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This expository paper surveys compact 2-categories, particularly compact strictly monoidal categories.
The third section is devoted to a brief exposition of [the author and A. Preller, Math. Struct. Comput. Sci.
17, No. 2, 309–340 (2007; Zbl 1151.18007)]. However, as the author admits, A. Joyal and R. Street [Adv.
Math. 88, No. 1, 55–112 (1991; Zbl 0738.18005)] have already carried out for monoidal categories what the
author and Preller tried to do for strict monoidal categories. Compact 2-categories are called pregroups,
provided that their 2-cells describe a partial order. The author is active in applications of pregroups freely
generated by a partially ordered set to the grammar of natural languages ([the author, J. Logic Lang.
Inf. 17, No. 2, 141–160 (2008; Zbl 1162.68721); Stud. Log. 100, No. 4, 667–681 (2012; Zbl 1283.03061);
J. Logic Lang. Inf. 19, No. 1, 75–88 (2010; Zbl 1183.91158); From word to sentence. A computational
algebraic approach to grammar. Monza: Polimetrica 2008; Zbl 1166.03315); J. Logic Lang. Inf. 16, No.
3, 303–323 (2007; Zbl 1160.03305); J. Math. Log. 7, No. 2, 125–143 (2007; Zbl 1150.03013); Math. Intell.
28, No. 2, 41–48 (2006; Zbl 1167.68453); Res. Lang. Comput. 3, No. 1, 45–60 (2005; Zbl 1083.68129)]).
Applications of compact symmetric monoidal categories to physics can be seen in [the editor, “Introducing
categories to the practicing physicist”, in: What is category theory?. Monza: Polimetrica. 45–74 (2006;
Zbl 1148.18300)] and others, but the paper [the editor et al., Ann. Pure Appl. Logic 164, No. 11, 1079–
1100 (2013; Zbl 1280.03026)] is at best related with this paper. The author originally intended to show
that Feynman diagrams for quantum electro-dynamics could be described by certain compact Barr-
autonomous categories, only to find out that these degenerate to partially ordered groups. Therefore
the author grudgingly presents an extension of the idea from QED to the standard model. The paper
concludes with a brief review of the transition from 2-categories to the bicategories of J. Bénabou et
al., [Reports of the midwest category seminar. Berlin-Heidelberg-New York: Springer-Verlag (1967; Zbl
0165.33001)].
For the entire collection see [Zbl 1200.00038].
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