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The classical Friedrichs inequality is of the following form∫
G

u2dλ ≤ C
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where

[1] G is a bounded domain in Rn with its boundary S abiding by certain conditions.
[2] The function u belongs to W 1

2 (G).
[3] λ is the classical Lebesgue measure in Rn.
[4] σ is the surface measure on S.
[5] γ : W 1

2 (G) → L2(S) is the corresponding trace operator, and the constant C is specified by the
geometry of the domain G.

This paper proposes two infinite-dimensional variants of the above inequality. The second variant is
obtained on the basis of construction of the associated surface measure in a Hilbert space. The definition
of the measure and a series of its applications are to be seen in the author’s [Ukr. Math. J. 63, No. 9,
1336–1348 (2012; Zbl 1260.35021); Ukr. Math. J. 64, No. 10, 1475–1494 (2013; Zbl 1287.58005); Ukr.
Math. J. 67, No. 11, 1629–1642 (2016; Zbl 1387.46030); Ukr. Math. J. 68, No. 4, 515–525 (2016; Zbl
07030359)].
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