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Abstract: The order Trypanosomatida has been well studied due to its pathogenicity and the unique
biology of the mitochondrion. In Trypanosoma brucei, four DNA polymerases, namely PolIA, PolIB,
PolIC, and PolID, related to bacterial DNA polymerase I (PolI), were shown to be localized in
mitochondria experimentally. These mitochondrion-localized DNA polymerases are phylogenetically
distinct from other family A DNA polymerases, such as bacterial PolI, DNA polymerase gamma (Polγ)
in human and yeasts, “plant and protist organellar DNA polymerase (POP)” in diverse eukaryotes.
However, the diversity of mitochondrion-localized DNA polymerases in Euglenozoa other than
Trypanosomatida is poorly understood. In this study, we discovered putative mitochondrion-localized
DNA polymerases in broad members of three major classes of Euglenozoa—Kinetoplastea,
Diplonemea, and Euglenida—to explore the origin and evolution of trypanosomatid PolIA-D.
We unveiled distinct inventories of mitochondrion-localized DNA polymerases in the three classes:
(1) PolIA is ubiquitous across the three euglenozoan classes, (2) PolIB, C, and D are restricted
in kinetoplastids, (3) new types of mitochondrion-localized DNA polymerases were identified in
a prokinetoplastid and diplonemids, and (4) evolutionarily distinct types of POP were found in
euglenids. We finally propose scenarios to explain the inventories of mitochondrion-localized DNA
polymerases in Kinetoplastea, Diplonemea, and Euglenida.
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1. Introduction

Members of the order Trypanosomatida have been extensively studied because of their
pathogenicity to humans. Trypanosoma brucei, Trypanosoma cruzi, and the species belonging to
the genus Leishmania cause African trypanosomiasis (sleeping sickness), American trypanosomiasis
(Chagas disease), and leishmaniasis, respectively [1]. Besides their significance as the causative
agents of deadly diseases, trypanosomatids are important for basic biological research due to the
complex architecture of their mitochondrial genomes (mtDNAs) and RNA-editing of mitochondrial
transcripts [2]. Trypanosomatids possess a unique mtDNA comprising two types of circular DNA
molecule—maxicircles and minicircles—interlocked with one another (so-called kinetoplast DNA or
kDNA). A single kDNA contains dozens of maxicircles and thousands of minicircles. Maxicircles
carry protein-coding genes and ribosomal RNA genes, of which transcripts need to be edited
post-transcriptionally by extensive insertions and deletions of uridines with the help of guide RNAs
(gRNAs) transcribed from minicircles. The structural complexity of kDNA is seemingly consistent
with a unique set of DNA polymerases required for kDNA replication. In the genus Trypanosoma,
phylogenetically diverse DNA polymerases were experimentally shown to be localized in mitochondria;
(i) PolIA, PolIB, PolIC, and PolID [3] belong to family A, the members of which bear the sequence
similarity to bacterial DNA polymerase I (PolI) [4], two of DNA polymerase beta in family X [5],
and a DNA polymerase kappa in family Y [6]. Besides PolIA-D in trypanosomatids, several DNA
polymerases of family A are known to be localized in mitochondria, such as DNA polymerase gamma
(Polγ) in animals and yeasts [7] and plant and protist organellar DNA polymerase (POP), which is also
targeted to the plastids of plants and algae [8–10].

Trypanosomatida, together with Eubodonida, Parabodonida, Neobodonida, and Prokinetoplastida,
are assembled to the class Kinetoplastea [11]. In principal, the characteristics of kDNA (and unique
gene expression from kDNA) in trypanosomatids seem to be ubiquitous across the members of
Kinetoplastea with modifications [12,13]. In the tree of eukaryotes, Kinetoplastea is further related to the
classes Diplonemea and Euglenida, and the family Symbiontida, forming the phylum Euglenozoa [11].
Diplonemid mitochondria contain numerous circular DNA molecules (minicircles) and each chromosome
possesses “gene module(s)” that are a piece of the coding regions [14,15]. Both 5′ and 3′ non-coding
regions of primary transcripts from gene modules are removed and the resulting transcripts were then
assembled into a mature mRNA by trans-splicing. After the removal of the 5′ and 3′ non-coding regions
described above, transcripts from certain modules undergo substitution RNA editing (cytidine-to-uridine,
adenosine-to-inosine and/or guanosine-to-adenosine) and/or appendage RNA editing at the 3′ end
(uridine and/or adenosine-appendage) [16]. The architecture of euglenid mtDNA seems to be simpler
than those of kinetoplastid/diplonemid mtDNA [17–19]. The mtDNA of Euglena gracilis, a representative
species of Euglenida, is composed of multiple linear DNA molecules, each of which carries one or two
full-length genes [18,19]. Although no sequence data are available, the mitochondrion of the euglenid
Petalomonas cantuscygni was reported to contain multiple DNA molecules in both linear and circular
forms based on electron microscopic observation [17]. Finally, our current knowledge of Symbiontida
is restricted to morphological information and small subunit ribosomal RNA gene sequences [20–22].
Importantly, no systematic survey of mitochondrion-localized DNA polymerases has been done for any
of the members of Euglenozoa except trypanosomatids.

In this study, we aim to retrace how the current inventory of mitochondrion-localized DNA
polymerases in trypanosomatids has been shaped during the evolution of Euglenozoa. We searched
for putative mitochondrion-localized DNA polymerases in diverse euglenozoans. Briefly, we detected
PolIA in all of the euglenids, diplonemids, and kinetoplastids examined here, except for a single case
of putative secondary loss. PolIB, C, and D are seemingly restricted to members of Kinetoplastea.
In addition, we detected novel DNA polymerases, named PolI-Perk1 and PolI-Perk2, and PolI-dipl,
all of which are apparently related to but distinct from PolIB-D, in the prokinetoplastid Perkinsela sp.
and diplonemids, respectively. In euglenids, three distinct types of POP were found and at least two
of them were most likely to be localized in mitochondria. According to the inventories of family A
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DNA polymerases in Euglenida, Diplonemea, and Kinetoplastea, we here discuss the evolution of
mitochondrion-localized DNA polymerases in Euglenozoa.

2. Results

Pioneering studies demonstrated that the previously described mitochondrion-localized DNA
polymerases, namely Polγ, POP, trypanosomatid PolIA–D belong to family A [10,23]. Thus, we surveyed
family A DNA polymerases in both public and in-house transcriptome data of four kinetoplastids, four
diplonemids, and six euglenids (14 species in total). We repeated the same search against the genome
data of two kinetoplatids, Bodo saltans and Perkinsela sp. As a result, 37 family A DNA polymerases
were identified in 14 euglenozoan species and then subjected to phylogenetic analyses along with
their homologs, including Polγ, POP, and trypanosomatid PolIA–D. Based on the phylogenetic affinity,
we classified the 37 newly identified family A DNA polymerases into nine POP, 13 PolIA, three PolIB,
a single PolIC, five PolID, and six “PolIBCD-related” DNA polymerases, named PolI-Perk1, PolI-Perk2,
and PolI-dipl (see below).

2.1. PolIA is Ubiquitous in Euglenida, Diplonemea, and Kinetoplastea

In the trypanosomatid Trypanosoma brucei, four distinct types of family A DNA polymerase—PolIA,
B, C, and D—are known to be involved in the maintenance of DNA in their mitochondria [3,24–26].
We found that all the species examined in this study (except Perkinsela sp.) possess sequences that
grouped robustly with trypanosomatid PolIA in the global phylogeny of family A DNA polymerases
(Figure 1). We here propose that euglenids, diplonemids, and kinetoplastids (except for Perkinsela sp.)
possess PolIA, which can be traced back to a single DNA polymerase in the common ancestor of the three
classes of Euglenozoa. In the PolIA clade, the homologs of kinetoplastids, diplonemids, and euglenids
formed individual subclades, and their monophylies were supported by maximum-likelihood bootstrap
values (MLBPs) of 68–93% and Bayesian posterior probabilities (BPPs) of 0.93 to 1.0, while the
relationship among the three subclades was not resolved with confidence (Figure 1). The PolIA
homologs found in this study were predicted to have the family A DNA polymerase domain (PF00476)
at their C-termini (Table S1), as seen in the Trypanosoma brucei homolog [3].

We recovered the complete N-termini of PolIA homologs in only four kinetoplastids, a single
diplonemid and two euglenids out of the 16 homologs examined in this study. None or only one out of
the four in silico programs predicted a mitochondrial targeting signal (MTS) at the N-termini of the
four kinetoplastid homologs (Figure 2). Although Trypanosoma brucei PolIA was shown to be localized
in mitochondria experimentally, its N-terminal MTS was not detected by in silico prediction [3].
This likely stems from the difficulty in predicting the mitochondrion-localized proteins in Trypanosoma
brucei based on the N-terminal amino acid sequences [27]. In contrast, three out of the four programs
predicted an MTS in the homolog of the diplonemid Flectonema neradi. For the Euglena gracilis homolog,
only a single program predicted an MTS in its N-terminus. Nevertheless, the study on the Euglena
gracilis mitochondrial proteome recognized PolIA as a mitochondrial protein [28]. The N-terminus of
the Peranema homolog was predicted to have an MTS by all of the four programs. The N-termini of the
rest of 14 PolIA homologs were incomplete and thus could not be subjected to the MTS prediction
(triangles; Figure 2). Considering the robust affinity between Trypanosoma brucei PolIA, of which
subcellular localization was experimentally confirmed [3], and the other PolIA homologs, we suspect
that all of the PolIA homologs identified in this study are mitochondrion-localized proteins.
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Figure 1. Maximum likelihood (ML) phylogenetic tree of family A DNA polymerases. ML bootstrap 
values equal to or greater than 70% are shown at the corresponding nodes, except the value for the 
clade of two Perkinsela sequences. Nodes marked by dots were supported by Bayesian posterior 
probabilities (BPPs) equal to or greater than 0.95, but the BPPs smaller than 0.95 are shown for the 
nodes of our interest. The bacterial sequences are shown in red. The euglenozoan sequences are in 
blue. The sequences identified in this study are highlighted by stars. 

Figure 1. Maximum likelihood (ML) phylogenetic tree of family A DNA polymerases. ML bootstrap
values equal to or greater than 70% are shown at the corresponding nodes, except the value for the
clade of two Perkinsela sequences. Nodes marked by dots were supported by Bayesian posterior
probabilities (BPPs) equal to or greater than 0.95, but the BPPs smaller than 0.95 are shown for the
nodes of our interest. The bacterial sequences are shown in red. The euglenozoan sequences are in
blue. The sequences identified in this study are highlighted by stars.
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(a dash/cross). The circles and triangles represent sequences with the complete N-termini and those 
of which N-termini were absent, respectively. The dashes and crosses represent the absences of 
homologs in transcriptome and those in both transcriptome and genome, respectively. The sequences 
with the complete N-termini were subjected to in silico prediction of the mitochondrial targeted signal 
(MTS) at their N-termini by using TargetP [29], NommPred [30], PredSL [31], and MitoFates [32]. In 
the case of the MTS being predicted, a subset (or all) of the quarters is filled (upper-right, TargetP; 
lower-right, NommPred; lower-left, PredSL; upper-left, MitoFates). Stars, which are associated with 
the four DNA polymerases of Trypanosoma brucei and POP_e1 of Euglena gracilis indicate the 
experimentally confirmed mitochondrion-localization. The branching order in the Kinetoplastea 
clade, that in the Diplonemea clade, and that in the Euglenida clade are based on Yazaki et al. (2017), 
Tashyreva et al. (2018), and Bicudo and Menezes (2016), respectively [33–35]. 

The precise function of PolIA of Trypanosoma brucei has yet to be clarified experimentally [3]. 
PolIA showed a clear phylogenetic affinity to Polθ that is involved in DNA repair in the nuclear 
genome (Figure 1) and was postulated to be involved in mtDNA repair [36]. Based on the proposed 

Figure 2. Inventories of family A DNA polymerases in Euglenida, Diplonemea, and Kinetoplastea.
For each species examined here, the presence (absence) of each type is displayed by a circle/triangle
(a dash/cross). The circles and triangles represent sequences with the complete N-termini and those of
which N-termini were absent, respectively. The dashes and crosses represent the absences of homologs
in transcriptome and those in both transcriptome and genome, respectively. The sequences with the
complete N-termini were subjected to in silico prediction of the mitochondrial targeted signal (MTS) at
their N-termini by using TargetP [29], NommPred [30], PredSL [31], and MitoFates [32]. In the case of
the MTS being predicted, a subset (or all) of the quarters is filled (upper-right, TargetP; lower-right,
NommPred; lower-left, PredSL; upper-left, MitoFates). Stars, which are associated with the four DNA
polymerases of Trypanosoma brucei and POP_e1 of Euglena gracilis indicate the experimentally confirmed
mitochondrion-localization. The branching order in the Kinetoplastea clade, that in the Diplonemea
clade, and that in the Euglenida clade are based on Yazaki et al. (2017), Tashyreva et al. (2018), and
Bicudo and Menezes (2016), respectively [33–35].

The precise function of PolIA of Trypanosoma brucei has yet to be clarified experimentally [3].
PolIA showed a clear phylogenetic affinity to Polθ that is involved in DNA repair in the nuclear
genome (Figure 1) and was postulated to be involved in mtDNA repair [36]. Based on the proposed
function of Trypanosoma brucei PolIA, this DNA polymerase may be involved in mtDNA repair in
diverse euglenozoans.

2.2. PolIB, C, D, and “PolIBCD-Related” DNA Polymerases in Diplonemea and Kinetoplastea

Trypanosomatid PolIB, C and D were shown to be closely related to each other but remote
from PolIA in previous phylogenetic studies [10,23]. In this section, we describe the distribution
and evolution of PolIB, C, D and “PolIBCD-related” DNA polymerases in Euglenozoa. In brief,
the sequences which grouped directly with trypanosomatid PolIB, C or D were found only in the
kinetoplastids but not in the euglenids or diplonemids examined here.

In Figure 1, trypanosomatid PolID are grouped with the homologs of the eubodonid Bodo saltans,
the parabodonid Trypanoplasma borreli, the neobodonid Azumiobodo hoyamushi, and the prokinetoplastid
Perkinsela sp. together with an MLBP of 84% and a BPP of 0.97, indicating that PolID is ubiquitous in
Kinetoplastea. PolIB was detected in all of the orders of Kinetoplastea except for Prokinetoplastida,
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as B. saltans, Trypanoplasma borreli, and A. hoyamushi appeared to possess DNA polymerases that formed
a clade with trypanosomatid PolIB with an MLBP of 100% and a BPP of 1.00. The distribution of PolIC
is likely restricted to Trypanosomatida and Eubodonida, as only a single B. saltans homolog grouped
with trypanosomatid PolIC with an MLBP of 100% and a BPP of 1.00. All of the PolIB homologs
appeared to possess both 3′-5′ exonuclease domain (PF00929) and polymerase domain (PF00476)
(Figure 3; see Table S1 for the details). Only the polymerase domain (PF00476) was found in the four
PolIC homologs assessed here (Table S1). Although Trypanosoma brucei PolID has been reported to
possess both 3′-5′ exonuclease domain (PF01612) and polymerase domain (PF00476) [3], we detected
only the latter domain in the rest of the PolID homologs assessed here (including the homologs of
Trypanosoma grayi and L. major; Figure 3 and Table S1).

We identified novel family A DNA polymerases in Perkinsela sp. and diplonemids, both of which
formed a large clade with PolIB, C, and D (Figure 1; labelled as “K+D PolI”). All of the four diplonemids
examined here possess the DNA polymerases that formed a clade with an MLBP of 99% and a BPP
of 1.00 (designated as “PolI-dipl”), suggesting that this type of DNA polymerase has been inherited
vertically from an ancestral diplonemid. Both 3′-5′ exonuclease domain (PF01612) and polymerase
domain (PF00476) were conserved in three out of the four PolI-dipl homologs, while the former domain
was absent in the H. phaeocysticola homolog (only the domain structure of the Flectonema neradi homolog
is shown in Figure 3; the domain structures of other homologs are provided in Table S1). We found two
DNA polymerases in Perkinsela sp. (designated as “PolI-Perk1” and “PolI-Perk2”), which were tied
together with an MLBP of 46% and a BPP of 0.93 (Figure 1). Only the polymerase domain (PF00476)
was found in PolI-Perk1 and PolI-Perk2 (Figure 3 and Table S1). Overall, our phylogenetic analyses
failed to resolve the relationship among PolI-Perk1, PolI-Perk2, and four clades of PolIB, C, D, and
-dipl with confidence. If we believe the ML tree topology shown in Figure 1, PolI-Perk1 and -Perk2
belong to a novel type of DNA polymerase that is closely related to but clearly distinct from PolIB, C,
D, or -dipl. Alternatively, due to the lack of phylogenetic resolution, we cannot exclude the possibility
of PolI-Perk1 and -Perk2 (or PolI-Perk2 and -Perk1) being PolIB and C in Perkinsela sp., respectively.
Unfortunately, we cannot make any definite conclusions on the origins of PolI-Perk1 and -Perk2 in
this study.

We succeeded in recovering the N-termini of all of the PolIC and D homologs examined here,
and 10 out of the 12 homologs were predicted in silico to have an MTS by at least two out of the four
programs (Figure 2). Among the six PolIB homologs, the complete N-termini were available for all of
them except that of B. saltans, and MTS was robustly predicted at the N-termini of the Trypanosoma
brucei, L. major and A. hoyamushi homologs. Based on their phylogenetic affinity to the homologous
sequences in trypanosomatids (Figure 1) and in silico MTS prediction (Figure 2), we propose that
the newly identified PolIB, C, and D are localized in their mitochondria. The N-terminal sequences
of PolI-Perk1, -Perk2, and -dipl are available and at least two out of the four programs predicted an
MTS in their N-termini (Figure 2). Thus, the novel DNA polymerases found in Perkinsela sp. and
diplonemids are likely to be localized in their mitochondria.

PolIB, C, and D were experimentally shown to be essential for Trypanosoma brucei growth and
mtDNA replication in both procyclic and bloodstream forms [3,24–26]. Although the difference in
function among PolIB, C, and D is poorly understood, their functions in mtDNA replication are
unlikely to overlap one another [37]. All we can propose here is the simplest and most conserved
scenario—no substantial change in function has occurred to PolIB, C or D through the evolution
of Kinetoplastea. Regrettably, the amino acid sequences and domain structures are insufficient to
speculate about the precise functions of the novel mitochondrion-localized DNA polymerases in
Perkinsela sp. and diplonemids, which are absent in trypanosomatids.
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Figure 3. Domain structures of PolIB, C, D, and PolIBCD-related DNA polymerases. The domain
structures of PolIB, C, and D are represented by the corresponding homologs of Bodo saltans (Note that
the N-terminus of B. saltans PolIB is incomplete). As PolI-Perk1 and -Perk2 have been undescribed
prior to this study, we provide their domain structures. The domain structure of another previously
undescribed DNA polymerase identified in diplonemids (PolI-dipl) is represented by the Flectonema
neradi homolog. Two types of the 3’-5’ exonuclease domains are highlighted in different colors (PF01612
and PF00929 correspond to dark green and light green, respectively). The family A DNA polymerase
domains are shown in orange. The detailed domain structures of the kinetoplastid and diplonemid
PolIB, C, D, and PolIBCD-related DNA polymerases are described in Table S1.

2.3. POP in Euglenida

We surveyed family A DNA polymerase sequences in six euglenids, and identified POP homologs
from all of the species examined here, except Peranema sp. In total, nine POP homologs were found
in the five euglenids examined in this study. A phylogenetic analysis of POP alignment separated
the euglenid homologs into three distinct types, namely, “POP_e1,” “POP_e2,” and “POP_Rhabd”
(Figure 4). Euglena gracilis, Euglena longa, Eutreptiella gymnastica, and Rapaza viridis (members of
Euglenophyceae) share POP_e1, which grouped together with an MLBP of 79% and a BPP of 0.95.
Rhabdomonas costata appeared to possess two POP homologs (POP_Rhabd1 and _Rhabd2) that were
tied together with an MLBP of 100% and a BPP of 0.99. In the POP phylogeny, the clade of POP_Rhabd1
and _Rhabd2, and that of four POP_e1 homologs were branched subsequently from the root of
the entire POP clade (Figure 4). However, because the backbone of the clade is not supported, the
sister relationship between POP_e1 and POP_Rhabd cannot be excluded. POP_e2 was identified
in Euglena spp. and Eutreptiella gymnastica and formed a clade with an MLBP of 97% and a BPP of
1.00. The POP_e2 clade was separated from the POP_e1 or POP_Rhabd homologs but grouped with
the plastid-localized POP homologs in chlorarachniophytes with an MLBP of 99% and a BPP of 1.00
(Figure 4). As reported for the previously studied POP homologs, POP_e1 and POP_e2 appeared to
possess both 3’-5’ exonuclease domain and polymerase domain (Figure 5; see Table S1 for the details).
POP_Rhabd1 and _Rhabd2 seemingly lack the 3’-5’ exonuclease domain (Figure 5 and Table S1).

POP homologs are often localized in both mitochondria and plastids in photosynthetic species [38,39].
The N-termini of three out of the four POP_e1 homologs were completed and predicted to function as an
MTS by at least two out of the four in silico programs (Figure 2). On the other hand, neither SignalP [40] nor
TMHMM [41] predicted the N-terminal amino acid sequence of Euglena gracilis POP_e1 as a typical plastid
targeting signal (PTS). Importantly, POP_e1 was detected as a part of the mitochondria proteome [28],
while not recognized as the plastid-localized protein [42]. These results consistently suggest that the
POP_e1 homologs found in this study are mitochondrion-localized. The two POP_Rhabd homologs were
predicted to have an MTS by at least three out of the four programs (Figure 2), suggesting that the two
DNA polymerases in Rhabdomonas costata are localized in the mitochondria. Based solely on the sequence
data, we have little insight into the difference in function between the two mitochondrion-localized DNA
polymerases in euglenids, PolIA and POP_e1/POP_Rhabd.
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Figure 4. ML phylogenetic tree of plant and protist organellar DNA polymerase (POP). ML bootstrap
values equal to or greater than 70% are shown at the corresponding nodes. Nodes marked by dots were
supported by Bayesian posterior probabilities equal to or greater than 0.95. The bacterial sequences are
shown in red. The euglenozoan sequences are in blue. The three types of POP identified in euglenids
(POP_e1, POP_e2, and POP_Rhabd) are shaded in blue. Mitochondrion- and plastid-localized POP in
chlorarachniophytes are shaded in orange and light green, respectively.
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Among the three POP_e2 homologs, we completed the N-terminus of the Euglena gracilis homolog.
Only a single program predicted an MTS in the N-terminus of the Euglena gracilis POP_e2, and this is
insufficient to propose its mitochondrial localization. Likewise, no PTS was predicted at the N-terminus
of Euglena gracilis POP_e2. Indeed, Euglena gracilis POP_e2 was recognized as neither a mitochondrial
nor plastid protein in the proteomic studies [42]. Thus, we conclude that the POP_e2 homologs are
localized in the cytosol.
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domain (shown in orange). The 3’-5’ exonuclease domain (PF01612) is shown in dark green. The
detailed domain structures of the POP homologs identified in this study are described in Table S1.

3. Discussion

This study unveiled that PolIA is ubiquitously distributed among Euglenida, Diplonemea, and
Kinetoplastea. Thus, we firmly conclude that this type of family A DNA polymerase was obtained in
the common ancestor of these three classes and has been inherited vertically to the extant descendants.
We also propose that Perkinsela sp., which is an obligate intracellular organism of Paramoeba, lost
PolIA secondarily. There is a room for arguing whether PolIA is absolutely absent in Perkinsela sp.
However, family A DNA polymerases were surveyed in both the transcriptome and genome data
of this species, and there may be little chance to overlook a PolIA gene in the high-quality genome
data in particular [43]. Consequently, we propose that a loss of PolIA occurred on the branch leading
to Perkinsela sp. The conservation of PolIA in Kinetoplastea implies the importance of this DNA
polymerase for kDNA maintenance in Euglenozoa. There is a study experimentally demonstrating
that PolIA was shown to be dispensable under normal growth conditions in Trypanosoma brucei [3].
We suspect that the dispensability of PolIA varies among the life stages of the trypanosome development.

In contrast to the ubiquity of PolIA among Euglenida, Diplonemea, and Kinetoplastea, PolIB, C,
and D were identified in the members of Kinetoplastea alone. To our knowledge, no high-quality
genome data is publicly available for any of the diplonemids or euglenids. However, it is unlikely
that none of the DNA polymerases of interest were overlooked in the transcriptome data of the four
diplonemids and six euglenids examined here. Thus, we conclude that PolIB, C, and D are restricted
in Kinetoplastea. In addition, we identified PolI-Perk1 and -Perk2 in Perkinsela sp., and PolI-dipl in
diplonemids, both of which were previously undescribed. As PolIB, C, D, -Perk1, -Perk2, and -dipl
formed a “K+D PolI” clade with high statistical support, these DNA polymerases can be traced back to
a single ancestral mitochondrion-localized DNA polymerase in the common ancestor of the classes
Kinetoplastea and Diplonemea. We here propose that the ancestral DNA polymerase in the two classes
was similar to the extant PolI-dipl, and, after the separation of the two classes, the ancestral type of the
mitochondrion-localized DNA polymerase has been kept as PolI-dipl in Diplonemea, but has diverged
into PolIB, C, D, -Perk1, and -Perk2 during the evolution of Kinetoplastea. So far, it is reasonable to
propose that the common ancestor of Kinetoplastea possessed PolID, which was found in all of the
members of Kinetoplastea examined in this study. On the other hand, the precise evolutions of PolIB,
C, -Perk1, and -Perk2 remain unclear because of two obstacles discussed below.
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Firstly, the relationship among PolIB, C, D, -Perk1, and -Perk2 was essentially unresolved in the
phylogenetic analyses and makes it difficult to infer how the particular types of DNA polymerase
emerged during the divergence of Kinetoplastea. Future phylogenetic analyses with improved sequence
sampling may provide a better resolution for the relationship among PolIB, C, D, -Perk1, and -Perk2.
Secondly, there is a certain level of uncertainty about the inventories of mitochondrion-localized DNA
polymerases in members of Kinetoplastea. The absence of PolIC, -Perk1, and -Perk2 in Neobodonida and
Parabodonida needs to be reexamined after the genome data become available from the representative
species of the two orders. Likewise, the inventory of mitochondrion-localized DNA polymerases in
the class Prokinetoplastida relies entirely on Perkinsela sp. in this study. Thus, we need to examine
(1) the absence of PolIB and/or C, and (2) the ubiquities of PolI-Perk1 and -Perk2 in members of
Prokinetoplastida in the future.

At least one of the three phylogenetically distinct types of POP were detected in all of the
euglenids examined in this study, except for Peranema sp. It is difficult to conclude that Peranema sp.
truly lacks any POP homolog, as we only surveyed family A DNA polymerases in its transcriptome
data. We predicted that POP_e1 and POP_Rhabd are localized in mitochondria and POP_e2 is a
cytosolic protein. Unfortunately, the current data remain uncertain regarding the POP evolution in
Euglenida. For instance, we cannot be sure whether the ancestral euglenid possessed a POP homolog
for DNA replication in the mitochondrion. If we hypothesize the absence of POP in the ancestral
euglenid, a straightforward interpretation of the distribution of the two distinct types of POP over
the tree of Euglenida [33] is that POP_Rhabd and POP_e1 emerged separately (1) on the branch
leading to Rhabdomonas costata and (2) the common ancestor of Euglenophyceae, respectively. In the
future, the timing of POP_e1 emergence needs to be revised by incorporating the presence/secondary
loss/absence of this type of POP in the early-branching (heterotrophic) species in the tree of Euglenida
(e.g., Peranema sp.). When the presence/secondary loss of POP_e1 is confirmed in a heterotrophic
species, the emergence of POP_e1 should be pushed back to a more ancient branch than that leading to
the ancestral euglenophycean species in the tree of Euglenida. In addition, there is a possibility for an
alternative scenario assuming that POP_e1 and POP_Rhabd, which were not so distant from each other
in the POP phylogeny (Figure 3), evolved from a single POP in the ancestral euglenid. To understand
the evolution of mitochondrion-localized POPs in euglenids better, we need to know the inventories of
POP in phylogenetically broad euglenids, particularly those of early-branching species.

The proteome data from Euglena gracilis suggest that POP_e2 is a cytosolic protein. Although
the cytosolic DNA polymerases are not of prime interest in this study, we here discuss the origin of
POP_e2 briefly. The POP phylogeny recovered the intimate evolutionary affinity between POP_e2 and
the plastid-localized POP in chlorarachniophytes (Figure 3). It is noteworthy that the POP homologs
of euglenids and chlorarachniophytes appeared to be distant from those of Pyramimonas parkeae and
members of Ulvophyceae that are close relatives of the algal endosymbionts which gave rise to the
plastids in the two algal groups of interest [44,45]. Thus, no endosymbiotic gene transfer can be
invoked in the evolution of POP_e2 in euglenids or plastid-localized POP in chlorarachniophytes.
As Euglenida and Chlorarachniophyta are distantly related to each other in the organismal tree of
eukaryotes [11], we propose that a POP gene may have been exchanged between the two distant
groups, albeit the direction of the gene transfer remains uncertain. Alternatively, an as-yet-unknown
eukaryote may have donated a POP gene to Euglenophyceae and Chlorarachniophyta separately. If so,
we need to understand the precise diversity of POP in eukaryotes to pinpoint the donor of the ancestral
POP_e2 gene.

4. Materials and Methods

4.1. Sequence Data Preparation

We obtained the transcriptome data of the following members of Euglenozoa from NCBI
Sequence Read Archive [46]: Three kinetoplastids (Bodo saltans, GenBank accession number ERP001594;
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Trypanoplasma borreli ATCC 50836, SRR10580962; Azumiobodo hoyamushi, SRR10586159), three diplonemids
(Diplonema ambulator, SRR5998378; Rhynchopus euleeides, SRR5998382; Flectonema neradi, SRR5998375),
four euglenids (Euglena gracilis, ERR974915, SRR3195326; Euglena longa, SRP148531; Eutreptiella gymnastica
NIES-381, SRR1294408 and Rhabdomonas costata PRJNA550357), and a green alga (Pyramimonas parkeae,
DRR036722). The raw sequence reads were trimmed by fastp v0.19.7 [47] with the -q 20 -u 80 option and
then assembled by Trinity v2.8.4 [48]. The assembled genome data of Perkinsela sp. CCAP 1560/4 (LFNC01)
and Bodo saltans strain LakeKonstanz (CYKH01) were downloaded from the GenBank database [46].
We searched for the nucleotide sequences encoding family A DNA polymerases in the 14 assembled
transcriptome/genome data described above by TBLASTN [49] using the DNA polymerase domain of
Escherichia coli DNA polymerase I (KHH06131; the portion corresponding to the 491th–928th amino acid
residues) as a query. We retrieved the sequences matched to the query with E-values equal to or less than
1 × 10−4 as the candidates of family A DNA polymerases.

We repeated the procedures described above on our in-house transcriptome data of the diplonemid
Hemistasia phaeocysticola and two euglenids (Rapaza viridis and Peranema sp.). The transcripts encoding
the putative family A DNA polymerases were amplified by reverse transcription PCR and the resultant
amplicons were sequenced by using the Sanger method. The nucleotide sequences determined in this
study were deposited to GenBank/DDBJ/EMBL accession numbers LC516826–LC516833.

4.2. Phylogenetic Analysis of family A DNA Polymerases

We found 37 putative family A DNA polymerase sequences in 14 euglenozoan species (four
kinetoplastids, four diplonemids, and 6 euglenids) in this study. These sequences were aligned with
other family A DNA polymerases, including PolIA, B, C, and D in Trypanosoma brucei, Trypanosoma grayi,
and Leishmania major, DNA polymerase γ, θ, and ν, POP, plastid replication and repair enzyme complex
(PREX) in Apicomplexa, bacterial PolI, and bifunctional 3’-5’ exonuclease/DNA polymerase [10,23].
These family A DNA polymerases were sampled to include at least three sequences representing each
clade in the previous phylogenetic trees. The amino acid sequences were aligned by MAFFT v7.407 [50]
with the L-INS-i model. Ambiguously aligned positions were discarded manually, and gap-containing
positions were trimmed by using trimAI v1.4 [51] with the -gt 0.9 option. The final alignment comprised
100 sequences with 426 unambiguously aligned amino acid positions. We subjected this alignment to
the maximum-likelihood (ML) phylogenetic analysis by IQ-TREE v1.6.12 [52] using the LG + C20 + F +

Γ model. The guide tree was obtained by the LG + I + Γ model that was selected by ModelFinder [53].
The statistical support for each bipartition in the ML tree was calculated by 100 non-parametric
bootstrap replicates.

The family A alignment was also analyzed with Bayesian method by PhyloBayes v4.1 [54] using
the CAT + GTR model. Four Markov chain Monte Carlo (MCMC) chains were run for 25,000 cycles
with burn-in of 2500 (maxdiff = 0.144933). Subsequently, the consensus tree with branch lengths and
BPPs was calculated from the remaining trees.

4.3. Phylogenetic Analysis of POP

We found 9 transcripts encoding POP in 5 euglenid species. Their putative amino acid sequences
were added to the alignment that was generated and analyzed in Hirakawa and Watanabe (2019) [10].
In total, 58 POP sequences and 28 family A DNA polymerase sequences belonging to non-POP
subfamilies were re-aligned by MAFFT v7.407 with L-INS-i model. After the trimming of gap-containing
positions by using trimAI with the -gt 0.8 option, the final “POP” alignment comprised 86 sequences
with 509 unambiguously aligned amino acid positions. The ML and ML bootstrap analyses were
performed as described above.
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The POP alignment was also analyzed with Bayesian method by PhyloBayes v4.1 [54] using the CAT
+ GTR model. Four MCMC chains were run for 100,000 cycles with burn-in of 10,000 (maxdiff = 0.286478).
Subsequently, the consensus tree with branch lengths and BPPs was calculated from the remaining trees.

4.4. In silico Prediction of Subcellular Localization and Functional Domains of Family A DNA Polymerases

The mitochondrial localization of the family A DNA polymerases identified in this study were
predicted based on their N-terminal sequences by the four different programs, TargetP 1.1 [29],
NommPred [30], PredSL [31] and MitoFates [32]. In addition, the Euglena gracilis POP_e1 and
POP_e2 sequences were subjected to SignalP v3.0 [40] and TMHMM v2.0 [41] to evaluate their plastid
localization. Functional domains were searched by HMMER v3.3 [55] with the Pfam database [56].

5. Conclusions

In the current study, we provide the inventory of mitochondrion-localized DNA polymerases
in phylogenetically broad members of Euglenozoa. The current study demonstrates that the three
major classes of Euglenozoa (i.e., Kinetoplastea, Diplonemea, and Euglenida) possess distinctive sets
of mitochondrion-localized family A DNA polymerases (summarized in Figure 2). Unfortunately, the
inventory of mitochondrion-localized DNA polymerases lends no direct support to solve a ‘big question’
in the evolution of Euglenozoa—how have the distinctive mtDNA architectures emerged and been
maintained in Euglenozoa? However, we believe that, in the long run, the results presented here can
be a foundation for future studies on the evolution of euglenozoan mitochondria.

To further investigate the early evolution of mitochondrion-localized DNA polymerase inventory and
mtDNA architecture in Euglenozoa, the sequence data from the family Symbiontida are indispensable.
This lineage was seemingly separated prior to the divergence of Kinetoplastea, Diplonemea, and
Euglenida [21,22], but neither the mtDNA data nor genome/transcriptome are currently available.
In addition, heterotrophic members of Euglenida are necessary to be studied. This study includes
only two heterotrophic euglenids (Peranema sp. and Rhabdomonas constata), but these species may not
be sufficient to represent the diversity of the basal branches in the Euglenida tree [33]. Finally, recent
culture-independent studies suggested the presence of previously undescribed lineages that branched
after the separation of diplonemids but prior to the divergence of the known kinetoplastids [57–61].
One of these undescribed lineages was found to possess a diplonemid-like mtDNA architecture by
sequencing its genome amplified from a single cell (isolate D1) [61]. We retrieved a single family A DNA
polymerase sequence, which showed a weak phylogenetic affinity to PolID, in the sequence data of
isolate D1 (see the Supplementary Materials). The undescribed lineages mentioned above are critical to
understanding the transition of the mitochondrion-localized DNA polymerase inventory and mtDNA
architecture in Euglenozoa.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/4/257/s1,
Figure_S1.pdf: ML phylogenetic tree of family A DNA polymerases including the DNA polymerase of the
genome data from a single diplonemid-like cell (isolate D1). Table_S1.xlsx: The results of domain searches
on the family A DNA polymerases identified in this study. Harada_FamADNApol_ali.nxs: The amino acid
sequence alignment in nexus format used for the global phylogeny of family A DNA polymerases (Figure 1).
Harada_FamADNApol_ali2.nxs: The amino acid sequence alignment in nexus format used for the global
phylogeny of family A DNA polymerases including the sequence of a diplonemid-like organism (isolate D1;
Figure S1). Harada_POP_ali.nxs: The amino acid sequence alignment in nexus format used for the POP phylogeny
(Figure 3).
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http://www.mdpi.com/2076-0817/9/4/257/s1


Pathogens 2020, 9, 257 13 of 16

Acknowledgments: Computational resources were supplied by the Ministry of Education, Youth and Sports of
the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-Scientific Cloud (Project No.
LM2015085) provided within the program Projects of Large Research, Development and Innovations Infrastructures.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barrett, M.P.; Burchmore, R.J.S.; Stich, A.; Lazzari, J.O.; Frasch, A.C.; Cazzulo, J.J.; Krishna, S. The
trypanosomiases. Lancet 2003, 362, 1469–1480. [CrossRef]

2. Verner, Z.; Basu, S.; Benz, C.; Dixit, S.; Dobáková, E.; Faktorová, D.; Hashimi, H.; Horáková, E.; Huang, Z.;
Paris, Z.; et al. Malleable mitochondrion of Trypanosoma brucei. In International Review of Cell and Molecular
Biology; Academic Press: Cambridge, MA, USA, 2015; Volume 315, pp. 73–151.

3. Klingbeil, M.M.; Motyka, S.A.; Englund, P.T. Multiple mitochondrial DNA polymerases in Trypanosoma
brucei. Mol. Cell 2002, 10, 175–186. [CrossRef]

4. Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Physiol.
Behav. 2017, 22, 692–709.

5. Saxowsky, T.T.; Choudhary, G.; Klingbeil, M.M.; Englund, P.T. Trypanosoma brucei has two distinct
mitochondrial DNA polymerase β enzymes. J. Biol. Chem. 2003, 278, 49095–49101. [CrossRef]

6. Rajão, M.A.; Passos-Silva, D.G.; DaRocha, W.D.; Franco, G.R.; Macedo, A.M.; Pena, S.D.J.; Teixeira, S.M.;
Machado, C.R. DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses
8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Mol. Microbiol. 2009, 71,
185–197. [CrossRef] [PubMed]

7. Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and
repair. Chem. Rev. 2006, 106, 383–405. [CrossRef] [PubMed]

8. Christensen, A.C.; Lyznik, A.; Mohammed, S.; Elowsky, C.G.; Elo, A.; Yule, R.; Mackenzie, S.A. Dual-domain,
dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell 2005,
17, 2805–2816. [CrossRef] [PubMed]

9. Moriyama, T.; Sato, N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front.
Plant Sci. 2014, 5, 480:1–480:12. [CrossRef]

10. Hirakawa, Y.; Watanabe, A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules
2019, 9, 140. [CrossRef]

11. Adl, S.M.; Bass, D.; Lane, C.E.; Lukeš, J.; Schoch, C.L.; Smirnov, A.; Agatha, S.; Berney, C.; Brown, M.W.;
Burki, F.; et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot.
Microbiol. 2019, 66, 4–119. [CrossRef]

12. Lukeš, J.; Guilbride, D.L.; Votýpka, J.; Zíková, A.; Benne, R.; Englund, P.T. Kinetoplast DNA network:
Evolution of an improbable structure. Eukayot. Cell 2002, 1, 495–502. [CrossRef] [PubMed]

13. David, V.; Flegontov, P.; Gerasimov, E.; Tanifuji, G.; Hashimi, H.; Logacheva, M.D.; Maruyama, S.;
Onodera, N.T.; Gray, M.W.; Archibald, J.M.; et al. Gene loss and error-prone RNA editing in the mitochondrion
of Perkinsela, an endosymbiotic kinetoplastid. MBio 2015, 6, e01498-15:1–e01498-15:12. [CrossRef] [PubMed]

14. Yabuki, A.; Tanifuji, G.; Kusaka, C.; Takishita, K.; Fujikura, K. Hyper-eccentric structural genes in the
mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol. Evol. 2016, 8, 2870–2878.
[PubMed]

15. Burger, G.; Valach, M. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life 2018,
70, 1197–1206. [CrossRef]

16. Kaur, B.; Záhonová, K.; Valach, M.; Faktorová, D.; Prokopchuk, G.; Burger, G.; Lukeš, J. Gene fragmentation
and RNA editing without borders: Eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020,
48, 2694–2708. [CrossRef]

17. Roy, J.; Faktorová, D.; Lukeš, J.; Burger, G. Unusual mitochondrial genome structures throughout the
Euglenozoa. Protist 2007, 158, 385–396. [CrossRef]

18. Spencer, D.F.; Gray, M.W. Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: Fragmented genes
in a seemingly fragmented genome. Mol. Genet. Genom. 2011, 285, 19–31. [CrossRef]

19. Dobáková, E.; Flegontov, P.; Skalický, T.; Lukeš, J. Unexpectedly streamlined mitochondrial genome of the
euglenozoan Euglena gracilis. Genome Biol. Evol. 2015, 7, 3358–3367. [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(03)14694-6
http://dx.doi.org/10.1016/S1097-2765(02)00571-3
http://dx.doi.org/10.1074/jbc.M308565200
http://dx.doi.org/10.1111/j.1365-2958.2008.06521.x
http://www.ncbi.nlm.nih.gov/pubmed/19007414
http://dx.doi.org/10.1021/cr040463d
http://www.ncbi.nlm.nih.gov/pubmed/16464011
http://dx.doi.org/10.1105/tpc.105.035287
http://www.ncbi.nlm.nih.gov/pubmed/16169894
http://dx.doi.org/10.3389/fpls.2014.00480
http://dx.doi.org/10.3390/biom9040140
http://dx.doi.org/10.1111/jeu.12691
http://dx.doi.org/10.1128/EC.1.4.495-502.2002
http://www.ncbi.nlm.nih.gov/pubmed/12455998
http://dx.doi.org/10.1128/mBio.01498-15
http://www.ncbi.nlm.nih.gov/pubmed/26628723
http://www.ncbi.nlm.nih.gov/pubmed/27566761
http://dx.doi.org/10.1002/iub.1927
http://dx.doi.org/10.1093/nar/gkz1215
http://dx.doi.org/10.1016/j.protis.2007.03.002
http://dx.doi.org/10.1007/s00438-010-0585-9
http://dx.doi.org/10.1093/gbe/evv229


Pathogens 2020, 9, 257 14 of 16

20. Simpson, A.G.B.; Hoff, J.V.D.; Bernard, C.; Burton, H.R.; Patterson, D.J. The ultrastructure and systematic
position of the euglenozoon Postgaardi mariagerensis. Arch. Protistenkd. 1997, 147, 213–225. [CrossRef]

21. Yubuki, N.; Edgcomb, V.P.; Bernhard, J.M.; Leander, B.S. Ultrastructure and molecular phylogeny of Calkinsia
aureus: Cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol.
2009, 9, 16:1–16:22. [CrossRef]

22. Breglia, S.A.; Yubuki, N.; Hoppenrath, M.; Leander, B.S. Ultrastructure and molecular phylogenetic position
of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida).
BMC Microbiol. 2010, 10, 145:1–145:21. [CrossRef]

23. Moriyama, T.; Terasawa, K.; Fujiwara, M.; Sato, N. Purification and characterization of organellar DNA
polymerases in the red alga Cyanidioschyzon merolae. FEBS J. 2008, 275, 2899–2918. [CrossRef] [PubMed]

24. Chandler, J.; Vandoros, A.V.; Mozeleski, B.; Klingbeil, M.M. Stem-loop silencing reveals that a third
mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes.
Eukaryot. Cell 2008, 7, 2141–2146. [CrossRef] [PubMed]

25. Bruhn, D.F.; Mozeleski, B.; Falkin, L.; Klingbeil, M.M. Mitochondrial DNA polymerase POLIB is essential
for minicircle DNA replication in African trypanosomes. Mol. Microbiol. 2010, 75, 1414–1425. [CrossRef]
[PubMed]

26. Bruhn, D.F.; Sammartino, M.P.; Klingbeil, M.M. Three mitochondrial DNA polymerases are essential for
kinetoplast DNA replication and survival of bloodstream form Trypanosoma brucei. Eukaryot. Cell 2011, 10,
734–743. [CrossRef] [PubMed]

27. Panigrahi, A.K.; Ogata, Y.; Zíková, A.; Anupama, A.; Dalley, R.A.; Acestor, N.; Myler, P.J.; Stuart, K.D.
A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 2009, 9, 434–450.
[CrossRef]

28. Hammond, M.J.; Nenarokova, A.; Butenko, A.; Zoltner, M.; Dobáková, E.L.; Field, M.C.; Lukeš, J. A uniquely
complex mitochondrial proteome from Euglena gracilis. Mol. Biol. Evol. 2020. Epub ahead of print. [CrossRef]

29. Emanuelsson, O.; Nielsen, H.; Brunak, S.; Heijne, G.V. Predicting subcellular localization of proteins based
on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300, 1005–1016. [CrossRef]

30. Kume, K.; Amagasa, T.; Hashimoto, T.; Kitagawa, H. NommPred: Prediction of mitochondrial and
mitochondrion-related organelle proteins of nonmodel organisms. Evol. Bioinform. 2018, 14, 1–12. [CrossRef]

31. Petsalaki, E.I.; Bagos, P.G.; Litou, Z.I.; Hamodrakas, S.J. PredSL: A tool for the N-terminal sequence-based
prediction of protein subcellular localization. Genom. Proteom. Bioinf. 2006, 4, 48–55. [CrossRef]

32. Fukasawa, Y.; Tsuji, J.; Fu, S.C.; Tomii, K.; Horton, P.; Imai, K. MitoFates: Improved prediction of mitochondrial
targeting sequences and their cleavage sites. Mol. Cell. Proteomics 2015, 14, 1113–1126. [CrossRef] [PubMed]

33. Bicudo, C.E.d.M.; Menezes, M. Phylogeny and classification of Euglenophyceae: A brief review. Front. Ecol.
Evol. 2016, 4, 17:1–17:15. [CrossRef]

34. Tashyreva, D.; Prokopchuk, G.; Yabuki, A.; Kaur, B.; Faktorová, D.; Votýpka, J.; Kusaka, C.; Fujikura, K.;
Shiratori, T.; Ishida, K.I.; et al. Phylogeny and morphology of new diplonemids from Japan. Protist 2018, 169,
158–179. [CrossRef] [PubMed]

35. Yazaki, E.; Ishikawa, S.A.; Kume, K.; Kumagai, A.; Kamaishi, T.; Tanifuji, G.; Hashimoto, T.; Inagaki, Y.
Global kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species
for better understanding transitions from a free-living to a parasitic lifestyle. Genes Genet. Syst. 2017, 92,
35–42. [CrossRef] [PubMed]

36. Tosal, L.; Comendador, M.A.; Sierra, L.M. The mus308 locus of Drosophila melanogaster is implicated in
the bypass of ENU-induced O-alkylpyrimidine adducts. Mol. Gen. Genet. 2000, 263, 144–151. [CrossRef]
[PubMed]

37. Concepción-Acevedo, J.; Miller, J.C.; Boucher, M.J.; Klingbeil, M.M. Cell cycle localization dynamics of
mitochondrial DNA polymerase IC in African trypanosomes. Mol. Biol. Cell 2018, 29, 2540–2552. [CrossRef]
[PubMed]

38. Ono, Y.; Sakai, A.; Takechi, K.; Takio, S.; Takusagawa, M.; Takano, H. NtPolI-like1 and NtPolI-like2, bacterial
DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged
in DNA replication in both plastids and mitochondria. Plant Cell Physiol. 2007, 48, 1679–1692. [CrossRef]

39. Moriyama, T.; Tajima, N.; Sekine, K.; Sato, N. Localization and phylogenetic analysis of enzymes related to
organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Genome Biol. Evol. 2014,
6, 228–237. [CrossRef]

http://dx.doi.org/10.1016/S0003-9365(97)80049-8
http://dx.doi.org/10.1186/1471-2180-9-16
http://dx.doi.org/10.1186/1471-2180-10-145
http://dx.doi.org/10.1111/j.1742-4658.2008.06426.x
http://www.ncbi.nlm.nih.gov/pubmed/18430024
http://dx.doi.org/10.1128/EC.00199-08
http://www.ncbi.nlm.nih.gov/pubmed/18849470
http://dx.doi.org/10.1111/j.1365-2958.2010.07061.x
http://www.ncbi.nlm.nih.gov/pubmed/20132449
http://dx.doi.org/10.1128/EC.05008-11
http://www.ncbi.nlm.nih.gov/pubmed/21531873
http://dx.doi.org/10.1002/pmic.200800477
http://dx.doi.org/10.1093/molbev/msaa061
http://dx.doi.org/10.1006/jmbi.2000.3903
http://dx.doi.org/10.1177/1176934318819835
http://dx.doi.org/10.1016/S1672-0229(06)60016-8
http://dx.doi.org/10.1074/mcp.M114.043083
http://www.ncbi.nlm.nih.gov/pubmed/25670805
http://dx.doi.org/10.3389/fevo.2016.00017
http://dx.doi.org/10.1016/j.protis.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29604574
http://dx.doi.org/10.1266/ggs.16-00056
http://www.ncbi.nlm.nih.gov/pubmed/28216511
http://dx.doi.org/10.1007/s004380050041
http://www.ncbi.nlm.nih.gov/pubmed/10732683
http://dx.doi.org/10.1091/mbc.E18-02-0127
http://www.ncbi.nlm.nih.gov/pubmed/30133333
http://dx.doi.org/10.1093/pcp/pcm140
http://dx.doi.org/10.1093/gbe/evu009


Pathogens 2020, 9, 257 15 of 16

40. Bendtsen, J.D.; Nielsen, H.; Heijne, G.V.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0.
J. Mol. Biol. 2004, 340, 783–795. [CrossRef]

41. Krogh, A.; Larsson, B.; Heijne, G.V.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a
hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [CrossRef]

42. Novák Vanclová, A.M.G.; Zoltner, M.; Kelly, S.; Soukal, P.; Záhonová, K.; Füssy, Z.; Ebenezer, T.E.; Lacová
Dobáková, E.; Eliáš, M.; Lukeš, J.; et al. Metabolic quirks and the colourful history of the Euglena gracilis
secondary plastid. New Phytol. 2020, 225, 1578–1592. [CrossRef] [PubMed]

43. Tanifuji, G.; Cenci, U.; Moog, D.; Dean, S.; Nakayama, T.; David, V.; Fiala, I.; Curtis, B.A.; Sibbald, S.J.; Onodera, N.T.;
et al. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis.
Sci. Rep. 2017, 7, 11688:1–11688:13. [CrossRef] [PubMed]

44. Turmel, M.; Gagnon, M.C.; O’Kelly, C.J.; Otis, C.; Lemieux, C. The chloroplast genomes of the green algae
Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and
the origin of the secondary chloroplasts of euglenids. Mol. Biol. Evol. 2009, 26, 631–648. [CrossRef] [PubMed]

45. Suzuki, S.; Hirakawa, Y.; Kofuji, R.; Sugita, M.; Ishida, K. Plastid genome sequences of Gymnochlora
stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among
chlorarachniophyte species. J. Plant Res. 2016, 129, 581–590. [CrossRef]

46. Sayers, E.W.; Beck, J.; Brister, J.R.; Bolton, E.E.; Canese, K.; Comeau, D.C.; Funk, K.; Ketter, A.; Kim, S.;
Kimchi, A.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.
2020, 48, D9–D16. [CrossRef]

47. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34,
i884–i890. [CrossRef]

48. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.;
Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a full-length transcriptome without a genome
from RNA-Seq data. Nat. Biotechnol. 2011, 29, 644–652. [CrossRef]

49. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+:
Architecture and applications. BMC Bioinform. 2009, 10, 421:1–421:9. [CrossRef]

50. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in
performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]

51. Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in
large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [CrossRef]

52. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm
for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef] [PubMed]

53. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model
selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [CrossRef] [PubMed]

54. Lartillot, N.; Lepage, T.; Blanquart, S. PhyloBayes 3: Bayesian software package for phylogenetic
reconstruction and molecular dating. Bioinformatics 2009, 25, 2286–2288. [CrossRef] [PubMed]

55. Eddy, S.R. HMMER: Biosequence Analysis Using Profile Hidden Markov Models. Available online:
http://hmmer.org/ (accessed on 10 December 2019).

56. El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.;
Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47,
D427–D432. [CrossRef]

57. López-García, P.; Duperron, S.; Philippot, P.; Foriel, J.; Susini, J.; Moreira, D. Bacterial diversity in hydrothermal
sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge.
Environ. Microbiol. 2003, 5, 961–976. [CrossRef]

58. Scheckenbach, F.; Hausmann, K.; Wylezich, C.; Weitere, M.; Arndt, H. Large-scale patterns in biodiversity of
microbial eukaryotes from the abyssal sea floor. Proc. Natl. Acad. Sci. USA 2010, 107, 115–120. [CrossRef]

59. Marquardt, M.; Vader, A.; Stübner, E.I.; Reigstad, M.; Gabrielsen, T.M. Strong seasonality of marine microbial
eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl. Environ. Microbiol. 2016, 82,
1868–1880. [CrossRef]

60. Gawryluk, R.M.R.; del Campo, J.; Okamoto, N.; Strassert, J.F.H.; Lukeš, J.; Richards, T.A.; Worden, A.Z.;
Santoro, A.E.; Keeling, P.J. Morphological identification and single-cell genomics of marine diplonemids.
Curr. Biol. 2016, 26, 3053–3059. [CrossRef]

http://dx.doi.org/10.1016/j.jmb.2004.05.028
http://dx.doi.org/10.1006/jmbi.2000.4315
http://dx.doi.org/10.1111/nph.16237
http://www.ncbi.nlm.nih.gov/pubmed/31580486
http://dx.doi.org/10.1038/s41598-017-11866-x
http://www.ncbi.nlm.nih.gov/pubmed/28916813
http://dx.doi.org/10.1093/molbev/msn285
http://www.ncbi.nlm.nih.gov/pubmed/19074760
http://dx.doi.org/10.1007/s10265-016-0804-5
http://dx.doi.org/10.1093/nar/gkz899
http://dx.doi.org/10.1093/bioinformatics/bty560
http://dx.doi.org/10.1038/nbt.1883
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1093/bioinformatics/btp348
http://dx.doi.org/10.1093/molbev/msu300
http://www.ncbi.nlm.nih.gov/pubmed/25371430
http://dx.doi.org/10.1038/nmeth.4285
http://www.ncbi.nlm.nih.gov/pubmed/28481363
http://dx.doi.org/10.1093/bioinformatics/btp368
http://www.ncbi.nlm.nih.gov/pubmed/19535536
http://hmmer.org/
http://dx.doi.org/10.1093/nar/gky995
http://dx.doi.org/10.1046/j.1462-2920.2003.00495.x
http://dx.doi.org/10.1073/pnas.0908816106
http://dx.doi.org/10.1128/AEM.03208-15
http://dx.doi.org/10.1016/j.cub.2016.09.013


Pathogens 2020, 9, 257 16 of 16

61. Wideman, J.G.; Lax, G.; Leonard, G.; Milner, D.S.; Rodríguez-Martínez, R.; Simpson, A.G.B.; Richards, T.A. A
single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos.
Trans. R. Soc. B Biol. Sci. 2019, 374, 20190100. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rstb.2019.0100
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	PolIA is Ubiquitous in Euglenida, Diplonemea, and Kinetoplastea 
	PolIB, C, D, and “PolIBCD-Related” DNA Polymerases in Diplonemea and Kinetoplastea 
	POP in Euglenida 

	Discussion 
	Materials and Methods 
	Sequence Data Preparation 
	Phylogenetic Analysis of family A DNA Polymerases 
	Phylogenetic Analysis of POP 
	In silico Prediction of Subcellular Localization and Functional Domains of Family A DNA Polymerases 

	Conclusions 
	References

