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The calculus of construction (CoC), an impredicative type theory lying at the top of Barendregt’s lambda
cube, is the basis of proof assistants such as Coq and Lean. This paper considers questions whether it is
possible to have universes which are both impredicative and univalent, how the type Prop of propositions
in CoC relates to the notion of proposition in Homotopy Type Theory (HoTT) [The Univalent Foundations
Program, Homotopy type theory. Univalent foundations of mathematics. Princeton, NJ: Institute for
Advanced Study; Raleigh, NC: Lulu Press (2013; Zbl 1298.03002)] and whether one can obtain models
of Voevodsky’s resizing axioms.
In order to model CoC, one needs a category endowed with two classes of maps, namely, small fibrations
and fibrations, both of which are pullback stable, closed under composition and contain all isomorphisms.
One needs a particular small fibration, called a representation, such that any small fibration is to be
obtained as a pullback of a representation. Besides, one should be able to push fibrations along other
fibrations, and it should be the case that small fibrations are closed under being pushed forward along
arbitrary fibrations, which is no other than impredicativity in this context.
We have an old idea [J. M. E. Hyland et al., Proc. Lond. Math. Soc., III. Ser. 60, No. 1, 1–36 (1990;
Zbl 0703.18002)] that models of Coc are to be obtained by looking at Hyland’s effective topos [J. M. E.
Hyland, Stud. Logic Found. Math. 110, 165–216 (1982; Zbl 0522.03055)], in which every map is fibration
and the small fibrations are discrete maps. This idea does not quite work due to a certain ambiguity in
the very notion of a discrete map, but the standard model of CoC is to be obtained by being resricted to
⌉⌉-separated objects.
This paper gives an alternative solution. The author shows that Martin Hyland’s effective topos is to
be exhibited as the homotopy category of a path category EFF. The notion of a path category was
introduced in [B. van den Berg and I. Moerdijk, J. Pure Appl. Algebra 222, No. 10, 3137–3181 (2018; Zbl
1420.18034)], providing an abstract framework for doing homotopy theory. Different from Quillen’s model
categories, path categories are provided with two classes of maps, namely, fibrations and equivalences.
From a standpoint of type theory, path categories provide models of propositional identity types.
One can see that in EFF we can define a notion of discrete fibration which is stable under push forward
along arbitrary fibrations. It turns out that with the class of propositional discrete fibrations as the small
fibrations, EFF is a model of CoC with a univalent Prop. It is interesting to note that EFF is a model of
propositional resizing.
One reason why the model in EFF is somewhat poor is that its universe contains only propositions and
excludes many interesting data types such as N → N. With due regard to this, the author constructs a
more complicated path category EFF1 in which the class of fibrations of discrete sets is an impredicative
of small fibrations with a univalent representation. The natural next step would be the construction of
a path category EFF2 in which the class of discrete fibrations of groupoids would be closed under push
forward along arbitrary fibrations and would have a univalent representation. Continuing and taking the
limit, one would get a path category EFF∞ in which the class of discrete fibrations would be closed under
push forward along arbitrary fibrations and would have a univalent representation.
Two significant disclaimers are left open for future study. Firstly, the usual coherence problems related
to substitution are ignored. Secondly, many definitional equalities have been replaced by propositional
ones. The author intends to discuss these matters in subsequent papers.
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