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Abstract: This paper proposes a data collaboration analysis framework for distributed data sets. The proposed framework involves
centralized machine learning while the original data sets and models remain distributed over a number of institutions. Recently, data has
become larger and more distributed with decreasing costs of data collection. Centralizing distributed data sets and analyzing them as one data
set can allow for novel insights and attainment of higher prediction performance than that of analyzing distributed data sets individually.
However, it is generally difficult to centralize the original data sets because of a large data size or privacy concerns. This paper proposes a data
collaboration analysis framework that does not involve sharing the original data sets to circumvent these difficulties. The proposed framework
only centralizes intermediate representations constructed individually rather than the original data set. The proposed framework does not use
privacy-preserving computations or model centralization. In addition, this paper proposes a practical algorithm within the framework.
Numerical experiments reveal that the proposed method achieves higher recognition performance for artificial and real-world problems than
individual analysis. DOI: 10.1061/AJRUA6.0001058. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

Dimensionality reduction methods that project high-dimensional
data to a low-dimensional space are successfully applied in several
application areas to improve the prediction performance and accel-
erate machine learning algorithms, including gene expression data
analysis (Tarca et al. 2006), chemical sensor data analysis (Jurs
et al. 2000), social network analysis (Tichy et al. 1979), infrastruc-
ture analysis (Lasisi and Attoh-Okine 2018, 2020) and so on. Re-
cently, there has been a rise in large and distributed data, and the
costs of data collection have decreased. Centralizing distributed
data sets and analyzing as one data set, which we refer to as cen-
tralized analysis, can enable us to obtain novel insights and achieve
higher prediction performance than that of individual analysis on an
individual distributed data set. However, it is generally difficult to
centralize the original data sets because of large data size or privacy
concerns.

For example, in the case of medical data analysis, the data sets in
each medical institution may not be sufficient for generating a high-
quality prediction result because of insufficiency and imbalance of
the data samples. However, it is difficult to centralize the original
medical data samples with those from other institutions because

of privacy concerns. If the original data is transformed to another
(e.g., low-dimensional) space by an appropriate mapping; however,
the mapped data, which is referred to as an intermediate represen-
tation, can be centralized fairly easily because each feature of the
intermediate representation lacks any physical interpretation.

Examples of overcoming the difficulties of centralized analysis
include the usage of privacy-preserving computation based on
cryptography (Jha et al. 2005; Kerschbaum 2012; Cho et al. 2018;
Gilad-Bachrach et al. 2016) and differential privacy (Abadi et al.
2016; Ji et al. 2014; Dwork 2006). Federated learning (Konečnỳ
et al. 2016; McMahan et al. 2016), in which a model is centralized
while the original data sets remain distributed, has also been studied
in this context.

In contrast to these existing methods, this paper proposes a data
collaboration analysis framework for distributed data sets that cen-
tralizes only individually constructed intermediate representations.
The proposed framework assumes that each institution uses a differ-
ent mapping function for constructing intermediate representations.
The framework does not centralize the mapping functions to avoid a
risk of approximating the original data samples from their intermedi-
ate representations by using the (approximate) inverse of the map-
ping functions. The proposed data collaboration analysis framework
also does not use privacy-preserving computation. Instead, using
sharable data such as public data and randomly constructed dummy
data, the proposed framework achieves a data collaboration analysis
by mapping individual intermediate representations to incorporable
representations referred to as collaboration representations.

This paper additionally proposes a practical algorithm and a
practical operation strategy regarding the problem of privacy pres-
ervation. Using numerical experiments on artificial and real-world
data sets, the recognition performance of the proposed method is
evaluated and compared with centralized and individual analyses.

The main contributions of this paper are as follows:
• We propose a data collaboration analysis framework using

centralization of the individual intermediate representations
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that does not centralize the original data sets for distributed
data sets.

• The proposed framework differs from existing approaches
as it does not use privacy-preserving computations or model
centralization.

• The proposed data collaboration analysis achieves higher recog-
nition performance than that produced by individual analysis.

Data Collaboration Analysis Framework

In this section, we discuss the case that there are multiple institu-
tions and each institution has an individual data set. We propose a
data collaboration analysis framework for distributed data sets that
does not centralize the original data. The proposed method can be
considered a dimensionality reduction method for distributed data
sets. The distributed original data sets are transformed into the col-
laboration representations via the intermediate representations.
Therefore, after constructing the collaboration representations, we
can use any machine learning algorithms including unsupervised,
supervised, and semi-supervised learning.

Let d be the number of institutions. Let m, ni be the numbers of
features and training data samples of the ith institution and n be the
total number of training data samples, n ¼ P

d
i¼1 ni. In addition, let

Xi ¼ ½xi1;xi2; : : : ; xini � ∈ Rm×ni be the training data set of the ith
institution. For supervised learning, we additionally let Li ¼
½li1; li2; : : : ; lini � ∈ Rl×ni be the ground truth for the training data.
Also let si be the number of test data samples of the ith institution,
s ¼ P

d
i¼1 si and Yi ¼ ½yi1; yi2; : : : ; yisi � ∈ Rm×si be test data sets

of the ith institution.
We do not centralize the original data set Xi (and Yi in super-

vised learning). Instead, we centralize the intermediate representa-
tions constructed individually from Xi. We also do not centralize
the mapping function for the intermediate representation to reduce
the risk of approximating the original data.

In the remainder of this section, we introduce a fundamental
concept of the data collaboration analysis framework and propose
a practical algorithm. In addition, we consider a practical operation
strategy regarding privacy concerns.

Fundamental Concept and Framework

Instead of centralizing the original data set Xi, we consider cen-
tralizing the intermediate representation

~Xi ¼ ½ ~xi1; ~xi2; : : : ; ~xini � ¼ fiðXiÞ ∈ Rli×ni ð1Þ
constructed individually in each institution, where fi is a linear or
nonlinear column-wise mapping function. Since each mapping
function fi is constructed using Xi individually, fi and its dimen-
sionality li depend on i.

Examples of the mapping function include unsupervised dimen-
sionality reductions, such as principal component analysis (PCA)
(Pearson 1901; Jolliffe 1986); locality preserving projections (LPP)
(He and Niyogi 2004); and supervised dimensionality reductions,
such as Fisher discriminant analysis (FDA) (Fisher 1936), local
FDA (LFDA) (Sugiyama 2007), semi-supervised LFDA (SELF)
(Sugiyama et al. 2010), locality adaptive discriminant analysis
(LADA) (Li et al. 2017); and complex moment-based supervised
eigenmap (CMSE) (Imakura et al. 2019). One can also consider a
partial structure of deep neural networks. The proposed framework
aims to avoid difficulties of centralized analysis by achieving col-
laboration analysis while the original data set Xi and the mapping
function fi remain distributed in each institution.

Because fi depends on the institution i, even when each insti-
tution has an identical data sample x, the intermediate representa-
tion of the data differs; that is

fiðxÞ ≠ fjðxÞ ði ≠ jÞ ð2Þ

In addition, the relationship between the original data samples x
and y is generally not preserved across different institutions; that is

DðfiðxÞ; fjðyÞÞ≉Dðx; yÞ ði ≠ jÞ ð3Þ

where Dð·; ·Þ denotes a relationship between data samples, such as
distance and similarity. Therefore, one cannot analyze intermediate
representations as one data set, even if dimensionality is identi-
cal, li ¼ lj.

To overcome this difficulty, the authors transform individual in-
termediate representations to incorporable representations again as
follows:

X̂i ¼ ½x̂i1; x̂i2; : : : ; x̂ini � ¼ gið ~XiÞ ∈ Rl×ni ð4Þ

Here, gi is a column-wise mapping function such that

giðfiðxÞÞ≈ gjðfjðxÞÞ ð5Þ

DðgiðfiðxÞÞ; gjðfjðyÞÞÞ≈Dðx; yÞ ði ≠ jÞ ð6Þ

Preserving the relationships of the original data set, one can
analyze the obtained data X̂i (i ¼ 1; 2; : : : ; d) as one data set as
follows:

X̂ ¼ ½X̂1; X̂2; : : : ; X̂d� ∈ Rl×n ð7Þ

Because the mapping function fi for the intermediate represen-
tation is not centralized, the function gi cannot be constructed only
from the centralized intermediate representations ~Xi. To construct
the mapping function gi, we introduce sharable data referred to as
an anchor data set consisting of public data or dummy data con-
structed randomly:

Xanc ¼ ½xanc
1 ;xanc

2 ; : : : ;xanc
r � ∈ Rm×r ð8Þ

where r ≥ li. Applying each mapping function fi to the anchor
data, we have the ith intermediate representation of the anchor
data set

~Xanc
i ¼ ½ ~xanc

i1 ; ~xanc
i2 ; : : : ; ~xanc

ir � ¼ fiðXancÞ ∈ Rli×r ð9Þ

Then, we centralize ~Xanc
i and construct gi such that

X̂anc
i ¼ ½x̂anc

i1 ; x̂anc
i2 ; : : : ; x̂anc

ini
� ¼ gið ~Xanc

i Þ ∈ Rl×r ð10Þ

satisfies

X̂anc
i ≈ X̂anc

j ;Dðx̂anc
ik ; x̂anc

jl Þ≈Dðxanc
k ;xanc

l Þ ði ≠ jÞ ð11Þ

The fundamental procedure in the proposed data collaboration
analysis framework is as follows:
1. Construction of intermediate representations

Each institution constructs intermediate representations indi-
vidually and centralizes them.

2. Construction of collaboration representations
From the centralized intermediate representations, the col-

laboration representations are constructed.
3. Collaboration analysis

Collaboration representations obtained from individual origi-
nal data sets are analyzed as one data set.
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Proposal for Practical Algorithm

A fundamental component of the proposed framework involves
constructing the collaboration representations using the anchor data
(Phase 2). The mapping function gi can be constructed using the
following two steps.
1. Target setting

We set target Z ¼ ½z1; z2; : : : ; zr� ∈ Rl×r for the collabora-
tion representations X̂anc

i of the anchor data satisfying

Z≈ X̂anc
i ði ¼ 1; 2; : : : ; dÞ ð12Þ

or

Dðzk; zlÞ≈Dðxanc
k ;xanc

l Þ ðk; l ¼ 1; 2; : : : ; rÞ ð13Þ

2. Map function construction
We construct mapping function gi such that

Z≈ gið ~Xanc
i Þ ði ¼ 1; 2; : : : ; dÞ ð14Þ

There may be several ways for computing Steps 1 and 2. This
paper assumes gi to be a linear map. Considering only Eq. (12) for
Step 1, we propose a practical algorithm.

Because the map function gi is a linear map, using a matrix
Gi ∈ Rl×li , we have

X̂i ¼ gið ~XiÞ ¼ Gi
~Xi; X̂anc

i ¼ gið ~Xanc
i Þ ¼ Gi

~Xanc
i ð15Þ

Then, to achieve Eq. (12), we address the following minimiza-
tion problem:

min
G 0

1
;G 0

2
; : : : ;G 0

d;Z

Xd
i¼1

kZ −G 0
i
~Xanc
i k2F ð16Þ

This problem is difficult to solve directly. Instead, we consider
solving the following minimal perturbation problem, i.e.

min
Ei;G 0

i ði¼1;2; : : : ;dÞ;Z

Xd
i¼1

kEik2F s:t:G 0
i ð ~Xanc

i þ EiÞ ¼ Z ð17Þ

The minimal perturbation problem Eq. (17) with d ¼ 2 is called
the total least squares problem and is solved by singular value de-
composition (SVD) (Ito and Murota 2016). In the same manner,
one can solve Eq. (17) with d > 2 using SVD. Leth

ð ~Xanc
1 ÞT; ð ~Xanc

2 ÞT; : : : ; ð ~Xanc
d ÞT

i

¼ ½U1;U2�
�
Σ1

Σ2

�"
VT

11 VT
21 : : : VT

d1

VT
12 VT

22 : : : VT
d2

#
ð18Þ

be the SVD of the matrix combining ~Xanc
i , where

U1 ∈ Rr×l; Σ1 ∈ Rl×l; Vi1 ∈ Rli×l ð19Þ

and Σ1 has larger part of singular values. Then, we have

Z ¼ CUT
1 ð20Þ

where C ∈ Rl×l is a nonsingular matrix.
Next, settingZ ¼ UT

1 , we computeGi from Eq. (14). The matrix
Gi can be computed individually by solving the following linear
least squares problem:

Gi ¼ argmin
G

kZ −G ~Xanc
i k2F ¼ UT

1 ð ~Xanc
i Þ† ð21Þ

where ð ~Xanc
i Þ† denotes the Moore-Penrose pseudo-inverse of the

matrix ~Xanc
i .

Algorithm 1 summarizes the algorithm of the proposed method
for supervised learning.

One of the main computational costs of the proposed method is
for SVD (18) that depends on the number of anchor data r and
dimensionality of the intermediate representations li. We can
use some approximation algorithms including randomized SVD
(Halko et al. 2011) for reducing the computational costs. On the
other hand, the anchor dataXanc also strongly affects the recognition
performance of the proposed method. A simple method is to setXanc

as a randommatrix. If the anchor data has the same statistics with the
original data set, it may improve the recognition performance of the
proposed method. We intend to investigate practical techniques for
constructing suitable anchor data in the future.

Algorithm 1. Proposed method
Input: Xi ∈ Rm×ni , Li ∈ Rl×ni , Yi ∈ Rm×si (i ¼ 1; 2; : : : ; d)
individually.
Output: LYi

∈ Rl×si (i ¼ 1; 2; : : : ; d) individually.
{Phase 0. Preparation}

1: Centralize Xanc ∈ Rm×r

{Phase 1. Construction of intermediate representations}
2: Construct ~Xi ¼ fiðXiÞ and Xanc

i ¼ fiðXancÞ for each i
individually

3: Centralize ~Xi, ~Xanc
i , Li for all i

{Phase 2. Construction of collaboration representations}
4: Compute left singular vectors U1 of SVD (18)
5: Compute Gi ¼ UT

1 ð ~Xanc
i Þ†

6: Compute X̂i ¼ Gi
~Xi

7: Set X̂ ¼ ½X̂1; X̂2; : : : ; X̂d� and L ¼ ½L1;L2; : : : ;Ld�
{Phase 3. Collaboration analysis}

8: Construct model h by a machine learning algorithm using X̂
as training date and L as the ground truth, i.e., L≈ hðX̂Þ.

9: Predict test data Ŷi using a model h and obtain LYi
¼

hðGifiðYiÞÞ.

Practical Operation Strategy Regarding Privacy
Concerns

Here, we consider a practical operation strategy regarding privacy
concerns based on the proposed framework for supervised learning.
This paper uses the term privacy is preserved when each entry of
corresponding data cannot be (approximately) obtained by others.
Here, this paper does not consider the privacy of data set statistics.

Based on this definition, one can assert that regarding the origi-
nal data Xi in each institution, privacy is preserved if the data col-
laboration analysis satisfies the following operation strategies:
1. There are two roles: users who have training and test data sets

individually and an analyst who centralizes the intermediate
representations and analyzes them.
a. The users and analyst possess some of the data, as illustrated

in Tables 1 and 2.

Table 1. Practical operation strategy: data for each role

Role Data

User i Xi, ~Xi, Li, Xanc, ~Xanc
i , Yi, LYi

, fi, gi, h
Analyst ~Xi, Li, ~Xanc

i , gi (i ¼ 1; 2; : : : ; d), h

© ASCE 04020018-3 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
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b. Each step of Algorithm 1 is executed by the corresponding
role, as demonstrated in Fig. 1.

2. Each mapping function fi is constructed with the following
requirements:
a. The original data can be approximated only with an inter-

mediate representation and the mapping function fi or its
approximation.

b. The mapping function fi can be approximated only with both
the input and output data of fi.

3. The analyst does not collude with user(s) to obtain the original
data of other users.
In this operation strategy, each user does not possess the inter-

mediate representations of other users and the analyst does not pos-
sess the original anchor data Xanc. Therefore, the original data set
Xi cannot be (approximately) obtained by others; that proves the
privacy of the original data Xi is preserved in our definition.

Related Works

One possibility for achieving a high-quality analysis while avoiding
the difficulties of centralized analysis involves the usage of privacy-
preserving computation. There are two types of typical privacy-
preserving computation techniques based on cryptography (Jha
et al. 2005; Kerschbaum 2012; Cho et al. 2018; Gilad-Bachrach
et al. 2016) and differential privacy (Abadi et al. 2016; Ji et al.
2014; Dwork 2006).

Cryptographic privacy-preserving (or secure multi-party) com-
putations can compute a function over distributed data while retain-
ing the privacy of the data. Fully homomorphic encryption (FHE)
(Gentry 2009) can compute any given function; however, it is im-
practical for large data sets with respect to computational cost even
using the latest implementations (Chillotti et al. 2016). Differential
privacy is another type of privacy-preserving computation that

protects the privacy of the original data sets by randomization.
In terms of computational cost, these computations are more effi-
cient than cryptographic computations; however, they may have
low prediction accuracy because of the noise added for protecting
privacy.

Federated learning, involving centralizing a model, has also
been studied in this context (Konečnỳ et al. 2016; McMahan
et al. 2016). Federated learning achieves a high-quality analysis
avoiding the difficulties of centralized analysis by centralizing a
model function instead of using cryptography or randomization.
However, it may carry a risk of exposing the original data set as
a result of centralizing a model for each institution. Therefore, in
practice, federated learning is used in conjunction with privacy-
preserving computations (Yang 2019).

Our proposed framework differs from these existing approaches
as it does not use privacy-preserving computations or a model
centralization.

Numerical Experiments

This section presents an evaluation of the recognition performance
of the proposed data collaboration analysis method and compares it
with that of centralized and individual analyses for classification
problems. In our target situation, it should be noted that centralized
analysis is just ideal because one cannot share the original data sets
Xi. The proposed data collaboration analysis must achieve a rec-
ognition performance higher than that of individual analysis and
lower, but similar to, that of centralized analysis.

We used kernel ridge regression (Saunders et al. 1998) for the
individual and centralized analyses and Step 8 in the proposed
method (Algorithm 1). In the proposed method, each intermediate
representation is constructed from Xi by kernel LPP (K-LPP) (He
and Niyogi 2004). We note that K-LPP is an unsupervised dimen-
sionality reduction; however, the constructed map fi depends on i
because it depends on data set Xi. The anchor data set is con-
structed as a random matrix.

In the training phase, we use the ground truth L as a binary
matrix whose ði; jÞ entry is 1 if the training data xj is in class i.
This type of ground truth L is used for several classification algo-
rithms including ridge regression and deep neural networks
(Bishop 2006). All numerical experiments were performed using
MATLAB 2018b.

Table 2. Practical operation strategy: role for each data

Data Role

Xi, Yi, LYi
, fi User i

~Xi, Li, ~Xanc
i , gi User i and analyst

Xanc All users
h All users and analyst

Fig. 1. Practical operation strategy: algorithm flow.
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Fig. 3. Recognition results for artificial data: (a) centralized analysis; (b) individual analysis in user 1; (c) individual analysis in user 2; (d) individual
analysis in user 3; (e) data collaboration analysis (user 1 has test data set); (f) data collaboration analysis (user 2 has test data set); and (g) data
collaboration analysis (user 3 has test data set).

Fig. 2. Training data set and ground truth for artificial data: (a) training data set; (b) training data set in user 1; (c) training data set in user 2; and
(d) training data set in user 3.
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Artificial Data

In this experiment, we used a three-class classification of
10-dimensional artificial data. Fig. 2(a) illustrates the first two
dimensions of the ground truth. Figs. 2(b–d) illustrate 40 training
data points in each user of the first two dimensions with the cor-
responding labels: ∘, •, and þ. For the test data set, we used 201 ×
201 data points whose first two dimensions were square grid points
in ½−1; 1� × ½−1; 1�. The remaining eight dimensions of the training
and test data sets were random values in ½−0.1; 0.1� generated by
the Mersenne Twister. The Gaussian kernel was used for all
methods.

The accuracy (ACC) of centralized analysis and the average
ACC of three users of individual and proposed data collaboration
analyses are 92.3, 79.8, and 91.3. Fig. 3 presents the recognition
results. In each subfigure, white markers: ∘, •, and þ, denote train-
ing data points. From the comparison between the results of cen-
tralized and individual analyses, we observed that the recognition
results of individual analysis are significantly poorer than those of
centralized analysis because of the insufficiency of data samples. In
contrast, the proposed data collaboration analysis achieves results
comparable to those of centralized analysis.

Handwritten Digits Data (MNIST)

In this experiment, we used a 10-class classification of handwritten
digits (MNIST) (LeCun 1998), where the number of features was
m ¼ 784. Here, we set 100 data samples for each user and evalu-
ated the recognition performance, normalized mutual information
(NMI) (Strehl and Ghosh 2002), accuracy (ACC), rand index (RI)
(Rand 1971), for 1,000 test data samples, increasing the number of
users from 1 to 50. We used the Gaussian kernel for all methods.

Fig. 4 presents the average and standard error of the recognition
performance for 20 trials for each method. It can be seen that
the recognition performance of the proposed data collaboration
analysis increases with an increasing number of users and achieves
a significantly higher recognition performance than individual
analysis.

Gene Expression Data

In this numerical experiment, we used a three-class classification
problem for cancer data from a previous study (Golub et al. 1999).
The data set has 38 training and 34 test data samples with m ¼
7,129 features. Here, we considered the case of two users and al-
located 19 data samples for each user. Then, we evaluated the rec-
ognition performance for 20 trials. A linear kernel was used for all
methods.

Fig. 5 presents a three-dimensional visualization of the training
þ and test ∘ data samples for each method. Table 3 summarizes
the recognition performance (average� standard error). In three-
dimensional visualization, three classes are well separated in low-
dimensional space constructed by the proposed data collaboration
analysis as well as centralized analysis. We observed that the
proposed data collaboration analysis achieved higher recognition
performance than individual analysis for real-world problems.

Remarks of Numerical Results

The results of numerical experiments reveal that the proposed data
collaboration analysis achieves higher recognition performance for
artificial and real-world data sets than individual analysis. It should
be noted that because centralized analysis is ideal, the recognition

Fig. 4. Recognition performance for MNIST: (a) NMI; (b) ACC; and (c) RI.
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performance of the proposed data collaboration analysis is not
required to be higher than that of centralized analysis.

Conclusions

This paper has proposed a data collaboration analysis framework
for distributed data sets based on centralizing individual intermedi-
ate representations, while the original data sets and mapping func-
tions remain distributed. This paper has also proposed a practical
algorithm within the framework and a practical operation strategy
regarding privacy concerns. The proposed framework differs from
existing approaches in that it does not use privacy-preserving com-
putations and does not centralize mapping functions. Numerical
experiments demonstrate that the proposed method achieves higher
recognition performance for artificial and real-world data sets than
individual analysis.

In future works, we will investigate the usage of a nonlinear
mapping function gi and how to set anchor data to improve recog-
nition performance for large real-world problems.
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