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Abstract

A novel point absorber wave energy converter with a tuned inertial mass (TIM),
which is capable of significantly increasing the energy absorption and broadening
the effective bandwidth, is proposed in this paper. The mechanism of the TIM
has originally been introduced in the field of civil engineering as a passive energy
absorber for structures subjected to external loadings such as earthquakes. It re-
lies on attaching an additional tuning spring and a rotational inertial mass to the
primary system, to improve the energy absorption performance by amplifying the
displacement of the damper. Thus, considering typical point absorbers modeled
as a mass-spring-dashpot system similar way to civil structures, the application
of the TIM to wave energy converters can be expected to have a significant ef-
fect. In this paper, numerical investigation on the power generation performance
of a point absorber with the TIM is conducted under random sea waves. The am-
plitude response and power generation performance are compared with the con-
ventional point absorber, considering both non-resonant and resonant buoy cases.
It is shown that by properly designing the tuning spring stiffness and generator
damping, the rotation of the generator can be amplified compared to the buoy,
increasing the power absorption drastically.

Keywords: Wave energy converter, Point absorber, Tuned inertial mass, Random
sea waves

1. Introduction

First stimulated by the oil crisis 40 years ago, harvesting energy from ocean
waves is now considered as an alternative approach to meet renewable energy
targets [1, 2]. The enormous wave power potential has attracted engineers world-
wide with more than 1,000 patents in Japan, North America, and Europe [3],
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and among them are oscillating water column, oscillating body, and overtopping
devices [4, 5, 6, 7, 8, 9, 10]. Out of these, the point absorber classified as the os-
cillating body, is considered one of the most promising concepts which make up
a great proportion of existing full-scale prototypes. It consists of a floater with di-
mensions much smaller than the incident wave length, which converts the motion
of ocean waves to produce power. Compared to other concepts, point absorbers
can exploit more powerful wave regimes available in deep offshore regions, and
absorbs energy from all directions. Moreover, the buoys can be combined in ar-
rays to produce sufficient energy for commercial exploitation.

Until now, a great amount of effort has been devoted to improving the effi-
ciency of point absorbers based on mathematical models [11]. It is well known
that a point absorber in resonance with the incoming wave has significantly high
power absorption due to its enhanced amplitude [12]. However, in practice, this
frequency matching meets with serious difficulty because real waves are not sin-
gle frequency, and the natural frequency of the buoy tends to be much higher than
typical ocean wave frequencies for a reasonable size buoy [4, 13]. Therefore,
methods to force the system into resonance via active control have been consid-
ered. Latching the point absorber at fixed positions to achieve phase control was
first proposed by Budal and Falnes [14] and the phase control strategies includ-
ing latching control and reactive control continue to be an active area of research
[15, 16, 17, 18, 19, 20]. This approach requires the prediction of the incoming
wave some time in the future, along with solving the complicated control problem
to determine the latched time intervals. On the other hand, methods to simply
engineer the frequency response of the point absorber have also been considered.
Shadmen et al. [21] presented a geometrical optimization method based on tuning
the system to oscillate in the range of predominant sea states. Engstrom et al. [22]
presented phase control by using a supplementary submerged body to shift the
natural frequency of the buoy to coincide with typical sea states. Both of these
studies discussed that enhanced amplitude response of the buoy leads to a narrow
resonance bandwidth which is in conflict with the desire to correspond to the wide
spectrum of ocean waves. Thus, the compromise between maximum power ab-
sorption and broad resonance bandwidth has always been an issue associated with
the optimization of point absorbers.

In this study, a point absorber with a tuned inertial mass (TIM) is proposed
to increase the power absorption and broaden the effective wave frequency range.
The TIM has a different configuration from the traditional tuned mass damper
(TMD) [23] and the mechanism has originally been introduced in the field of civil
engineering as a passive vibration control device for structures subjected to exter-
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nal loadings such as earthquakes [24, 25, 26]. It relies on attaching an additional
tuning spring and a rotational inertial mass to the primary system, to amplify the
displacement of the viscous damper by taking advantage of the resonance effect.
In the theory of point absorbers, it is typical to model the power take-off (PTO)
system as a linear damper [27], resulting in a mass-spring-dashpot system. Hence,
the application of the TIM to point absorbers can be expected to have a significant
effect in terms of energy absorption. In contrast to previous studies which couple
the PTO with the buoy’s oscillation, this study inserts the tuning spring which de-
couples the PTO from the buoy’s oscillation and couples with the oscillation of the
rotational inertial mass. Therefore, by appropriately designing the tuning spring,
rotational inertial mass, and damping coefficient, the rotation number of the rota-
tional inertial mass can be amplified compared to the buoy, which increases the
displacement of the PTO to achieve substantial power absorption.

The objective of this paper is to verify the effectiveness of applying the TIM
to a point absorber. First, in Section 2, the theoretical models of the conventional
system and proposed system with the TIM are developed, following the modeling
of stochastic sea states using the JONSWAP spectrum. Then, in Section 3, the
state-space representation is given to evaluate the amplitude response along with
the power generation. Finally, in Section 4, numerical studies are carried out fo-
cussing on the optimization of design parameters, amplitude response, and power
generation of the proposed system compared with the conventional system.

2. Modeling

2.1. Point absorber with tuned inertial mass
We begin by reviewing the conventional point absorber illustrated in Fig. 1(a).

A semi-submerged cylinder with diameter D and draft L is considered as the wave
interacting part of a point absorber. The generator is anchored rigidly to the ocean
floor, and the supporting spring with stiffness ks is used to prevent the wire from
sagging. For simplicity, we consider the heave motion only as this becomes dom-
inant for the power extraction of wave energy [28].

Let z be the vertical displacement of the buoy from its equilibrium state. Since
the displacement of the buoy is coupled with the rotation of the generator, the con-
ventional point absorber can be modeled as a single-degree-of freedom (SDOF)
system with the following equation of motion:

(M + ms)z̈ + csż + ksz = fw − u (1)
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Figure 1: Conventional point absorber (SDOF system): (a) Schematic illustration, (b) Model.
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Figure 2: Point absorber with tuned inertial mass (TIM system): (a) Schematic illustration, (b)
Model.

where M is the buoy mass, ms is the inertial mass of the generator and pulley, cs

is the mechanical damping including friction, u is the electromagnetic damping
force which acts as a control force given by

u = CPTOż (2)

and fw is the hydrodynamic force acting on the cylinder. The corresponding model
is shown in Fig. 1(b).

Based on linear potential wave theory, the hydrodynamic force fw is described
by

fw = fa + fb + fc (3)
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where fa is the excitation force, fb is the hydrostatic force due to buoyancy, and
fc is the radiation force. The relation between the excitation force fa and the
amplitude of the incident wave a is given in the frequency domain using a transfer
function Fa(ω) as

f̂a(ω) = Fa(ω)â(ω) (4)

Note that f̂ (ω) denotes the Fourier transform of a function f (t). The hydrostatic
force becomes a linear function of z given as

fb = −Kwz (5)

where Kw is given with the gravity acceleration g and sea water density ρ by

Kw = ρgπ
(D

2

)2
(6)

and the radiation force fc is given as

f̂c(ω) = −( jωma(ω) + cr(ω))ˆ̇z (7)

where ma(ω) is the added mass and cr(ω) is the radiation damping.
Next, to increase the power absorption and widen the effective bandwidth,

a point absorber with TIM is proposed. As illustrated in Fig. 2(a), a tuning
spring is installed between the buoy and generator, and a relatively small phys-
ical mass which rotates with the generator is attached. When the vertical motion
is transformed into rotary motion, the small physical mass can produce an ampli-
fied equivalent mass effect on the order of a thousandfold due to the rotary inertia
[24]. As shown in Fig. 2(b), the proposed system is modeled as a two-degree-
of-freedom (2DOF) system, noting that the rotational displacement of the inertial
mass is coupled with the generator.

Defining z, zs, and zt as the displacement of the buoy, rotational inertial mass,
and the elongation of the tuning spring, respectively, the relationship among these
variables are given by

z = zs + zt (8)

The equations of motion for the proposed TIM system are derived as

Mz̈ = fw − ft (9)
msz̈s + csżs + kszs = ft − u (10)
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where ft is the force from the tuning spring and the the electromagnetic damping
force is defined by

u = CPTOżs (11)

in this case. Also, denoting the stiffness of the tuning spring as kt, this force
becomes proportional to the relative displacement given as

ft = ktzt = kt(z − zs) (12)

2.2. Power take-off system
In this study, the generator is assumed to be a three-phase permanent mag-

net synchronous machine, interfaced with a centralized DC power bus. For this
assumption, it is reasonable to assume that the quadrature field is explicitly con-
trolled to regulate power conversion while the direct stator field is maintained
at zero. Thus, the three phase voltage and current vectors are transformed to
”quadrature components”, i.e., effective scalar quantities are used for the back-
EMF v and corresponding current i. More details can be found in [29, 30]. As-
suming an ideal generator with linear behavior and minimal core loss, results
in linearity between the back-EMF and the velocity coupled with the generator.
Therefore, the equation is defined separately for the conventional system and TIM
system, given as

v = Keż, v = Keżs (13)

respectively, where Ke is a constant associated with the back-EMF of the gen-
erator. By reciprocity, the electromagnetic force and generator current has the
following linear relationship

u = −Kei (14)

In the study of wave energy converters (WECs), it is common to assume vis-
cous dampers in place of the PTO system. This constitutes the imposition of a
feedback law

i = −Yv (15)

where Y is the admittance of the generator. Applying this to Eq. (14) with Eq.
(13) yields

u = YK2
e ż, u = YK2

e żs (16)

for the individual systems. Thus the generator damping CPTO for both cases can
be given as

CPTO = YK2
e (17)

expressing how the generator damping, i.e., the electromagnetic damping force u
is controlled by the admittance Y .
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2.3. Stochastic sea state model
In simple theoretical models of WECs, it is typical to assume the incident

waves to be regular. For a more realistic model, irregular waves are used with
time-domain analysis which requires much more computing time [4]. An alter-
native method with less computation for modeling true sea states is the stochastic
modeling. We assume the wave amplitude a(t) to be a stationary stochastic pro-
cess with spectral density S a(ω) and variance given by

σa
2 =

1
2π

∫ ∞

−∞
S a(ω)dω (18)

Characterizing S a(ω) by the JONSWAP spectrum [31] with peak wave period Tp,
significant wave height Hs, and peak enhancement factor γ derives the following

S a(ω) = 310π
H2

s

T 4
pω

5 exp
[
−944
T 4

pω
4

]
γY (19)

where

Y = exp

− 0.191ωTp − 1
√

2ϕ

2 (20)

and

ϕ =

0.07 : ωTp ≤ 5.24
0.09 : ωTp > 5.24

(21)

The peak enhancement factor γ is constrained by 1 ≤ γ ≤ 3.3, with γ = 1 describ-
ing a fully developed sea.

To model the wave amplitude, we find a finite-dimensional noise filter

Fw ∼
[

Aw Bw

Cw 0

]
(22)

such that its power spectrum is close to the JONSWAP spectrum, i.e., S a(ω) ≈
|Fw(ω)|2, for a unit intensity white noise input. It should be noted that we make

use of the short-hand G ∼
[

A B
C D

]
to imply G(s) = C[sI − A]−1B + D in this

article.
According to the simplified procedure advocated by Spanos [32], Fw can be

approximated by a fourth-order controllable canonical form of

Aw =


0 1 0 0
0 0 1 0
0 0 0 1
a1 a2 a3 a4

 , Bw =


0
0
0
1

 , Cw =
[
0 0 c3 0

]
(23)
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Figure 3: Example of Jonswap spectrum with Tp = 6 s, Hs = 1 m, γ = 1 (solid) and the spectrum
of the fourth order finite dimensional approximate system (dashed).

where the filter parameters a1, a2, a3, a4, and c3 are chosen to minimize the mean-
square error

∫ ∞
−∞(S a(ω) − |Fw(ω)|2)2dω, while constraining a1 through a4 so that

the system poles are in the open left half plane. Fig. 3 shows an example of a
JONSWAP spectrum for Tp = 6 s, Hs = 1 m, γ = 1 and its fourth-order finite-
dimensional approximate system. We can confirm in the figure that the fourth-
order Fw estimates the JONSWAP spectrum very well.

3. State-space representation

In this section, to evaluate the amplitude response and assess the power gener-
ation for stochastic sea states, a state-space form of the proposed device with TIM
is developed. The derivation of the state-space form for the conventional point
absorber can be found in [33], which is not delved into in this paper.

3.1. Amplitude response of buoy and rotational inertial mass
In the following, the equations of motion for the buoy and rotational inertial

mass are expressed in state-space form separately, and then augmented to assess
the amplitude response relating the wave elevation.

8



Taking into account the hydrodynamics acting on the buoy, we take the Fourier
transform of Eq. (9) with Eqs. (3), (4), (5), and (7) inserted, which gives the
transfer function relating a and ft to z as

ẑ = Ga(ω)â +G f (ω) f̂t (24)

where
Ga(ω) =

Fa(ω)
−ω2(M + ma(ω)) + iωcr(ω) + Kw

(25)

G f (ω) = − 1
−ω2(M + ma(ω)) + iωcr(ω) + Kw

(26)

The infinite-dimensional systems Ga and G f are approximated into finite-dimensional
systems, i.e.,

Ga ∼
[

Aa Ba

Ca 0

]
, G f ∼

[
A f B f

C f 0

]
(27)

We must note, the function Fa(ω) in Eq. (25) is noncausal which will be problem-
atic when approximating Ga(ω) by a finite-dimensional state-space. Therefore the
technique of spatial delay proposed by Falnes [34] is used, defining a as the wave
amplitude at a distance of d in front of the buoy. Once Eq. (27) is obtained, the
identified systems are augmented as[

Ga G f

]
∼
[

Am Bm Em

Cm 0 0

]
(28)

where the augmented matrices Am, Bm, Em, and Cm are

Am =

[
Aa 0
0 A f

]
, Bm =

[
Ba

0

]
, Em =

[
0

B f

]
, Cm =

[
Ca C f

]
(29)

and the equivalent state-space representation is

ẋm = Amxm + Bma + Em ft (30)
z = Cmxm (31)

On the other hand, the equation of motion for the rotational inertial mass in
Eq. (10) can be transformed into state-space form directly. Defining the state
vector as xn =

[
zs żs

]T
gives

ẋn = Anxn + Bni + En ft (32)
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where

An =

[
0 1
− ks

ms
− cs

ms

]
, Bn =

[
0
Ke
ms

]
, En =

[
0
1

ms

]
(33)

Now that the state-space form for the buoy and rotational inertial mass are
determined, Eqs. (30) and (32) can be augmented by defining xh =

[
xT

m xT
n

]T
as

ẋh(t) = Ahxh + Bhi + Eh ft +Gha (34)

where

Ah =

[
Am 0
0 An

]
, Bh =

[
0

Bn

]
, Eh =

[
Em

En

]
, Gh =

[
Bm

0

]
(35)

The generator current and the force from the supporting spring can be expressed
using the state variable xh as

i = −Yv = −YChxh (36)
ft = kt(z − zs) = ktThxh (37)

where
Ch =

[
0 Ke

]
, Th =

[
Cm −1 0

]
(38)

Thus, when the design parameters Y and kt are determined, the amplitude response
of the buoy and rotational inertial mass to the wave elevation can be assessed by
defining a transfer function for each. Substituting Eqs. (36) and (37) into Eq. (34)
yields the closed loop system

ẋh = (A − YBhCh + ktEhTh)xh +Gha (39)
z = Cbxh (40)

zs = Crxh (41)

where
Cb =

[
Cm 0

]
, Cr =

[
0 1 0

]
(42)

Therefore, the transfer function from the wave elevation to the buoy displacement
is given as

Hb(s) = Cb[sI − A + YBhCh − ktEhTh]−1Gh (43)

Similarly, the transfer function from the wave elevation to the rotational displace-
ment of the inertial mass is given as

Hr(s) = Cr[sI − A + YBhCh − ktEhTh]−1Gh (44)
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3.2. Power generation
The stochastic sea state model in Eq. (22) combined with the WEC dy-

namics in Eq. (34) yields the following augmented system, with state vector
x =
[
xT

h xT
w

]T
as

ẋ = Ax + Bi + F ft +Gw (45)

where

A =
[
Ah GhCw

0 Aw

]
, B =

[
Bh

0

]
, F =

[
Eh

0

]
, G =

[
0

Bw

]
(46)

and w(t), the input to the noise filter, is white noise with unit intensity. Eqs. (36)
and (37) can be rewritten as

i = −Yv = −YCx (47)
ft = kt(z − zs) = ktTx (48)

where
C =
[
Ch 0

]
, T =

[
Th 0

]
(49)

In this paper, the total power generation is defined as the extracted power
minus the electrical loss [29], i.e.,

Pg = −iv − Pd (50)

where Pd is the electrical loss dominated by conductive dissipation. While the
expression for Pd depends on many parameters of the electronic hardware, we
make the simplifying assumption that the current-dependent loss is resistive, i.e.,

Pd = Ri2 (51)

where R includes the stator coil resistance of the generator and an approximate
transmission resistance for the drive. From v = Cx and Eq. (51), Eq. (50) would
be

Pg = −{iv + Ri2}

= −
[
x
i

]T [ 0 1
2CT

1
2C R

] [
x
i

]
(52)

To maximize the averaged value of Eq. (52) denoted by P̄g, the admittance Y and
the tuning spring stiffness kt are treated as control gains subjected to a white noise
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input as in [35]. Substituting Eqs. (47) and (48) into Eq. (45) yields the closed
loop system

ẋ = (A − YBC + ktFT)x +Gw (53)

In this study, the static admittance control strategy introduced in [33] is utilized
for the current i. Thus both Y and kt are treated as constant values. Therefore in
stationary stochastic response, the average power generation P̄g is given by [36]

P̄g = −GT SG (54)

where the covariance matrix S = ε[xxT ] is computed as the solution to the Lya-
punov equation

(A − YBC + ktFT)T S + S(A − YBC + ktFT) + CT (−Y + Y2R)C = 0 (55)

For an ideal system, the admittance value to control the input current to the gen-
erated is restricted by

Y ∈ [0, 1/R] (56)

to assure the definiteness of S. Thus, the objective becomes the optimization of Y
and kt to maximize P̄g.

4. Numerical simulations

To validate the power generation performance of the point absorber with TIM
proposed in Fig. 2, numerical studies are carried out and compared with the con-
ventional SDOF system illustrated in Fig. 1. A reasonable size cylindrical buoy
with diameter 5 m, draft 1 m, in water depth 30 m is considered. The hydro-
dynamic coefficients are calculated with the software WAMIT [37] which uses
boundary element method based on linear potential theory. The resulting added
mass ma(ω), radiation damping cr(ω), and the magnitude and phase of the transfer
function Fa(ω) defined by Eq. (4) are shown in Fig. 4. The parameters for the
generator and buoy used in this study are summarized in Table 1.

Fig. 5 shows the frequency response data Ga and G f given by Eq. (25) and
(26), respectively, and the finite dimensional approximations expressed by Eq.
(27). For accuracy, Ga is approximated with 6 zeros and 7 poles, and G f is ap-
proximated with 3 zeros and 4 poles. The wave amplitude a is taken to be the
wave amplitude d = 10 m ahead of the buoy in the propagation direction. It can
be seen that the approximated model matches the frequency response data very
well over the dominant wave frequencies.
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Table 1: Parameter values used for numerical simulation studies

Parameters Values
Buoy mass M 4000 kg
Buoy diameter D 5 m
Buoy height H 2 m
Buoy draft L 1 m
Mechanical damping cs 50 N s/m
Supporting spring stiffness ks 1.0 × 103 N/m
Electromechanical coupling Ke 500 V s/m
Resistance R 25 Ω
Sea water density ρ 1027 kg/m3

Previous studies which consider irregular waves typically select some number
of sea states as representatives of a deployment site. While, in this study, a more
comprehensive analysis is carried out, focussing on the variation of peak wave
periods since the system’s amplitude response strongly depends on this character-
istic parameter. Therefore, stochastic sea state models are determined for each sea
state with peak wave period ranging from 2 s to 12 s and Hs = 1 m, γ = 1 for the
JONSWAP spectrum defined by Eq. (19).

4.1. TIM system
4.1.1. Design

For the proposed TIM system, the design parameters Y and kt must be decided
for the rotational inertial mass employed. In this study, a rotational inertial mass of
ms = 8264 kg is examined which corresponds to 30% of the effective oscillating
mass M + m∞ where m∞ denotes the infinite frequency added mass having the
value of 23,547 kg. This large inertial mass can be realized by a relatively small
physical mass due to the rotational amplifying effect [24].

It is well understood that the damping coefficient CPTO strongly affects the
magnitude of the generated power. This can be adjusted through the admittance
Y of the electronics, thus the damping can be optimized for each sea state. On the
other hand, adjusting the stiffness of the tuning spring after deployment is regarded
as unpractical. Therefore, the value for kt is decided so that the power generation
is maximized for the predominant sea state assumed as JONSWAP spectrum with
Tp = 6 s. The optimized value of kt is obtained through the contour plot shown in
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Figure 4: Hydrodynamic parameters for the heave mode of a circular cylinder with radius 2.5 m,
draft 1 m, in water depth 30 m: (a) Added mass, (b) Radiation damping, (c) Magnitude of Fa(ω),
(d) Phase of Fa(ω).

Fig. 6, which demonstrates how the admittance and tuning spring stiffness relate
to the power generation. The upper limit of kt is set to 1.0×105 N/m which is large
enough to consider the spring to be rigid, while the admittance is constrained by
Eq. (56). The contour plot shows a clear peak at kt = 1.72 × 104 N/m and Y =
0.0044 Ω−1 giving maximum power of P̄g = 1795 W. Hence, the optimum tuning
spring stiffness is set to k∗t = 1.72 × 104 N/m and held fixed for the varying sea
states.

In the following simulation, the effect of adjusting the rotational inertial mass
after deployment is also explored. Therefore, two more values, ms = 5509 kg
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Figure 5: Frequency domain data (solid) and finite-dimensional approximation (dashed) with spa-
tial delay of d = 10 m: (a) Ga(ω), (b) G f (ω).

and 11019 kg corresponding to 20% and 40% of the effective oscillating mass are
considered. Note, the value of ms can be adjusted by either changing the attached
mass or the radius in which it rotates.

4.1.2. Result
The magnitudes of the transfer functions Hb and Hr defined by Eqs. (43) and

(44) with the obtained optimum value k∗t = 1.72 × 104 N/m are compared in Fig.
7. The damping coefficient is set to the optimum value for Tp = 6 s in each plot.
For the SDOF system, an inertial mass of ms = 50 kg caused by the generator
and pulley is assumed. Fig. 7 shows that the amplitude response of the rotational
inertial mass is significantly higher than the buoy response, indicating that the
tuning spring amplifies the oscillation of the rotational inertial mass compared to
the buoy. This leads to increased amplitude and velocity of the generator move-
ment due to its rigid connection with the rotational inertial mass. Moreover, the
frequency for optimum amplitude response of the TIM system decreases with in-
creasing ms. This points out that even when the buoy’s natural frequency is apart
from the dominant wave frequency, enhanced amplitude response can be gained,
and shifting of the frequency is possible through the value of the rotational inertial
mass.

Fig. 8 shows the power generation for various sea states, with the optimum
damping coefficient given below. It can be clearly seen that all three TIM systems
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perform better than the SDOF system, due to the increased amplitude and velocity
of the rotational inertial mass and generator. This results in lowering the optimum
damping coefficient, opening up the possibility to have small generator units. Fur-
thermore, when the value of ms is changed, the peak of the power curve is shifted,
which indicates that adjusting the rotational inertial mass allows the TIM system
to correspond to the variability of Tp.

4.2. Phase controlled TIM system
4.2.1. Design

Considering the significant effect of the TIM system observed from the am-
plitude response, a superior effect can be expected for when the oscillation of the
buoy itself is large, i.e., when the buoy resonates with the wave. In the following
example, the effectiveness of the TIM system is validated for when the buoy’s
natural frequency coincides with the dominant wave period. To shift the heave os-
cillating period, we assume phase control is applied by adding a fully submerged
body [22, 38]. The supplementary inertia due to the submerged body mass and
added mass allows the buoy to resonate with the dominating sea state. By placing
the submerged body at sufficient depth, the radiation damping and excitation force
remains the same with the case of the single cylinder, which is explored before.
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N/m and the damping coefficient CPTO is set to the optimum value for Tp = 6 s, (a) Hb(ω), (b)
Hr(ω).

The performance of the TIM system is compared with the SDOF system, hav-
ing the buoy for both systems to be in resonance with the wave motion. Thus, the
supplementary inertia due to the submerged body mass and added mass is set to
200 × 103 kg to make the buoy’s oscillation tuned to the sea state of Tp = 6 s.
Fig. 9 shows the finite dimensional approximation of the frequency response data
Ga and G f with the same orders, displaying a distinct peak at 0.9 rad/s due to the
resonance of the buoy. For the rotational inertial mass, the same three values (i.e.,
ms = 5509 kg, ms = 8264 kg, and ms = 11019 kg) are considered. The optimiza-
tion of the design parameters are carried out in a similar process, following the
amplitude response and power generation.

The stiffness of the tuning spring kt is optimized through the contour plot given
in Fig. 10. A sharper peak can be observed at kt = 6.06×103 N/m and Y = 0.0036
Ω−1 giving maximum power of P̄g = 17.1 kW. Hence, the optimum tuning spring
stiffness is set to k∗t = 6.06 × 103 N/m.

4.2.2. Result
The amplitude response of the buoy and the rotational inertial mass are shown

in Fig. 11. The solid line in Fig. 11(a) shows that the amplitude response of
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Figure 8: Power generation with optimum damping for each sea state. The tuning spring for the
TIM system is set to k∗t = 1.72 × 104 N/m.

the SDOF buoy is greatly enhanced due to phase control, while the bandwidth
has become narrow. This has always been an issue associated with the design of
point absorbers since a compromise must be made between maximum amplitude
response and wide resonance bandwidth over the dominant wave frequencies. On
the other hand, the significant effect of the TIM system is that enhanced ampli-
tude response and widened bandwidth is gained at the same time as shown in Fig.
11(b). Especially for the TIM system with ms = 8264 kg in which the tuning
spring was optimized, the benefit of 2DOF is gained, considerably widening the
bandwidth. We must emphasize that for the proposed TIM system, increased am-
plitude response of the rotational inertial mass is desired since the generator is
coupled to its displacement. While the buoy’s amplitude response is reduced for
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the TIM system, the amplitude response of the rotational inertial mass is signifi-
cantly increased. This indicates that a large amount of energy from the wave to the
buoy is successfully transferred to the rotational inertial mass for the TIM system.

The power generation of the two systems with phase control is compared in
Fig. 12. A similar feature with the amplitude response can be observed, with the
TIM system having increased power generation and widened bandwidth. Particu-
larly for the sea state in which resonance is gained, the power generation for the
TIM system is increased to more than two times the power of the SDOF system.
Contrary to the non-resonant case, the effect of adjusting the rotational inertial
mass can not be observed, which indicates that designing kt for a particular ms

value is sufficient to gain the benefit of the TIM system. As with previous results,
a decrease in optimum damping coefficient can be observed for the TIM system,
while the optimum damping is less sensitive to the variation of the sea states.

5. Conclusions

A theoretical model for a point absorber with tuned inertial mass has been pro-
posed. Numerical simulations in stochastic sea states using the JONSWAP spec-
trum were carried out to compare the power generation of the proposed device
with the conventional SDOF point absorber. For the TIM system with the buoy’s
natural frequency apart from the dominant wave frequency, increased power gen-
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Figure 10: Contour plot of power generation showing the effects of the tuning spring stiffness kt

and admittance Y . The plots are for TIM system applied to a resonant buoy with ms = 8264 kg
and supplementary inertia of 200 t. Sea state is Tp = 6 s, Hs = 1 m, γ = 1.

eration was gained along with the shifting of the power curve depending on the
rotational inertial mass value. On the other hand, for the TIM system with a res-
onant buoy, a significantly high amplitude response of the rotational inertial mass
was gained, while the response of the buoy was reduced. This indicated that sub-
stantial wave energy was transferred to the rotational inertial mass, leading to in-
crease the power generation to more than two times the power of the conventional
system at the resonance frequency.

For future work, methods to determine the optimum rotational inertial mass
should be established, along with its sensitivity to the wave spectrum. In addition,
algorithms to control the stiffness and damping of the PTO system with regard to
the change of the sea state are desired. Furthermore, experimental investigation
[39] to assess the feasibility of the device under real sea condition is required.
This includes the consideration of locking the PTO system in survival mode and
understanding the buoy response to highly non-linear extreme waves.
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