor-

mal to the atomic layer, these remarkable electronic properties have been shown to10

be fragile towards external perturbations such as structural imperfections, struc-

tural corrugations, atom/molecule adsorptions, interactions with other graphene

or substrates, and external electric field [6, 7, 8, 9, 10, 11]. For example, graphene

nanoribbons possess peculiar electronic structures depending on their width and

edge atomic arrangements: graphene nanoribbons with zigzag edges possess edge15

localized states known as edge states caused by the delicate balance among the

electron transfer around the edge atoms sites, while ribbons with armchair edges

have either metallic or semiconducting properties depending on the discretized

conditions imposed on graphene [12, 13, 14, 15, 16, 17, 18, 19]. The topolog-

ical defects, such as pentagons and heptagons, also cause substantial electronic20

structure modulation, even though all C atoms possess three-fold coordination,

where all covalent bonds are fully saturated [20, 21, 22, 23]. In addition, atomic
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defects and pores occasionally cause a flat dispersion band at the Fermi level, ow-

ing to the sublattice imbalance of the bipartite networks of graphene, which leads

to the spin polarization through the networks [24, 25]. In addition to the defect25

structures, their mutual arrangements also affect the electronic structure around

the Fermi level of graphitic materials.

Adsorptions or doping of foreign atoms are the other possible procedures to

modify the electronic structure of graphene. An early theoretical work demon-

strated that fluorinated graphene possesses a narrow dispersion band at the Fermi30

level, when F atoms are attached to one of two sublattices [26]. Even though the

F atoms are only attached to particular sublattices, the fluorinated graphene no

longer possesses the Dirac cone but massive valleys for both conduction and va-

lence band edges when the graphitic region does not satisfy the resonant condition

of aromaticity, as is the case of graphene with periodic vacancies [27, 28]. Sub-35

stitutional doping of a borazine skeleton into graphene opens the finite band gap,

which depends not only on the BN ring concentration but also on their mutual

BN ring arrangements in the graphene network [29]. N-doped graphene also ex-

hibits unusual electronic properties, which depend on the local and global atomic

arrangements, and is applicable to electronic and catalytic devices [30, 31, 32,40

33, 34, 35, 36, 37, 38, 39, 40]. In such devices, it is important to precisely tune

the electronic structure near the Fermi level by N atom arrangements to tailor

the device properties. The concentration and mutual arrangements of pyridinic

N in graphene are essential for their catalytic applications, because the electron

states associated with the non-bonding states of pyridinic N atoms are sensitive to45

their concentration and arrangements. However, the comprehensive and system-

atic studies of the energetics and electronic structure of graphene with pyridinic
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defects in terms of their arrangement and concentration are currently insufficient.

In accordance with the above background, in this work, we aim to investi-

gate the energetics and electronic structure of graphene with monovacancy whose50

edges are terminated by N atoms with a pyridinic structure in terms of the defect

arrangement and concentration, using density functional theory with the general-

ized gradient approximation. Our calculations demonstrate that the total energy

monotonically decreases with decreasing the defect concentration, irrespective of

the defect arrangements. However, the electronic structures strongly depend not55

only on the defect concentration but also on the defect arrangement. We observe

that the bandwidth of the non-bonding π state at the Fermi level is approximately

proportional to the reciprocal of the defect spacing, which indicates the substantial

penetration length of the non-bonding state associated with the defect.

2. Calculation method60

All calculations were performed within the framework of density functional

theory [41, 42], which was implemented in the simulation tool of atom technol-

ogy (STATE) package [43]. To calculate the exchange–correlation energy among

the interacting electrons, we used the generalized gradient approximation with the

Perdew–Burke–Ernzerhof functional [44]. To investigate the spin-polarized states65

of N-doped graphene, the spin degree of freedom was taken into account in all

the calculations. Vanderbilt ultrasoft pseudopotentials were used to describe the

electron–ion interactions [45]. The valence wave functions and deficit charge den-

sity were expanded in terms of plane waves with cutoff energies of 25 and 225 Ry,

respectively, which sufficiently describe the geometric and electronic structures of70

graphene and materials containing N atoms [46].
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Figure 1: Optimized structures of N-doped graphene with (3,3), (5,0), and (3,2) defect arrange-

ments. Black and gray balls denote C and N atoms, respectively. Blue dotted lines and red vectors

denote the unit cell and primitive vectors of 1 x 1 graphene, respectively.
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In this work, we considered graphene with monatomic defects that are sur-

rounded by three pyridinic N atoms (Fig. 1). The defect density ranged from

0.006 to 0.024 /Å2, which corresponded to the cell parameters from 6.51 to 12.78

Å, respectively. To investigate whether the asymptotic properties of the energet-75

ics and electronic structure depend on the mutual arrangement of the defects, we

considered nine representative defect arrangements. These were characterized by

a pair of integer numbers (n, m), which are the coefficients of the primitive vec-

tors, a1 and a2, of the hexagonal lattice. To simulate an isolated graphene with

pyridinic defects, the defective graphene sheet was separated from its periodic im-80

ages by a vacuum spacing of 10.58 Å. Atomic structures of the sheets were fully

optimized until the force acting on each atom was less than 1.33 × 10−3 HR/au.

Integration over the Brillouin zone was carried out using an equidistance mesh of

4 × 4 × 1 k points, which corresponded to 12 × 12 × 1 k points or denser for a 1

× 1 primitive cell of graphene.85

3. Results and discussions

Figure 1 shows the optimized structures of three representative defective graphene

sheets with indexes of (3,3), (5,0), and (3,2). Among the three structures, an

hexagonal covalent network of the (3,3) structure satisfied the Clar structure or

had a full-benzenoid structure, while the other two did not satisfy the Clar struc-90

ture. As for the (n,m), the defect arrangements possessing the Clar structure satis-

fied the relation |n −m| = 3l, where l is an integer, otherwise the networks did not

satisfy this relation. Table I summarizes the lattice parameters, the bond lengths,

and angles associated with the defects. The geometric structure of graphene with

monovacancies surrounded by three pyridinic N was insensitive to the defect con-95

6



centration and arrangement. For all structures except (2,1) and (3,0), the N-C

bond lengths surrounding the monovacancy were 1.33-1.34 Å and the bond angle

was approximately 123◦, irrespective of the defect density and arrangements. Ad-

ditionally, the defects approximately retained a C3 symmetry after the structural

optimization. The C-C bonds surrounding the defects were slightly elongated100

from those in the bulk region, because of the shorter N-C bonds. It should be

noted that the bond length and angles in the (2,1) structure were slightly different

from the other structures, because of the small spacing between adjacent defects

prohibited a sufficient structural relaxation.

Table 1: Lattice prameters [Å], optimized bond lengths [Å], and bond angles [◦] of N-doped

graphene with a pyridinic structure.

Structure a dNC dD
CC dB

CC θN

(2,1) 6.51 1.33-1.34 1.44-1.46 1.43 123.0, 123.2, 123.2

(3,0) 7.38 1.34 1.44 1.41-1.45 124.0, 124.1, 124.1

(2,2) 8.52 1.33-1.34 1.45 1.41-1.43 122.3, 122.4, 122.4

(3,1) 8.87 1.33-1.34 1.45 1.42-1.43 123.2, 123.3, 123.3

(4,0) 9.83 1.34 1.45 1.42-1.44 123.0

(3,2) 10.72 1.34 1.45 1.41-1.44 122.5, 122.6, 122.6

(4,1) 11.27 1.33-1.34 1.45 1.42-1.43 123.0

(5,0) 12.30 1.34 1.45 1.41-1.43 122.8, 122.9, 122.9

(3,3) 12.78 1.33-1.34 1.45 1.42-1.43 122.7

Figure 2 shows the calculated formation energy of the defects as a function of105

their density. The formation energy ϵ was evaluated by the following equation:

ϵ =
Etotal − 3µN − NCµC

NC + 3
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where Etotal, Nc, µN , and µC are the total energy of N-doped graphene, the number

of C atoms, the chemical potential of C, and the chemical potential of N, respec-

tively. The chemical potentials of N and C were evaluated by the total energies of

the N2 molecule and graphene, respectively. The formation energy depended on110

the defect density, while it did not depend on the mutual arrangement of defects.

The energy seemed to be proportional to the defect density, which indicated that

the energetics were determined by the extent of the π electrons in the graphitic

area. An intercept corresponding to the dilute limit of defects indicated the energy

cost to remove a C atom and to replace three C-C bonds with C-N bonds.115

Figure 3 shows the electronic band structures of graphene with monovacancies

surrounded by three pyridinic N atoms. All structures were metals where two dis-

persive bands and three less dispersive bands emerged near the Fermi level. Two

of the three less dispersive states exhibited almost a flat band nature throughout

the Brillouin zone, while the remaining state had small dispersion with a band-120

width of approximately 0.5 eV. By analyzing the wave function of these states,

the small dispersion band exhibited a non-bonding π state nature, which was dis-

tributed on one of the two sublattices containing N atoms. The state was localized

on the defect edge at the K point, while it was extended throughout the sheet at the

Γ point for the Clar structure. In contrast, for the non-Clar structures, the state was125

extended and localized at the K and Γ points, respectively. Additionally, two flat

band states were localized at N atoms, which corresponded to the fully saturated

σ states of the pyridinic N atoms. Therefore, as far as the π electron states were

concerned, the electronic energy band of graphene with three pyridinic defects

could be regarded as that of graphene with a monovacancy, where the pz orbital of130

the pyridinic N participates in the π states of graphene, because of their isovalence
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Figure 2: Formation energy of defects as a function of the defect density (/Å2).
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to an sp2 C atom.

By focusing on the π electron states of graphene with pyridinic defects, the

electronic structure can be classified into two groups. As for the (3,3) structure

whose hexagonal network satisfies Clar structure, two substantial dispersive bands135

had a small gap of 0.05 meV at the Γ point, which formed a massive Dirac cone

[Fig. 3(a)]. Furthermore, the less dispersive π state associated with the non-

bonding state was degenerate with the bonding π state at the Γ point. The char-

acteristic electronic band structure around the Γ point could be interpreted as one

of the two Dirac cones at the K point of the primitive cell of graphene is folded140

into the Γ point and the sublattice imbalance induced by the monovacancy causes

the non-bonding states with a narrow bandwidth. Furthermore, although the pz

state of pyridinic N naively acts as the π state of an sp2 C atom, the deeper atomic

potential of N than that of C causes a smaller onsite energy for the majority of

the sublattice including N atoms and opens the tiny gap between bonding and an-145

tibonding π states at the Γ point. Accordingly, the wave function of the highest

branch of the valence band and the lowest branch of the conduction band at the Γ

point exhibited a non-bonding nature, as is the case of pristine graphene at the K

point. In contrast, at the K point, the less dispersive band exhibited a non-bonding

and localized nature around the defects.150

For defective graphene with (5,0) and (3,2) pyridinic N arrangements, disper-

sive π bands had a large gap of approximately 1.5 eV at the K point. In this case,

the hexagonal networks consisting of C and pyridinic N did not satisfy the Clar

structure, which resulted in the mixing of the π wave functions belonging to dif-

ferent sublattices. According to the wave function mixing, the wave functions at155

the K point could not render a non-bonding π state as that in pristine graphene,

10



and graphene with pyridinic N had a large gap at the K point. Indeed, the top of

the valence and the bottom of the conduction bands at the K point had their wave

function distribution on both sublattices. As for the less dispersive band associ-

ated with the non-bonding state, which arose from the sublattice imbalance, the160

state was localized around the defect at the Γ point, while it extended throughout

the network at the K point.

The energy gap between bonding and antibonding π states, as well as the

whole electronic structure of graphene with monovacancies surrounded by pyri-

dinic N, depend on whether or not the hexagonal networks of C and N satisfy165

the Clar structure. Figure 4 shows the π-π∗ gap of graphene with pyridinic N

defects as a function of the reciprocal of the defect spacing. The gap depended

not only on the mutual defect arrangement but also on the defect spacing. The

gap decreased with increasing the defect spacing for the defects with and without

the Clar structures. For graphene with pyridinic N defects that satisfied the Clar170

structure, the gap was approximately proportional to the reciprocal of the defect

spacing: The gaps were 0.14 and 0.05 eV for the defect arrangements (3,0) and

(3,3), respectively. For the non-Clar structures, the gap exhibited a further de-

pendence on the defect arrangements. The defect arrangement (n,m) satisfied the

relation |n − m| = 3l + 1, where l is an integer and has slightly narrower π-π∗ gap175

than that satisfying |n−m| = 3l+2. For these defect arrangements, the gap ranged

from 3 eV for the defect spacing of 6.51 Å to 1.5 eV for the defect spacing of

12.30 Å.

Finally, we determined how the bandwidth of the non-bonding state at the

Fermi level depends on the defect arrangement and density. The charge local-180

ization, owing to the flat dispersion band, naively increased the reactivity at the
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Figure 3: Electronic band structures and squared wave functions near the Fermi level at the K and

Γ points of N-doped graphene with (a) (3,3), (b) (5,0), and (c) (3,2) defect arrangements.
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particular sites where electrons localized, which caused the catalytic activity of

graphene with pyridinic defects. Figure 5 shows the bandwidth of the non-bonding

state near the Fermi level as a function of the reciprocal of the defect-defect spac-

ing. The gap basically decreased with increasing the defect-defect spacing for all185

defect arrangements. In addition, the width also depended on the defect arrange-

ments. The defect arrangements of |n − m| = 3l + 2 had a relatively large width,

while the arrangement of |n − m| = 3l + 1 had a small width. The defect arrange-

ment with |n − m| = 3l was marginal. The bandwidth seemed to asymptotically

approach zero with the increase of the defect-defect spacing, and it was expected190

to still be 0.1 eV for the case where the defect was separated from its adjacents by

5 nm. The substantial band dispersion of the non-bonding state at the Fermi levels

arose from the delocalized nature of the wave function associated with the states

at the Γ and K points for the defect arrangements with and without Clar struc-

ture, respectively, as shown in Fig. 3. The narrow but significant bandwidth of195

the non-bonding states caused the usual phenomena associated with the crossover

between strong and weak electron correlations as was observed for the case of

the electron-doped solid C60, which has a bandwidth of a few hundred meV at

the Fermi level. In particular, the coupling between the π electron on networks

with weakly itinerated nature and the dangling bond states of N with strong lo-200

calized nature caused the peculiar electron transport, where the itinerant electron

was scattered by a localized electron at the defect sites.

4. Conclusion

Using density functional theory with the generalized gradient approximation,

we investigated the energetics and electronic structure of graphene with monova-205
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cancy, whose edges are terminated by N atoms with pyridinic structure, in terms

of the defect arrangement and concentration. Our calculations demonstrated that

the total energy monotonically decreases with decreasing the defect density, irre-

spective of the defect arrangements. However, the electronic structures strongly

depend not only on the defect density but also on the defect arrangement. We210

observed that the bandwidth of the non-bonding π state was approximately pro-

portional to the defect-defect spacing, indicating the substantial penetration length

of the non-bonding π state associated with the defect.
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