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Metastasis is the leading cause of cancer death. A tumor-supportive microenviron-

ment, or premetastatic niche, at potential secondary tumor sites plays an important

role in metastasis, especially in tumor cell colonization. Although a fibrotic milieu is

known to promote tumorigenesis and metastasis, the underlying molecular contribu-

tors to this effect have remained unclear. Here we show that periostin, a compo-

nent of the extracellular matrix that functions in tissue remodeling, has a key role in

formation of a fibrotic environment that promotes tumor metastatic colonization.

We found that periostin was widely expressed in fibrotic lesions of mice with bleo-

mycin-induced lung fibrosis, and that up-regulation of periostin expression coincided

with activation of myofibroblasts positive for a-smooth muscle actin. We estab-

lished a lung metastasis model for B16 murine melanoma cells and showed that

metastatic colonization of the lung by these cells was markedly promoted by bleo-

mycin-induced lung fibrosis. Inhibition of periostin expression by giving an intratra-

cheal antisense oligonucleotide targeting periostin mRNA was found to suppress

bleomycin-induced lung fibrosis and thereby to attenuate metastatic colonization of

the lung by melanoma cells. Our results indicate that periostin is a key player in the

development of bleomycin-induced fibrosis and consequent enhancement of tumor

cell colonization in the lung. Our results therefore implicate periostin as a potential

target for prevention or treatment of lung metastasis.
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1 | INTRODUCTION

Lung metastasis is a major contributor to poor prognosis in many

types of cancer, but the mechanisms of such metastasis remain

largely unclear.1,2 The formation of a tumor-supportive

microenvironment, or premetastatic niche, by stromal components

and immune cells is required for the colonization and propagation of

circulating tumor cells at secondary or distant organs.3 Remodeling

of the extracellular matrix (ECM) is key to premetastatic niche for-

mation and is induced by various events such as inflammation and

tissue injury.4 Fibrosis is a result of ECM remodeling. Preclinical data

suggest that a fibrotic milieu promotes tumor cell colonization,5,6
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and smoking, one of the risk factors for pulmonary fibrosis, has been

indicated to have an association with lung metastasis in breast can-

cer patients,7 although the underlying molecular mechanism of this

effect is unknown.

Periostin is a secreted ECM protein that plays various roles in

tissue development and regeneration as well as contributing to con-

ditions and diseases such as inflammation, allergy, fibrosis, and can-

cer.8 A high level of periostin expression is associated with various

types of cancer, including lung, breast, colorectal, and pancreatic

cancer as well as melanoma.9 Periostin is also implicated in lung

metastasis of breast cancer as an important component of a cancer

stem cell-supportive niche,10 and it activates a-smooth muscle actin

(a-SMA)-positive myofibroblasts and thereby promotes formation of

a fibrotic microenvironment to sustain the metastatic growth of pan-

creatic cancer.6 We previously reported that high mRNA expression

of POSTN, FN1, and COL1A1 was detected in the metastatic region

of a melanoma patient by gene expression analysis, and that perios-

tin was highly expressed during the wound-healing process.11 Perios-

tin was considered to be the most feasible therapeutic target among

these ECM proteins because mice deficient in Fn1 or Col1a1 are

embryonic lethal12,13 whereas mice deficient in Postn develop nor-

mally. Thus, we showed that inhibition of periostin significantly

reduced the incidence of melanoma metastasis to wound sites.11

Although periostin is known to be an essential factor for fibrotic

responses in idiopathic interstitial pneumonia in both mice and

humans,14,15 the relation between its role in lung fibrosis and lung

metastasis of tumor cells is not well defined.

We have now established mice with pulmonary fibrosis

induced by bleomycin as a lung metastasis model for melanoma.

We found that fibrosis enhanced metastatic colonization of the

lung of these animals by B16 murine melanoma cells, and that

periostin contributed to formation of this premetastatic niche

through activation of a-SMA+ myofibroblasts. Furthermore, giving

an intratracheal antisense oligonucleotide that targets periostin

mRNA attenuated periostin expression as well as suppressed bleo-

mycin-induced lung fibrosis and metastatic colonization of the lung

by melanoma cells.

2 | MATERIALS AND METHODS

2.1 | Mice

Female C57BL/6J mice aged 6-10 weeks (Sankyo Labo Service Cor-

poration, Tokyo, Japan) were studied. All animal experiments were

carried out in accordance with protocols approved by the Ethics

Committee of Keio University.

2.2 | Cell lines

Murine melanoma cell lines B16 and B16-BL6 were obtained from

RIKEN Cell Bank (Tsukuba, Japan). Cells were cultured in DMEM

supplemented with 10% FBS and penicillin-streptomycin (Nacalai

Tesque, Kyoto, Japan).

2.3 | Antisense oligonucleotides

Antisense oligonucleotides (ASO) were prepared by Axolabs (Kulm-

bach, Germany). The nucleotide sequence of an ASO targeting

mouse periostin mRNA is 50-mC*A*mC*mC*A*mc*t*g*t*t*
mc*g*t*a*a*U*U*U*G*G-30 and that of a control oligonucleotide is

50-mC*G*A*mC*A*t* mc*g*t*g*mc*g*t* mc*g*U*A*U*A*U-30, with

lowercase letters indicating deoxyribonucleotides and underlined

uppercase letters denoting 20-O-methyl-ribonucleotides. The nucle-

obases indicated as mC and mc are 5-methylcytosine. Asterisks indi-

cate that internucleotide linkages are phosphorothioate.

2.4 | In vivo studies

For establishment of a lung metastasis model, 50 lL (0.025 U) bleo-

mycin (Cayman Chemical, Ann Arbor, MI, USA) or 50 lL saline were

given to mice intratracheally. After 10 days, B16 cells (1 9 105)

were injected into the tail vein, and the mice were killed 11 days

later. For evaluation of the time course of lung fibrosis induced by

bleomycin, mice were killed 4, 8, 12, and 16 days after receiving

bleomycin. Non-treated mice were examined as the time 0 control.

For analysis of the effect of giving ASO on fibrosis, mice were trea-

ted intratracheally with control or 100 lg periostin ASO 2 and

7 days after receiving bleomycin and were killed 8 days after receiv-

ing bleomycin. For analysis of the effect of ASO dosage on metasta-

sis, mice were treated intratracheally with control or periostin ASO

at 2 and 7 days, injected into the tail vein with B16 cells at 10 days,

and killed at 21 days after receiving bleomycin.

2.5 | Tissue histology

Mice were killed by ip injection of pentobarbital (Kyoritsu Seiyaku,

Tokyo, Japan), and perfused through the right cardiac ventricle with

PBS. The lungs were inflated with 4% paraformaldehyde, dissected,

incubated in 4% paraformaldehyde overnight, and embedded in

paraffin. Tissue sections with a thickness of 2 lm were subjected to

Masson’s trichrome staining, and those with a thickness of 3 lm

were stained with hematoxylin-eosin (H&E) or subjected to immuno-

histochemical or immunohistofluorescence analysis. Immunohisto-

chemistry was carried out with antibodies to MelanA (mouse

monoclonal, ab731; Abcam, Cambridge, UK), to periostin (mouse

monoclonal, clone no. SS19C),16 or to a-SMA (rabbit polyclonal,

ab5694; Abcam), and immune complexes were detected with the

use of a Vectastain Elite ABC-HRP Kit and Mouse on Mouse

Immunodetection Kit (Vector, Burlingame, CA, USA). Immuno-

histofluorescence staining was carried out with antibodies to MelanA

(as above), to periostin (rabbit polyclonal, ab14041; Abcam), or to Ki-

67 (rabbit monoclonal, MA5-14520; Thermo Fisher Scientific, Wal-

tham, MA, USA) or with eFluor 660-conjugated antibodies to a-SMA

(mouse monoclonal, 50-9760-82; Thermo Fisher Scientific). Immune

complexes were detected with Alexa Fluor 488-, Alexa Fluor 555-,

or Alexa Fluor 594-conjugated goat antibodies to rabbit or mouse

IgG (Thermo Fisher Scientific), and nuclei were stained with DAPI
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(Sigma Chemical Co., St Louis, MO, USA). Tissue sections were

viewed with a Biorevo BZ-9000 fluorescence microscope (Keyence,

Osaka, Japan), a TissueFAXS Histo light microscope (TissueGnostics,

Vienna, Austria), or an FV1000-D confocal microscope (Olympus,

Tokyo, Japan). Tumor size (mm2) and cell counts were quantitated

with the use of BZ-X Analyzer and HistoQuest. Three random fields

for each of at least 3 mice per group were assessed for tumor size,

cell counts, and severity of fibrosis based on the Ashcroft score.17

2.6 | Statistical analysis

Data are presented as means � SD and were analyzed with Stu-

dent’s t test or one-way ANOVA followed by Dunnett’s multiple

comparison test as carried out with GraphPad Prism version 6. P-

value of <.05 was considered statistically significant.

2.7 | Additional methods

Isolation and culture of murine lung fibroblasts, in vivo studies for

analysis of the effect of giving ASO on metastasis by B16-BL6,

quantitative RT-PCR analysis, and periostin ASO treatment in vitro

are described in Appendix S1.

3 | RESULTS

3.1 | Expression of periostin and number of a-
SMA+ cells increase with progression of bleomycin-
induced lung fibrosis

To examine the relation between fibrotic change and periostin

expression in mouse lung, we studied a well-characterized mouse

model of lung fibrosis based on bleomycin treatment.18 C57BL/6J

mice that received a single intratracheal injection of bleomycin were

subjected to histological analysis of the lung every 4 days for up to

16 days (Figure 1A). An increase in interstitial thickness was appar-

ent from day 4 and was followed by an increase in fibrosis, with

marked accumulation of connective tissue and collapse of alveolar

structure being observed from day 12. Ashcroft score for severity of

fibrosis was significantly increased from day 8 to day 16 compared

with that at day 0 (Figure 1B). Progression of lung fibrosis was

accompanied by a pronounced increase in the number of periostin+

cells that was first apparent at day 8 (Figure 1A,C). Number of a-

SMA+ myofibroblasts, which are key mediators of fibrosis,19 was also

increased in fibrotic lesions at day 8 but had decreased again at day

12 (Figure 1D,E).

3.2 | Bleomycin-induced lung fibrosis promotes
metastatic colonization by melanoma cells in
association with increased periostin expression

Lung metastatic colonization was previously shown to be increased

in mice treated with bleomycin before injection of 4T1 murine breast

tumor cells with a high lung metastatic potential, suggesting that a

fibrotic microenvironment may serve as a niche conducive to tumor

cell colonization.5 To investigate whether bleomycin treatment pro-

motes lung colonization by tumor cells with a low metastatic poten-

tial, such as B16 murine melanoma cells, we injected B16 cells into

the tail vein of mice 10 days after giving intratracheal bleomycin

(Figure 2A). Number of macrometastases and tumor burden deter-

mined 11 days later were significantly increased in the bleomycin-

treated mice compared with saline-treated control animals, in which

metastasis was rarely observed (Figure 2B,C), indicating that a

fibrotic environment promotes metastatic colonization and propaga-

tion of tumor cells with a low metastatic ability. Immunohistofluores-

cence analysis showed expression of periostin at metastatic sites

(those positive for MelanA+ melanoma cells) in the lungs not only of

bleomycin-treated mice but also in those of saline-treated controls

(Figure 2D) in spite of the fact that expression of periostin was quite

low in B16 cells (Figure S1), implying that periostin in metastatic

colonization of the lung is produced by fibroblasts.

3.3 | Periostin ASO suppresses fibrosis and the
increase in a-SMA+ cell number in lungs of
bleomycin-treated mice

To clarify the role of periostin in lung fibrosis induced by bleomycin,

we gave an ASO targeting periostin mRNA to inhibit periostin

expression.20 We confirmed that periostin ASO suppressed Postn

mRNA expression in lung fibroblasts in vitro (Figure S2). Mice were

thus injected intratracheally with a control or periostin ASO on day

2 and day 7 after receiving bleomycin, and the lung was subjected

to histological analysis on day 8. We found that periostin ASO treat-

ment attenuated lung fibrosis as well as periostin expression induced

by bleomycin (Figure 3A). Both the Ashcroft score and the percent-

age of periostin+ cells were thus significantly lower in the mice trea-

ted with periostin ASO than in those that received control ASO

(Figure 3B,C). The number of a-SMA+ cells in fibrotic lesions was

also reduced by periostin ASO treatment (Figure 3D). Of note, cells

positive for both Ki-67 and a-SMA, corresponding to proliferating

myofibroblasts, were observed less frequently in fibrotic loci of peri-

ostin ASO-treated mice (Figure 3E). These data suggested that peri-

ostin plays a key role in the development of lung fibrosis and

myofibroblast activation in response to bleomycin.

3.4 | Periostin ASO suppresses lung metastasis of
B16 murine melanoma cells promoted by lung fibrosis

Given that periostin ASO attenuated lung fibrosis induced by bleo-

mycin, we examined whether knockdown of periostin expression

might also inhibit metastatic colonization of the lung promoted by

pulmonary fibrosis. Mice were treated intratracheally with control or

periostin ASO at 2 and 7 days after receiving bleomycin and were

injected i.v. with B16 cells at 10 days (Figure 4A). Number of

macrometastases (Figure 4B) as well as tumor burden (Figure 4C) in

the lung at day 21 was significantly reduced in the periostin ASO-

treated mice compared with the control animals. These results thus
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indicated that inhibition of periostin expression suppressed meta-

static colonization of the lung by tumor cells by preventing forma-

tion of a fibrotic milieu that can serve as a premetastatic niche.

4 | DISCUSSION

We have herein confirmed that periostin is widely expressed in

fibrotic lesions of C57BL/6J mice with bleomycin-induced lung fibro-

sis. Periostin expression has previously been shown to be up-regu-

lated in lung mesenchymal cells such as fibroblasts and fibrocytes in

mice treated with bleomycin,21 in monocytes, fibrocytes, and fibrob-

lasts of the lung in patients with idiopathic pulmonary fibrosis,15 and

in bronchial epithelial cells of such patients and individuals with

asthma.22 Bleomycin treatment has also been found to increase the

expression of various inflammatory mediators including transforming

growth factor-b1 (TGF-b1), interleukin (IL)-4, and IL-13.23 Up-regula-

tion of periostin production in lung cells might thus be mediated

through activation of TGF-b or JAK-STAT signaling pathways.21,24

Myofibroblasts play the leading role in tissue remodeling and pro-

duction of ECM during lung fibrogenesis. Consistent with this sce-

nario, we found that the number of a-SMA+ myofibroblasts

increased concomitantly with that of periostin+ cells in the lung of

bleomycin-treated mice. Myofibroblasts that originate from resident

stromal cells are activated by various stimuli including chemokines,

ECM proteins, and mechanical stress.25 Periostin up-regulates

a-SMA expression in murine skin fibroblasts through activation of

integrin-FAK signaling.26 Periostin also promotes the induction of

myofibroblast differentiation by cytokines such as TGF-b1 and con-

nective tissue growth factor, the latter of which is secreted from

lung mesenchymal cells in response to bleomycin stimulation.21 Peri-

ostin may therefore play an important role in bleomycin-induced

lung fibrosis through activation of myofibroblasts and consequent

ECM accumulation.

Metastatic colonization is thought to be problematic for tumor

cells because most of the cells die of maladaptation to the new

microenvironment which rejects tumor cells by multiple factors

including reactive oxygen species (ROS), hypoxia, inhibitory

F IGURE 1 Up-regulation of periostin expression associated with progression of lung fibrosis. A, Serial sections of the lung from non-treated
mice (Day 0) and mice killed 4, 8, 12, or 16 d after receiving intratracheal bleomycin were subjected to hematoxylin-eosin (H&E) and Masson’s
trichrome staining as well as to immunohistochemical analysis with antibodies to periostin. Scale bars, 100 lm. B, Ashcroft score for lung
fibrosis and C, percentage of periostin-positive cells in the lungs of mice treated as in (A). D, Sections of the lung from mice treated as in A,
were subjected to immunohistochemical analysis of a-smooth muscle actin (a-SMA) expression. Scale bars, 50 lm. E, Density of a-SMA-
positive cells in fibrotic areas of the lung from mice treated as in (A). All quantitative data are means � SD for 4 mice in each group.
**P < .01, ***P < .001 (one-way ANOVA)
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cytokines and immune cells,27 and only a few of those that survive

go on to give rise to macrometastases.28 ROS is known to be a

major contributor to prevention of tumor cell metastasis. It is known

that some kinds of ECM proteins such as laminin and fibronectin

stimulate the generation of ROS by integrin-mediated signaling path-

way.29 In contrast, fibulin-5 reduced ROS production in pancreatic

cancer cells by competing with fibronectin for binding to integrin.30

Therefore, an ECM protein periostin might also be involved in the

regulation of ROS level in the premetastatic niche. An experimental

mouse model showed that only 0.02% of melanoma cells injected

into the portal vein were able to form multicellular foci in the

liver.31 Similarly, we found that macrometastases in saline-treated

mouse lung were rarely observed after tail vein injection of B16

melanoma cells. In contrast, a large number of macrometastases was

evident in the bleomycin-treated lung, suggesting that the genera-

tion of a fibrotic milieu in the lung by giving bleomycin promoted

metastatic colonization by melanoma cells. To assess the role of

periostin in the development of lung fibrosis and consequent promo-

tion of tumor cell colonization, we gave an ASO targeting periostin

mRNA intratracheally in order to inhibit periostin expression in the

lung. ASO were first developed in the form of a short DNA frag-

ment tested in vitro in 1978,32 and they have recently proven thera-

peutically effective in several clinical trials for conditions such as

hypercholesterolemia33 and malignant tumors.34,35 Current gapmer

ASO, including those used in the present study, contain both a cen-

tral deoxynucleotide phosphorothioate gap that allows them to pro-

mote cleavage of target mRNA by recruiting ribonuclease H to the

ASO/target mRNA heteroduplex site as well as 50- and 30- wing

regions modified with 20-O-methoxyethyl or 20-O-methyl residues

that increase both resistance to degradation and affinity for the tar-

get mRNA.36 Although the delivery of ASO to the desired organs

and cells remains to be optimized, these molecules have the poten-

tial to be developed into unprecedented therapies given their high

target specificity.37

F IGURE 2 Bleomycin-induced lung fibrosis promotes lung metastasis of B16 melanoma cells. A, Schematic representation of the
experimental protocol. Mice received bleomycin (BLM) or saline intratracheally (i.t.) 10 d before injection of B16 murine melanoma cells into
the tail vein. Mice were killed for analysis 11 d after cell injection. B, Representative images of the lungs of mice at day 21 and quantification
of the number of macroscopically detectable lung metastases. Scale bars, 5 mm. Quantitative data are for individual mice and means � SD for
each group. C, Hematoxylin-eosin (H&E) staining and immunohistochemical analysis of MelanA as well as quantification of the percentage
tumor area based on MelanA staining for the lungs of mice killed on day 21. The boxed area in the low-magnification image of bleomycin-
treated lung tissue is shown at higher magnification in the images on the right. Scale bars represent 1 mm and 100 lm for low- and high-
magnification images, respectively. Quantitative data are means � SD for 5 (bleomycin) or 6 (saline) mice. D, Representative
immunohistofluorescence staining of MelanA and periostin in metastatic tumors from saline- or bleomycin-treated mice on day 21. Nuclei
were stained with DAPI. Scale bars, 100 lm. *P < .05, **P < .01 (Student’s t test)
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In the present study, we directed periostin ASO to lung cells

by intratracheal administration. Such periostin ASO administration

attenuated fibrosis and reduced the number of active myofibrob-

lasts in the lung of bleomycin-stimulated mice. Furthermore, we

found that the periostin ASO significantly inhibited metastatic col-

onization of the bleomycin-treated lung by melanoma cells. In

addition, we carried out similar experiments using mice without

BLM pretreatment and B16-BL6 cells which have a high meta-

static potential (Figure S3A). Although the impact was somewhat

limited, we observed that the number of lung macrometastases by

B16-BL6 cells was decreased by periostin ASO treatment (Fig-

ure S3B). Collectively, our data thus indicate that inhibition of

periostin expression ameliorated bleomycin-induced lung fibrosis

through suppression of myofibroblast differentiation, resulting in

attenuation of ECM production. These results therefore suggest

that periostin is one of the most important molecular contributors

for formation of a fibrotic milieu that supports lung colonization

by melanoma cells. In addition, we do not exclude other roles of

periostin, such as adhesion to melanoma cells and maintenance of

metastatic melanoma cells. At least, as an adhesion molecule, peri-

ostin is likely to associate with integrin of melanoma cells because

periostin was actually expressed around metastatic melanoma

regions in the lung (Figure 2D). Therefore, our data further

suggest the possibility that periostin has a function that directly

promotes metastatic colonization by melanoma cells even in

non-fibrotic lungs.

In summary, our results provide evidence that periostin is an

essential molecule for generation of bleomycin-induced lung fibrosis.

F IGURE 3 Effects of giving periostin antisense oligonucleotides (ASO) on the bleomycin-treated lung. A, Mice were injected intratracheally
with a control or periostin ASO at 2 and 7 d after receiving bleomycin and were killed for analysis on day 8. Serial sections of the lung were
stained with hematoxylin-eosin (H&E) and subjected to immunohistochemical analysis of periostin expression. Scale bars, 100 lm. B, Ashcroft
score for lung fibrosis in the mice on day 8. C, Quantification of the percentage of periostin-positive cells in the lung on day 8. D, Lung
sections from the mice on day 8 were subjected to immunohistochemical analysis for quantification of the density of a-smooth muscle actin
(a-SMA)-positive cells in fibrotic areas. Scale bars, 100 lm. E, Representative immunohistofluorescence staining of lung fibrotic lesions for a-
SMA and Ki-67 at day 8. Nuclei were stained with DAPI. Scale bars, 100 and 10 lm for low-magnification and high-magnification (insets)
images, respectively. All quantitative data are means � SD for 8 and 6 mice injected with the control or periostin ASO, respectively. *P < .05
(Student’s t test)

1452 | SEMBA ET AL.



Our results suggest that periostin promotes metastatic colonization

of the lung by melanoma cells. Furthermore, ASO-based therapies

that target periostin have the potential to suppress metastatic colo-

nization by preventing the formation of a fibrotic milieu able to

serve as a premetastatic niche.
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