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S U M M A R Y
We discuss the theoretical estimation of co-seismic energy release with respect to a random
spatial distribution of stress drop, which is an extension of conventional stress drop modelling.
For slip distributions characterized by the von Kármán-type power spectral density, we examine
the dependence of the estimated energy release on the upper limit and decay rate of the
power spectral density in the shorter wavelength band. Using this dependence, we quantify
the potential underestimation of energy release when the wavelength band limitation is not
considered or the k−2 model is incorrectly assumed. Moreover, we discuss the estimation of
radiated energy with respect to high-frequency components and suggest a relationship between
stress drop heterogeneity and high-frequency radiation.

Key words: Inverse theory; Fractals and multifractals; Earthquake source observations; The-
oretical seismology; Dynamics and mechanics of faulting.

1 I N T RO D U C T I O N

Co-seismic energy release can be modelled using physical quantities
related to earthquake sources. Steketee (1958) and Savage (1969)
derived a representation of energy release as an inner product of
slip and stress on a fault surface; the derivation was subsequently
improved by Andrews (1978). Although stress can be considered
as a sum of the initial (tectonic) stress and co-seismic stress drop,
the former is not observable. Therefore, we can consider only the
inner product of slip and co-seismic stress drop within the frame-
work of seismology. Here, this quantity is referred to as seismic
energy, which has been interpreted as ‘The energy of an earth-
quake’ (Kostrov 1974), ‘The minimum estimate of strain energy
drop’ (Kanamori 1977), or ‘The available energy’ (Kanamori &
Rivera 2006). In particular, Kanamori’s (1977) description reveals
the significance of this quantity.

A conventional method for estimating the seismic energy is to
calculate the radiated energy because both slip and co-seismic stress
drop can be identified when fracture energy on a fault is negligible
(e.g. Ide & Beroza 2001). That is, if the critical slip-weakening
distance is sufficiently smaller than the final slip distance. How-
ever, seismic inversion analyses have suggested that their ratio is
0.27–0.56 (e.g. Mikumo et al. 2003), and therefore, the fracture
energy is not negligible. As such, the seismic energy and radiated
energy must be estimated independently to understand the energet-
ics of earthquakes.

Another method of estimation is to consider seismic energy as
proportional to the product of seismic moment and average stress
drop. This is valid for uniform stress drop along a fault (e.g.

Aki 1966; Kanamori 1977). In such cases, seismic energy can be
robustly estimated because the seismic moment depends only on
the long- wavelengths of the spatial distribution of slip on a fault.
In general, however, seismic energy depends on the entire spectrum
of slip distribution if stress drop is heterogeneous along a fault,
as described in the next section. Mai & Beroza (2002) analysed
44 slip models inferred by various authors and concluded that slip
distributions on faults tend to follow the von Kármán-type random
distribution, which is characterized by the Hurst exponent H that
represents the decay rate of the larger wavenumber components of
power spectral density (PSD). Accordingly, seismic energy should
depend on the Hurst exponent, and the energy cannot be accurately
estimated without considering higher wavenumber components.

In this study, we analytically quantify the dependence of seismic
energy on higher wavenumber components of the von Kármán-type
random slip distribution. Consequently, we also consider the de-
pendence of radiated energy on the high frequency components.
Moreover, we show a similarity and relation between the depen-
dences. Hereafter, we refer to the higher wavenumber components
and high-frequency components as shorter wavelength components.

2 T H E O R E T I C A L M O D E L L I N G A N D
R E S U LT S

In this section, we describe the modelling of seismic energy re-
leased by spatial slip patterns characterized by the von Kármán-
type random distribution as a spectral integral. First, in Section 2.1,
we describe an issue related to traditional concepts that assume a
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Figure 1. Schematic diagram of densities of the strain energy change �W,
seismic energy ES, radiated energy ER, frictional heat EF and fracture energy
EG at position x on the fault surface. Total amounts of each energy are
defined as integrals of above densities with respect to x.

homogeneous stress drop, which indicates the significance of shorter
wavelength components. Next, in Section 2.2, we revisit Fractal
Analysis by Circular Average, which simplifies the 2-D distribution
with heterogeneity in a shorter wavelength band. Then, we derive
the spectral integral in Section 2.3 and show that the integral is
applicable to modelling radiated energy in Section 2.4.

2.1 Energy as a spectral integral

The magnitude of the co-seismic strain energy drop �W can be
written as

�W =
∫

�

D(x)

{
τ0(x) − 1

2
�τ (x)

}
dx, (1)

where D, τ 0 and �τ are the spatial distributions of the slip, initial
stress, and stress drop at x = (x, y) on a fault surface � (⊂R

2),
respectively (e.g. Savage 1969). Seismologically, the initial stress is
not observable; therefore, we can estimate only the seismic energy

ES := 1

2

∫
�

D(x)�τ (x)dx, (2)

which is the second term of eq. (1) and provides a lower bound to
�W. We summarize the contents of �W in Fig. 1. Although this
type of figure has previously been shown by many authors (e.g.
Kanamori & Brodsky 2004; Venkataraman & Kanamori 2004), we
note that, generally, each area depends on the position x on the fault
surface.

To calculate seismic energy, we must first estimate the slip distri-
bution with a seismic inversion analysis and subsequently estimate
the distribution of the stress drop. For simplicity, Aki (1966) and
Kanamori (1977) assumed that the stress drop takes a uniform value
�τ a on the fault, and derived the following equation

ES = �τa

2

∫
�

D(x)dx

= �τa

2μ
M0. (3)

The seismic moment M0 predominantly depends on the longer wave-
lengths of the slip distribution, which is equivalent to the zero limit
of the wavenumber in the Fourier domain, shown as

M0 = μ

∫
�

D(x)dx (4)

= μ lim
k→0

∫
�

D(x)ei k·xdx, (5)

where k = (
kx , ky

)
is a wavenumber vector, and

∫
D(x)ei k·xdx

involves a 2-D Fourier transform of D. Assuming a uniform value
of �τ a on the fault plane, ES can be estimated without considering
the shorter wavelength components of the fault slip distribution,
which are difficult to resolve in seismic slip inversion.

In general, complexity of the slip distribution is a typical charac-
teristic of earthquakes; therefore, complexity should be taken into
account when estimating the seismic energy. For general distribu-
tions of slip and stress drop on a flat fault, the Plancherel theorem

1

2

∫
�

D(x)�τ ∗(x)dx = 1

2

∫
R2

D̂(k)�τ̂ ∗(k)dk (6)

shows that shorter wavelength components are required, where D̂
and �τ̂ are 2-D Fourier transforms of D and �τ , respectively, and
the asterisk indicates the complex conjugate. Assuming that (1) the
flat fault is embedded in an infinite homogeneous medium, and (2)
the slip vector is uniformly parallel to the x direction, Andrews
(1980) derived the following

ES =
∫

R2

μ

4k

(
k2

x

1 − ν
+ k2

y

) ∣∣∣D̂(k)
∣∣∣2

dkx dky (7)

from the right-hand side of eq. (6), where μ and ν are the rigidity and
the Poisson ratio, respectively. Therefore, seismic energy depends
on the PSD of the slip distribution.

2.2 FACA revisited

Mai & Beroza (2002) investigated PSD on the basis of 44 seismic
inversion analyses. They executed the Fractal Analysis by Circular
Average (FACA), which is a calculation of a circular integral of
PSD of D in the wavenumber domain:∫ +π

−π

∣∣∣D̂(k, φ)
∣∣∣2

dφ, (8)

where k and φ indicate the length and argument of k, respec-
tively. Originally, FACA was introduced for accurate estimation
of the fractal dimension of computer-generated surfaces (Anguiano
et al. 1994). Analyses of the fractal distribution can be simplified
by this projection from a function of two variables to a function of
one variable. Here, we clarify the meaning of this procedure and its
advantage on the estimation of seismic energy.

FACA can be described as follows. For an isotropic 2-D func-
tion f (x) = f (r ), where r := |x|, its 2-D Fourier transform can be
reduced to the Hankel transform:

f (k) =
∫

R2
f (x)e−i k·xdx (9)

= 2π

∫ +∞

0
f (r )r J0(kr )dr, (10)

where J0 is the Bessel function of the first kind. For a spectrum
D̂(k) without the assumption of isotropy, the following holds:∫ +π

−π

∣∣∣D̂(k)
∣∣∣2

dφ =
∫ +π

−π

{∫
R2

RD(x)e−i k·xdx

}
dφ (11)

=
∫ +∞

0

{∫ +π

−π

RD(r, θ )

{∫ +π

−π

e−ikr cos (θ−φ)dφ

}
dθ

}
rdr (12)

= 2π

∫ +∞

0

{∫ +π

−π

RD(r, θ )dθ

}
r J0(kr )dr, (13)
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where we use J0(x) = ∫ +π

−π
e−i x cos φ dφ, and the autocorrelation

function is defined as

RD(x) :=
∫

R2
D

(
x′) D(x′ + x)dx′, (14)

and θ is an argument of x. Hence, the circular average (8) is equiv-
alent to the Hankel transform of the circular average of the autocor-
relation function of D.

Next, we show the advantage of FACA in the estimation of ES.
Although the following argument was already implied by Andrews
(1980) and Mai & Beroza (2002), it is worth showing it explicitly.
The appendix of Mai & Beroza (2002) discusses the existence of the
integral (7), where they explicitly assumed an isotropy of 2-D PSD
|D̂(k)|2. However, their analysis of finite-fault slip models showed
that the PSD was generally anisotropic, with longer correlation
lengths along strike than down-dip. The discrepancy between the
observations and the assumed PSD can be resolved in the following
manner. After algebraic operations with the transformation of the
wavenumber vector to the polar coordinate (kx, ky) �→ (k cos φ,
k sin φ) in eq. (7), we obtain the following:

I ≤ ES ≤ I

1 − ν
, (15)

where

I := μ

4

∫ +∞

0

{∫ +π

−π

∣∣∣D̂(k, φ)
∣∣∣2

dφ

}
k2dk, (16)

and the equality (I = ES) is satisfied if and only if ν = 0. In eq. (16),
the integrand is already reduced to the isotropic function even if
the PSD is anisotropic, such that the existence and the lower/upper
bound of the energy can be discussed without the assumption of
isotropy.

2.3 Seismic energy due to von Kármán-type PSD

We model I defined in eq. (16) as a function of some parameters
that characterize the PSD of slip D. Mai & Beroza (2002) suggested
the von Kármán-type PSD∫ +π

−π

∣∣∣D̂(k)
∣∣∣2

dφ = 2πax az{
1 + (k/kc)2}1+H

(17)

for modelling of inversion results, where ax and az are the correlation
lengths in along-strike and downdip direction, respectively, and H is
the Hurst exponent. As already highlighted by Mai & Beroza (2002),
we should consider H > 0.5, otherwise, the integral (16) does not
exist. For actual seismic inversion analyses, the wavenumber must
have an upper limit, and we note this limit as kMax. Hence, we assume
that the PSD is obtained only within a range of 0 ≤ k < kMax and
consider the following:

I (H, kMax) := μ

4

∫ kMax

0
k2

{∫ +π

−π

∣∣∣D̂(k)
∣∣∣2

dφ

}
dk. (18)

Taking the limit of k → 0 for eq. (17), we obtain
∣∣∣D̂(0)

∣∣∣2
= ax az,

while

D̂(0) = lim
k→0

∫
�

D(x)ei k·x dx =
∫

�

D(x) dx

holds. Thus, with the seismic potency P := ∫
�

D(x) dx, by sub-
stituting eq. (17) into eq. (18), and after some algebra shown in

Appendix A, we obtain

I (H, kMax) = μ

4

∫ kMax

0

2π P2k2

{
1 + (k/kc)2}1+H

dk (19)

= μπ

4
P2k3

c B

(
K ;

3

2
, H − 1

2

)
, (20)

where K := {1 + (kMax/kc)−2}−1, and an incomplete beta function
is defined as follows:

B(x ; a, b) :=
∫ x

0
ta−1 (1 − t)b−1 dt. (21)

Eq. (20) contains a relationship ES ∝ L3
c , where Lc is a character-

istic rupture length. This is because of P ∝ L3
c and k−1

c ∼ Lc (e.g.
Causse et al. 2010). Moreover, eq. (20) can be compared to eq. (3)
in view of the relation between ES and seismic moment M0 = μP
as follows:

ES ∝ μP2k3
c B

(
K ;

3

2
, H − 1

2

)

∝ M0 DSL−3
c B

(
K ;

3

2
, H − 1

2

)

∝ μD/Lc

μ
M0 B

(
K ;

3

2
, H − 1

2

)
, (22)

where D and S are averaged slip amount and the area of the fault,
respectively, and satisfy P = DS. In eq. (22), μD/Lc has the same
dimension as �τ a in eq. (3). Hence, analogically, the incomplete
beta function appears as a correction factor by which eq. (3) should
be multiplied. In other words, apparent stress drop ES/M0 is af-
fected by the shorter wavelength components via the incomplete
beta function.

2.4 Radiated energy

Here, we show that the spectral integral of radiated energy ER is

similar to eq. (19). Let ˆ̇M( f ) be a spectrum of moment rate func-
tion, which is proportional to a far-field displacement spectrum
û( f ) in the case of frequency-independent attenuation. For these
quantities,

ER = 8π

5ρ

(
1

3α5
+ 1

2β5

)∫ +∞

0
f 2

∣∣∣ ˆ̇M( f )
∣∣∣2

d f (23)

= C

∫ +∞

0
f 2 |û( f )|2 d f (24)

holds, where α, β and ρ are the P-wave velocity, S-wave velocity
and density, respectively, and C is a constant that depends on the
internal structure of the Earth (e.g. Boatwright 1980; Venkataraman
& Kanamori 2004). Moreover, a generalized model of |û( f )| has
been suggested as

|û( f )| = û(0){
1 + ( f/ fc)γ n

}1/γ
, (25)

where fc is the corner frequency, and γ and n are positive constants
(Abercrombie 1995). The square of this spectrum is a generalized
form of the von Kármán-type PSD (17), which is obtained by using
γ n = 2 and 1/γ = (1 + H)/2. By substituting eq. (25) into (24)
and after some algebra (Appendix A), we obtain the following:∫ fMax

0
f 2 |û( f )|2 d f = 1

γ n
û(0)2 f 3

c B

(
F ;

3

γ n
,

2

γ
− 3

γ n

)
, (26)
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where fMax is the upper frequency limit and F :=
{1 + (fMax/fc)−γ n}−1.

Comparisons of several observational data and eq. (25) suggest
good fits for the case of n = 2 and γ = 1, which is known as the
ω−2 model (e.g. Boatwright 1980; Abercrombie 1995; Mayeda &
Walter 1996; Oth 2013). However, Abercrombie (1995) reported
scattering of n values even after spectra correction taking the effect
of Q into account. She proposed that this ‘could result from the vari-
ation in the take-off angles of the rays with respect to the fault plane’
on the basis of a theoretical circular crack model (Madariaga 1976);
this suggestion was confirmed and extended by the numerical calcu-
lations of Kaneko & Shearer (2014, 2015). Oth (2013) who param-
eterized the source spectra of 4188 events in Japan, carefully con-
sidering regional differences in attenuation and site response, which
were then empirically corrected. Although almost all of the events
follow the ω−2-model, he suggested that the 2011 Tohoku earth-
quake (M 9.0) is an exception. Yagi et al. (2012) investigated the
spectrum of moment rate function for the Tohoku earthquake. They
stacked spectra for points distributed on the shallower and deeper
parts of a fault and concluded that an asymptote of the spectra in the
high-frequency band was ∼f −2 for the shallower part and ∼f−1.7 for
the deeper part. In the deeper parts, rupture propagation and seis-
mic radiation were strongly heterogeneous in view of the seismic
energy release determined by the hybrid back-projection method
(Yagi et al. 2012) and strong motion generation areas (Asano &
Iwata 2012). This implies that the heterogeneous rupture style seen
in the deeper parts of the Tohoku earthquake fault could generate
spectra with ω−q of q �= 2. Therefore, the upper limit frequency and
decay rate in the shorter wavelength band is important in order to
estimate the appropriate seismic energy, especially for cases of such
complex rupture.

3 I N T E R P R E TAT I O N A N D D I S C U S S I O N

3.1 Possible underestimation of ES and ER

in a limited band

We introduce R(H, kMax) := I(H, kMax)/I(H, +∞) to evaluate un-
derestimation of ES with band-limited (0 ≤ k < kMax) information,
and investigate its dependence on kMax and H. We can discuss the
degree of underestimation of ER in the same manner by considering
kMax as fMax.

Plots of R are shown in Fig. 2, where a grey band of
4 < kMax/kc < 22 represents a range of kMax/kc for inversion
analyses referred by Mai & Beroza (2002). In other words, PSD
obtained in actual inversion analyses are limited below this band
and, therefore, ES may be underestimated due to lack of the shorter
wavelength components. Assuming the ω−2 model, Ide & Beroza
(2001) highlighted the following: ‘integration up to approximately
ten times the corner frequency is necessary to approach 90 per cent
of the seismic energy’. Note that ‘the seismic energy’ in their con-
text is ER in our study because they consider both to be the same,
and they estimated the energy on the basis of far-field spectra.
For the von Kármán-type PSD, the ω−2 model is equivalent to
the case of H = 1.0. A confirmation of their argument is shown
in Fig. 2. For H = 0.7 and 0.8, however, the integrations up to
kMax = 10kc are at most 55 per cent and 70 per cent of I(H,
+∞), respectively, and severe underestimation will occur. Up to
kMax ∼ 400kc must be integrated for 90 per cent estimation of ES if
H ∼ 0.7, which was obtained by Mai & Beroza (2002) as an averaged
value.

Figure 2. Plot of R := I(H, kMax)/I(H, +∞). The light grey region indicates
4 < kMax/kc < 22 in which actual values of kMax/kc for inversion analyses
are located (Mai & Beroza 2002).

3.2 Possible underestimation of ES and ER due to incorrect
assumption of the k−2 or ω−2 model

Ide & Beroza (2001) proposed that the integral (24) can be cal-
culated after an adjustment of spectra assuming the ω−2 model to
estimate ER. Although this scheme might be also applicable to the
estimation of ES, it might be underestimated if the shorter wave-
length components of an actual spectrum are richer than the k−2 or
ω−2 model. To this end, we define RH(H1, H2) := I(H1, +∞)/I(H2,
+∞), and consider that H1 and H2 are assumed and true values
of the Hurst exponent, respectively. For H1 = 1, the numerator is
an energy integral for the k−2 or ω−2 model, such that RH(1, H2)
represents the degree of underestimation when one incorrectly as-
sumes the k−2 or ω−2 model. In the case of the averaged value, RH(1,
0.7) ∼ 0.35 is obtained (Fig. 3a). Accordingly, the energy integral
up to a finite wavelength and the assumption of the k−2 and ω−2

models may be insufficient. Therefore, the effects of kMax and H
should always be estimated for the adjustment.

3.3 Application and approximation of RH(H1, H2)

Here we suggest an application and useful approximation of the
function RH(H1, H2) defined in the previous section. RH can be
helpful for evaluating not only underestimations but also errors in
the estimation of energy. For example, let H be an estimated value
of the Hurst exponent, and ±ε be the error in the estimation due
to some observational uncertainties. In this case, we can define the
uncertainty of energy estimation as RH(H, H ± ε). We can pick
an actual value of this function from Fig. 3(a) by assuming that
H1 = H and H2 = H ± ε; the point of (H, H ± ε) is located at length
ε from the line of H1 = H2 along the ordinate. Moreover, we find
that RH(H1, H2) can be approximated by the following function:

R′
H (H1, H2) :=

(
H2 − 0.5

H1 − 0.5

)1.09

.

Fig. 3(b) shows 0.95 < R′
H /RH < 1.05 in H1 > 0.55 and H2 > 0.55,

so that R′
H is a precise approximation of RH in that range. With this

function, we obtain

RH (H, H ± ε) ∼
(

1 ± ε

H − 0.5

)1.09

. (27)
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Figure 3. (a) Plot of RH := I(H1, +∞)/I(H2, +∞). The colour contour is
in the log scale. The arrow indicates the point of RH(1, 0.7) ∼ 0.354. (b)
Plot of R′

H /RH .

Using eq. (27), we can easily evaluate the uncertainty in energy
estimation after measuring the decay rate of the shorter-wavelength
component and its error.

3.4 Practical problems and procedures for correction

The radiated energy ER has been estimated for various earthquakes.
For instance, Kanamori et al. (1993), Abercrombie (1995), and
many other researchers directly calculated ER using seismic wave-
forms and discussed the relationship between ER and magnitude.
Ide & Beroza (2001) carefully revisited the relationship after cor-
recting missing spectra in the high-frequency band using the ω−2

model. Our result shows that spectra in the high-frequency band
are necessary to estimate ER accurately. Although seismic waves
and moment rate functions are mostly approximated using the ω−2

model, in some cases their shorter wavelength components are
richer than expected for the ω−2 model (Abercrombie 1995; Yagi
et al. 2012). Moreover, spectra of slip distributions, which are re-
quired to calculate ES, show similar characteristics; some of them
obey the k−2 model while others do not (Mai & Beroza 2002).

This is important because underestimating ER will affect estima-
tion of the energy based magnitude. Previously, Choy et al. (2006)
proposed Me := 2

3 log10 ER − 2.9 as the definition of energy mag-
nitude. On the basis of our results, however, such definitions of

energy should be applied carefully. Here, we discuss possible errors
in the estimation of energy magnitude.

If we denote the superscripts u and t for underestimated quantities
and true quantities, respectively,

Mu
e − Mt

e = 2

3
log10

Eu
R

Et
R

(28)

holds, and R or RH should be substituted into Eu
R/Et

R according
to their definitions. For example, RH(1, 0.7) ∼ 0.35 holds, which
yields 2

3 log10 0.35 ∼ −0.3. Hence, in this case, the energy magni-
tude could be ∼0.3 underestimated due to incorrect assumptions in
the k−2 or ω−2 models. In general, radiated energy estimates would
have large variability due to a range of uncertainties including the
structure of the Earth, rupture velocity and directivity, etc. Addi-
tionally, the above value may suggest the significance of the Hurst
exponent in energy estimation. Although the energy magnitude is
important and helpful in evaluating the magnitude of tsunami earth-
quakes, possible errors due to incorrect assumptions of the Hurst
exponent should be taken into account, as well as other uncertain-
ties.

In cases where the spectrum D̂(k) or ˆ̇M( f ) does not obey the
k−2 or ω−2 models, the energies ES and ER should be estimated by
the following procedure: (1) confirm that the PSD is approximated
by eq. (17) or (25) below the limit wavelength, and estimate the
fall-off rate (i.e. H for ES and n for ER), (2) calculate the energy
integral up to the limit wavelength (i.e. I(H, kMax)), and (3) adjust
the contribution of the shorter wavelength components (i.e. I(H,
+∞) = I(H, kMax)/R). Step (1) has been performed occasionally
(e.g. Abercrombie 1995; Mai & Beroza 2002; Yagi et al. 2012),
but such analyses should be conducted more frequently. Moreover,
steps (2) and (3) have been performed without (1) under the as-
sumption of the ω−2 model by Ide & Beroza (2001). However, such
methods should be modified because the effect of the fall-off rate is
now clearly significant.

3.5 Relationship between ES and ER

The decay rate of the far-field spectrum is affected by, at
least, attenuation (Abercrombie 1995), the take-off angle of rays
(Madariaga 1976; Kaneko & Shearer 2014), and rupture direc-
tivity (Kaneko & Shearer 2015). In the following, we suggest
that the decay rate is also affected by the heterogeneity of slip
distribution characterized by the Hurst exponent. We consider a
relationship between ES and ER via radiation efficiency ηR :=
ER/ES = ER/(EG + ER), where EG is the fracture energy (e.g.
Venkataraman & Kanamori 2004). On the basis of eq. (25) and the

proportionality of ˆ̇M( f ) to û( f ), we model the PSD of the moment
rate function as∣∣∣ ˆ̇M( f )

∣∣∣2
= M2

0{
1 + ( f/ fc)2}2/γ

, (29)

where γ n in eq. (25) is assumed to be two. We note that the
right hand side of eq. (29) is approximated by M2

0 / f 4/γ for f →
∞. Originally, the asymptote of the square of the spectra in the
high-frequency band is represented by 2n in eq. (25). However, in
eq. (29), we describe the asymptote with 4/γ instead of 2n because
this simplifies the comparison between energies based on eqs (17)
and (25), as shown below. By substituting eq. (29) into (23), we
obtain the following:

ER ∼ 2μπ

5β3
P2 f 3

c B

(
F ;

3

2
,

2

γ
− 3

2

)
, (30)
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Figure 4. Dependence of the seismic efficiency ηR on normalized rupture
velocity vr/β. The black curve indicates both this study and Brune’s 3-D
circular crack model.

where we use M0 = μP, μ/ρ = β2, and (2/3)(β/α)5  1. This
representation and eq. (20) are reduced to

ηR ∼ 8

5

(
fc

βkc

)3 B
(

1; 3
2 , 2

γ
− 1 − 1

2

)
B

(
1; 3

2 , H − 1
2

) (31)

for kMax/kc, fMax/fc → +∞. Furthermore, we can assume that
fc ∼ vrkc, where vr is an averaged rupture velocity, because fc and
kc are approximately equal to the inverse of the duration of the rup-
ture process and the inverse of the length of the ruptured region,
respectively. Finally, we arrive at the following approximation:

ηR ∼ 8

5

(
vr

β

)3

RH

(
2

γ
− 1, H

)
(32)

that includes two significant implications if H and γ are independent
of vr.

First, ηR ∝ (vr/β)3 holds, which is equal to that of Brune’s 3-
D circular crack model with a uniform stress drop (see Appendix
B). However, this is clearly different from the dependence of ηR

on vr for 2-D models (i.e. mode-I, mode-II, and mode-III sources)
summarized by Venkataraman & Kanamori (2004) and plotted in
Fig. 4. Hence, ηR ∝ (vr/β)3 might be a common feature of 3-D
models, and observed values should be compared to this dependence
instead of the 2-D models applied by Venkataraman & Kanamori
(2004).

Next, RH(2/γ − 1, H) ≤ 1 is required because ηR ≤ 1 and
(8/5)(vr/β)3 ∼ 1 for vR/β > 0.8. Fig. 3(a) shows that RH(2/γ − 1,
H) ≤ 1 yields an inequality

2

γ
− 1 ≥ H. (33)

This can be interpreted as follows. The amount of high-frequency

components of ˆ̇M( f ) and û( f ) decreases with increasing 2/γ − 1.
On the other hand, H increases with decreasing heterogeneity of
the stress drop distribution. Moreover, the inequality (33) implies
that 2/γ − 1 increases with increasing H. Hence, we can conclude

that faults with a smooth stress drop distribution may generate less
high-frequency radiation. In other words, waves of high frequency
are radiated by faults with strongly heterogeneous stress drop. This
understanding will help in the estimation of source heterogeneity.

3.6 Future work to understand the effect of the Hurst
exponent on the near- and far-field spectrum

The relationship (33) holds for the far-field spectra since we assume
the proportionality of the moment-rate spectrum and the far-field
spectrum. Regarding hazard assessment, the relationship between
the Hurst exponent and the high-frequency decay rate of the near-
field spectrum could be a concern. Such a relationship is, however,
hard to analytically discuss because the relationship between the
moment-rate spectrum and near-field spectrum is not simple. More-
over, even for the far-field spectrum, the decay rate can vary signifi-
cantly depending on the direction of observation points (Kaneko &
Shearer 2014) and rupture propagation (Kaneko & Shearer 2015).
For further discussion on the physical backgrounds of observed
spectra considering the heterogeneity of sources (i.e. the Hurst ex-
ponent), integration of analytical modelling and numerical simula-
tions would be helpful and complementary. Mai & Beroza (2002)
executed simulations and showed that, regardless of the fractal di-
mension of the heterogeneity, the high-frequency decay rate of the
near-field spectrum is almost ω−2. However, their work involved
kinematic rupture simulations with a prescribed rupture velocity
and source time function. Indeed, high-frequency radiation is ef-
ficiently generated due to perturbation of rupture velocity (e.g.
Spudich & Frazer 1984), which is reproduced within a framework
of spontaneous dynamic rupture simulations. Although a simula-
tion of spontaneous rupture with heterogeneous stress drops and
near-field ground motion was performed by Andrews & Ma (2016),
the relationship between the rupture velocity perturbation and the
Hurst exponent is still unknown because they only considered the
case in which stress perturbation obeys the k−1 spectrum, which is
equivalent to the k−2 model in terms of slip distribution. Hence, to
investigate the relationship between H and observed spectra, dy-
namic spontaneous rupture simulations with heterogeneous stress
drops and various Hurst exponents should be performed. After such
simulations, our interpretation in the previous subsection based on
analytical modelling will contribute to discussions of the physical
background of this relationship.

4 C O N C LU S I O N S

We suggest unified representations of seismic energy ES and radi-
ated energy ER, which are originally given as the spectral integral
of the von Kármán-type PSD but can be finally reduced to the in-
complete beta function. We confirm that the energies are severely
underestimated if shorter wavelength components are neglected or
the k−2 or ω−2 model is incorrectly assumed. We propose a pro-
cedure for correcting inaccurate estimates of the energies with
respect to the fall-off rate of the PSD in the shorter wavelength
band.

Available seismic data have become ever more abundant, and
estimations and applications of earthquake-related energies have
become even more important. However, data on shorter wavelength
components are still lacking, which might be irrecoverable owing to
attenuation and heterogeneity of the earth. In case of heterogeneous
slip and stress drop, seismic energy strongly depends on the shorter
wavelength components of the heterogeneity although it cannot be
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resolved by seismic inversion analyses. Hence, we must treat the
energies carefully by quantifying their accuracy.
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A P P E N D I X A : C A L C U L AT I O N O F
E Q S ( 2 0 ) A N D ( 2 6 )

In the following, x, xMax, xc, p and q are regarded as k, kMax, kc, 2 and
1 + H for eq. (20) or f, fMax, fc, γ n and 2/γ for eq. (26). Deriving
both sides of sp = t/(1 − t) with respect to t, we get

ds

dt
= 1

ps p−1 (1 − t)2
, (A1)

which leads to the following calculation:
∫ xMax

0
x2

{
1 + (x/xc)p}−q

dx

= x3
c

∫ xMax/xc

0
s2 {1 + s p}−q ds (A2)

= x3
c

∫ X

0
s2

{
1 + t

1 − t

}−q dt

ps p−1 (1 − t)2
(A3)

= x3
c

p

∫ X

0
s3−p (1 − t)q−2 dt (A4)

= x3
c

p

∫ X

0

(
t

1 − t

) 3
p −1

(1 − t)q−2 dt (A5)

= x3
c

p
B

(
X ;

3

p
, q − 3

p

)
, (A6)

where s := x/xc, and X := {1 + (xMax/xc)−p}−1.
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A P P E N D I X B : R A D I AT I O N E F F I C I E N C Y
O F T H E 3 - D C I RC U L A R C R A C K M O D E L

According to section 9.5.1 of Udı́as et al. (2014), ER and ES for
the 3-D circular crack model, in which a uniform stress drop is
assumed, are given as follows:

ER ∝ M2
0

(
fc

β

)3

, (B1)

ES = �τa M0

μ
, (B2)

where we use eq. (3) in this paper (note that ER and ES herein are
written as ES and �U, respectively, in Udı́as et al. 2014). Consider-
ing M0 ∝ r3 and fc ∼ vr/r, eqs (B1) and (B2) yield the following:

ηR ∝ μ

�τa

(
vr

β

)3

. (B3)
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