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Monoidal category theory serves as a powerful platform for explicating logical aspects of quantum theory,
yielding an abstract language for parallel and sequential composition and helping understand many high-
level quantum phenomena. This book, consisting of nine chapters (from 0 through 8) introduces the reader
to categorical quantum mechanics with an intuitive graphical calculus in front. The book stems from a
mini-course by the authors at a spring school in 2010, aimed at beginning graduate students from various
fields. The first notes written in 2012 formed a basis for a graduate course at the Department of Computer
Science Science in Oxford, which has run every year since. The text formed the basis for postgraduate
summer and winter schools in Dalhousie, Pisa and Palmse as well. The book strikes a good balance
between theory and applications, a bit biased in favor of theory, though there are so many applications
as to force the authors to only hint at them. Applications are interspersed throughout the main text and
exercises, while the theory aims at maximum reasonable generality. The exposition is pleasant and truly
convincing.

A synopsis of the book goes as follows:

Chapter 0 is a brief introduction to category theory (§0.1), linear algebra and the theory of Hilbert spaces
(§0.2) and quantum theory (§0.3), being intended to make the book as self-contained as possible.

Chapter 1 introduces the theory of monoidal categories [S. MacLane, Rice Univ. Stud. 49, No. 4, 28–46
(1963; Zbl 0244.18008); J. Benabou, C. R. Acad. Sci., Paris 256, 1887–1890 (1963; Zbl 0111.02201); J.
Benabou, C. R. Acad. Sci., Paris 260, 752–755 (1965; Zbl 0192.10901)] with a lot of examples. §1.1 shows
how categories like the category Rel of sets and relations, the category Hilb of Hilbert spaces and the
category Set of sets and mappings can be given a monoidal structure. §1.2 introduces a visual notation
called the graphical calculus, the correctness of which is based upon coherence theorem to be established in
§1.3, where the strictification and coherence theorems [D. B. A. Epstein, Invent. Math. 1, 221–228 (1966;
Zbl 0146.02502; S. MacLane, Rice Univ. Stud. 49, No. 4, 28–46 (1963; Zbl 0244.18008)] are established.

Chapter 2, consisting of four sections, shows that many aspects of linear algebra is describable within
the categorical setting. §2.1 examines the abstraction of the base field. Lemma 2.3 claiming that the
scalars are commutative in a monoidal category was proved in 1980 in a distinct guise [G, M. Kelly et al.,
J. Pure Appl. Algebra 19, 193–213 (1980; Zbl 0447.18005)]. The realization that endomorphisms of the
tensor unit behave as scalars was explicated in [S. Abramsky and B. Coecke, “A categorical semantics of
quantum protocols”, Log. Comput. Sci. 19, 415—425 (2004; Zbl 1151.81002]. §2.2 deals with the addition
of vectors. §2.3 shows that inner products can be described abstractly using a dagger, a contravariant
involutive endofunctor on the category that is compatible with the monoidal structure. The systematic
exploitation of daggers in the way of the book started with [P. Selinger, Selinger, Peter (ed.), Proceedings
of the 4th international workshop on quantum programming languages (QPL 2006), Oxford, UK, 17–
19 July 2006. Amsterdam: Elsevier. Electronic Notes in Theoretical Computer Science 210, 107–122
(2008)Zbl 1279.18006]. Self-duality in the form of involutive endofunctors on categories traces back to as
early as 1950 [S. MacLane, Bull. Am. Math. Soc. 56, 485–516 (1950)Zbl 0045.29905]. §2.4 demonstrates
how to use the techniques in the previous sections to model significant feature of quantum mechanics
such as classical data, superposition and measurement.

Chapter 3, consisting of four sections, investigates entanglement in terms of monoidal categories, using
the notion of dual object and building up to the important notion of compact category. The use of
compact categories in foundations of quantum mechanics was initiated in [S. Abramsky and B. Coecke,
loc. cit.]. §3.1 introduces the basic definition and establishes its basic properties. §3.2 is concerned with
the quantum teleportation ptotocol. §3.3 shows that the presence of dual objects ensures that tensor
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products interact well with any linear structure available. §3.4 makes a fairly thorough study of various
ways dual objects on different objects cooperate. Abstract traces in monoidal categories discussed in the
last section (Definition 3.59) was introduced in [A, Joyal et al., Math. Proc. Camb. Philos. Soc. 119, No.
3, 447–468 (1996)Zbl 0845.18005]. Any compact category is a so-called traced monoidal category. It was
established in [M. Hasegawa, Math. Struct. Comput. Sci. 19, No. 2, 217–244 (2009; Zbl 1165.18007)] that
abstract traces in a compact category are unique. Conversely, any traced monoidal category gives rise to
a compact category by what is called the Int-construction.

Chapter 4, consisting of three sections, is concerned with monoids and comonoids, both of them are
introduced in §4.1. §4.2 establishes the no-deleting and no-cloning theorems. The no-cloning theorem
was established independently in [Nature 299, 802–803 (1982); Phys. Lett. A 92, 309–311 (1982)]. Its
categorical version in Theorem 4.27 was in [Zbl 1192.81013], in which the no-deleting theorem (Theorem
4.20) due to Coecke was presented. Theorem 4.28 presented in §4.3 was given in [Z. Petrić. Stud. Log.
70, No. 2, 271–296 (2002; Zbl 1022.03050)].

Chapter 5, consisting of six sections, is concerned with Frobenius structures of a monoid and comonoid
interacting in accordance with what is called the Frobenius law. §5.1 investigates its basic consequences.
The Frobenius law is named after F. Georg Frobenius [Berl. Ber. 1903, 504-537, 634–645 (1903; JFM
34.0238.02)]. It was T. Nakayama [Ann. Math., Princeton, (2) 42, 1–21 (1941; JFM 67.0092.04); Ann.
Math. (2) 42, 1–21 (1941; Zbl 0026.05801)] who coined the name. The formulation with multiplication
and comultiplication in the book goes back to F. W. Lawvere [Semin. Triples categor. Homology Theory,
ETH 1966/67, Lect. Notes Math. 80, 141–155 (1969; Zbl 0165.03204)]. A. Carboni and R. F. C. Walters
[J. Pure Appl. Algebra 49, 11–32 (1987; Zbl 0637.18003); A. Carboni et al., Cah. Topol. Géom. Différ.
Catég. 46, No. 3, 187–188 (2005; Zbl 1074.18505); Theory Appl. Categ. 19, Spec. Vol. CT2006 Conf.,
93–124 (2007; Zbl 1146.18300)] used the formulation to axiomatize bicategories of relations. Dijkgaaf [A
geometrical approach to two-dimensional Conformal Field Theory, Ph.D. thesis, University of Utrecht,
1989] established that the category of commutative Frobenius structures is equivalent to to that of
two-dimensional topological quantum field theories. A comprehensive book on Frobenius strcuctures is
available [J. Kock, London Mathematical Society Student Texts 59. Cambridge: Cambridge University
Press (ISBN 0-521-54031-3/pbk; 0-521-83267-5/hbk). xiii, 240 p. (2004; Zbl 1046.57001)]. §5.2 is concerned
with normal forms, establishing the noncommutative spider theorem (Theorem 5.21) and the commutative
spider theorem (Theorem 5.22), the latter of which was due to L. Abrams [Frobenius Algebra Structures
in Topological Quantum Field Theory and Quantum Cohomology, Ph.D., Johns Hopkins University,
1997] with a category-theoretic proof ascribed to [S, Lack, Theory Appl. Categ. 13, 147–163 (2004; Zbl
1062.18007)]. §5.3 establishes that the Frobenius law obtains precisely when the Cayley embedding in
Proposition 4.13 preserves some structure. §5.4 classifies the special dagger Frobenius structures in the
category F Hilb of finite-dimensional Hilbert spaces [B. Coecke, Math. Struct. Comput. Sci. 23, No. 3,
555–567 (2013; Zbl 1276.46016)] and the category Rel of sets and relations [D. Pavlovic, Bruza, Peter
(ed.) et al., Quantum interaction. Third international symposium, QI 2009, Saarbrücken, Germany, March
25–27, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-00833-7/pbk). Lecture Notes in Computer
Science 5494. Lecture Notes in Artificial Intelligence, 143–157 (2009; Zbl 1229.68039); C. Heunen et
al., J. Pure Appl. Algebra 217, No. 1, 114–124 (2013; Zbl 1271.18004)] in terms of operator algebras and
groupoids respectively, with the commutative case being of special interest, as in F Hilb this corresponds
to a choice of orthonormal basis (Theorem 5.36 [Zbl 1276.46016]).

Chapter 6, consisting of five sections, considers what happens when two Frobenius structures interact,
specifically, when they are maximally incompatible or complementary. §6.1 gives a definition making sense
in arbitrary monoidal dagger category [B. Coecke et al., Aceto, Luca (ed.) et al., Automata, languages
and programming. 35th international colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008.
Proceedings, Part II. Berlin: Springer (ISBN 978-3-540-70582-6/pbk). Lecture Notes in Computer Science
5126, 298-310 (2008; Zbl 1155.81316)], seeing that it comes down to the standard notion of mutually
unbiased bases from quantum information theory in the category Hilb of Hilbert spaces, classifying the
complementary groupoids in the category Rel of sets and relations and characterizing complementarity
in terms of a canonical morphism being unitary. §6.2 addresses the Deutsch-Jozsa algorithm [J. Vicary;
Proceedings of the 2013 28th annual ACM/IEEE symposium on logic in computer science, LICS 2013,
Tulane University, New Orleans, LA, USA, June 25–28, 2013. Los Alamitos, CA: IEEE Computer Society
(ISBN 978-0-7695-5020-6). 93–102 (2013; Zbl 1366.68067)]. §6.3 links complementarity to Hopf algebras,
finding out that this well-investigated notion gives rise to a stronger form of complementarity. Turning to
quantum computation, §6.4 discusses how many qubit gates are to be modelled in categorical quantum
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mechanics using merely complementary Frobenius structures, such as controlled negation, controlled
phase gates and arbitrary single qubit gates. §6.5 finally discusses the ZX calculus [textitB, Coecke,
Aceto, Luca (ed.) et al., Automata, languages and programming. 35th international colloquium, ICALP
2008, Reykjavik, Iceland, July 7–11, 2008. Proceedings, Part II. Berlin: Springer (ISBN 978-3-540-70582-
6/pbk). Lecture Notes in Computer Science 5126, 298–310 (2008; Zbl 1155.81316)], which is a sound and
complete way to handle quantum computations using only equations in graphical calculus.

Chapter 7, consisting of six sections, revolves around completely positive maps. §7.1 investigates evolution
of mixed states of systems, finding out that evolutions correspond to completely positive maps and mixed
states are no other than completely positive maps from the tensor unit to a system. §7.2 describes the
main construction of the chapter, starting with the category of pure states to get the corresponding
category of mixed states. §7.3 considers completely positive maps to and from classical structures, seeing
that the subcategory of classical structures and completely positive maps models statistical mechancis.
§7.4 studies the subcategory of completely positive maps between completely noncommutative Frobenius
structures in the sense that every observable commuting with all others must be trivial. Returning to the
CP construction, §7.5 extends the axiomatization of categories of quantum structures using environment
structures to an axiomatization of any category of the form CP [Cpure], enabling one to discuss quantum
teleportation for mixed states by using the relationship between objects of CP [Cpure] and Frobenius
structures in Cpure. §7.6 investigates how the CP construction interacts with biproducts, much like in
§3.3, finding out that if C has dagger biproducts, then so does CP [C] [Chris Heunen, Aleks Kissinger
and Peter Selinger, “Completely positive projections and biproducts”, Electron. Proc. Theor. Comput.
Sci. 171, 71–83 (2014)].

Chapter 8, consisting of three sections, sketches higher categories. §8.1 introduces monoidal 2-categories
and their graphical calculus based on surfaces, investigating duality in monoidal 2-categories and see-
ing how the theory of commutative dagger Frobenius structures emerges from this in an elegant way.
§8.2 introduces 2-Hilbert spaces and investigate their properties. §8.3 studies quantum teleportation and
quantum dense coding from a higher-categorical perspective by using these techniques.

Reviewer: Hirokazu Nishimura (Tsukuba)
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