Enhancing Interaction Capability for VR
Handheld Controllers: Exploratory Approaches
using Swept Frequency Capacitive Sensing and
Vision Sensing in Real-time

ZHANG JUNJIAN

Graduate School of Library,
Information and Media Studies

University of Tsukuba

March 2019

Contents

1 Introduction 1
1.1 Background 1

1.2 Research Motivation 2

1.3 Contribution e 2

2 Related Work 3
2.1 Hand Gesture Sensing Techniques 3
2.2 Hand Gesture Interaction Through Wearable Cameras 3

2.3 Gesture Tracking/Recognition through Augmenting VR HMD systems 4
2.4 Around device interaction L. Lo 4

2.5 Fingers’ freedom for on-device interaction 4
2.6 Swept Frequency Capacitive Sensing (SFCS) 5

2.7 Vision Methods for Hand Gesture Classification 5

3 SFC Sensing Approach 7
3.1 Constructing SFC Sensor Matrices 7
3.2 Embedding Electrodes Into Vive Controller 7

3.3 Recognizing Two Different Touch Events from One Electrode 7

3.4 Discussion of Limitations o 9

4 NIR Camera Sensing Approach 11
4.1 CameraSetup 11
4.2 Camera’sPlacement 13

43 Design Gestures v it e e e e e e e e e e 13

4.4 Gesture Recognition Pipeline 14
4.4.1 Finger Segmentation o 14

442 CNNclassifier 14

443 Training oL e 14

5 Evaluation 17
5.1 Experimental Settings Lo 17

52 DataCollection e e 17
5.2.1 Prototypes e 17

5.22 Participants Lo e 17

523 Procedures 18

524 Preprocessing 18

10

5.25

Data augmentation

5.3 Technical Evaluation
5.3.1 Generalization across different subjects
5.3.2 Misclassification
5.3.3 Comparison with MobileNetV2
5.3.4 Generalization across different prototypes

Example Applications

6.1 Extend third-person controls of VR contents

6.2 Improvethesenseofhandin VR 0.

Preliminary Experiment for Combination of the Approaches

7.1

Discussion

8.1

Prototype Overview
7.2 State Machine Method
7.3 Limitations e

Limitations e

8.2 Designlnsights

Future Work

Conclusion

Appendix

References

Publications and Conference Presentations

Acknowledgement

24
24
25

26
26
26
28

29
29
31

32

34

35

36

40

41

List of Figures

3.1
32
33

4.1
4.2
43
4.4
4.5
4.6
4.7

5.1
52

53
54
5.5
5.6

6.1
6.2

7.1

7.2
7.3

8.1

9.1

Main components of this work’s SFC sensor matrix. 8
Finger gestures recognized by the SFC sensor. 8
The finger tracking demo developed in Unity. 9
The prototype overview for the NIR camera sensing approach. 12
Main components of the NIR camerasensor. 12
Four approaches to mount a single camera onto the controller. 13
The main motion range of fingers. 14

Finger postures recognized by this work’s classifier applied to the NIR camera sensor 15
An example scene when a user is trying this work’s prototype with the Vive controller. 16

Data processing pipeline of the camerasensor. 16
Different prototypes tested. L 18
Confusion matrix that corresponds to the result of the leave-one-subject-out test.

X-axis: Prediction, Y-axis: Actual. L oL 20
Confusion matrix for this work’s model without data augmentation. 21
Confusion matrix for MobileNetV2 without data augmentation. 22
Results on generalization across different prototypes using this work’s model. . . 23
Results on generalization across different prototypes using MobileNetV2. 23
The transformable robot game developed. 24
The finger tracking demo developed. 25
Main hardware components of this work’s prototype that attached to a Vive con-

troller. 27
Overview of the combination system diagram. 27
Diagram of system logic processing., 28
Conceptual design illustration of feasible VR example applications. 31

A tentative design of prototype for Touch controller. 32

iii

List of Tables

1.1

4.1

5.1

52
53

7.1

Pros and cons of the three kinds of VR controllers 2
The architecture of the CNNmodel. 16

Leave-one-subject-out across-validation accuracy results using this work’s CNN

model. e 19
Results compared to MobileNetV2. 21
Real-time test between this work’s model and MobileNetV2 model. 22
States created for the state machine. 27

iv

Chapter 1

Introduction

1.1 Background

With recent rapid advances of head mounted display (HMD) technology, virtual reality (VR) and
augmented reality (AR) equipment systems have entered the consumer trend. There are mainly
three kinds of control solutions in VR: camera-based optical methods, data glove, and handheld
motion controller. For example, Leap Motion robustly recoveries complex hand poses with high
frame rate for head-mounted scenarios. And Microsoft HoloLens, can robustly recognize the Air-
tap and Bloom gesture with low latency. But both of them cannot support eyes-free interactions.
Glove-like controllers for VR such as Manus VR ! and VRgluv 2 can recovery full hand pose with
high quality using passive trackers and provide impressive haptic feedback that are suitable for cer-
tain games or applications. The VR consumer HMD systems, such as HTC Vive 3, Oculus Rift 4,
PlayStation (PS) VR 3 headset system, whose primary interaction input devices are unanimously
handheld controllers, Vive controller, Touch controller, and Move controller. With these handheld
controllers, hand interaction is mainly based on touch capacitive sensing and buttons. Touch capac-
itive sensing, which is used to detect touch events with strong robustness, high accuracy and fast
recognition speed. But for VR controllers, there is a major shortcoming that they cannot achieve
more information to perform visual movements of the user’s fingers.

In order to enhance the interaction and immersion in VR environments, Oculus Touch controller
takes advantage of an ingenious ergonomic design combined with touch capacitive sensing, firstly
providing users an enhanced sense of "hand presence". It uses capacitive sensors to determine
the discrete position of fingers, rendering a quasi-reconstructed hand model to display the hand
pose. Similar to the idea of Touch controllers, the Valve Knuckles controller ® seems to be able to
distinguish that how much a user’s fingers like wrapping around the capacitive handle sensors.

And most recently Valve 7 redesigned the controllers with a name of Knuckles EV2 8, improving
the performance of finger tracking using a combination of high-fidelity force sensors and capac-

Uhttps://manus-vr.com/

Zhttps://vrgluv.com/

3https:/iwww.vive.com/us/

“https://www.oculus.com/
Shttps://www.playstation.com/en-us/explore/playstation-vr/
Shttps://steamcommunity.com/app/633750

https://www.valvesoftware.com
8https://www.tomshardware.com/news/valve-knuckles-ev2-developer-kits,37346.htm]

itive sensors. Thus, it is expected that finger tracking for controllers can increase the range and
depth of interaction possible in VR.

1.2 Research Motivation

Table 1.1 provides an overview of pros and cons for the three types of VR/AR controllers. This
work’s motivation is located on the finger tracking on controllers, which aims to enhance the inter-
action possible in VR. Although both of the Touch and Knuckles controller leverage an ingenious
design and traditional capacitive sensing but not support any gesture interaction when fingers are
in air or not touching the sensor. In this paper, the aim is to explore new approaches to enrich inputs
for VR handheld controllers. This work explores the SFC sensing method and the vision-based
method. It should be noted that this work’s focus is on the finger posture classification of individ-
ual fingers but not hand reconstruction or full hand pose recovery. However, for the application
scenarios, the thumb postures in air recognized from the camera sensor are expected to control the
movement of objects in VR, and the discrete finger gesture input from the two sensors can be used
to perform a simulation of hand pose recovery. This paper focuses on Vive and Rift HMD systems
because both of them are typically desktop-based VR systems with universal scalability that is not
only for game application compared to PS VR.

Table 1.1: Pros and cons of the three kinds of VR controllers

Pros Cons Example
Bare-hand interaction Suffer occlusion problems Leap Motion
Camera Can recover full hand pose robustly Nearly no haptic feedback HoloLens
Limitation of field of view
Data High-resolution haptic feedback Barrier to wear gloves Manus VR
glove Recover full hand pose with less error ~ Robust tracking needs passive tracker ~ VRgluv
Traditional, reliable interaction way Vive
Handheld Recognize fast with no input error Difficult to recover full hand pose Oculus Touch
controller ~ Simple vibration haptic feedback This work’s Motivation Knuckles
Robust tracking solution PS Move

1.3 Contribution

This work’s contribution is:

* First, this work presents a new exploratory design and practical implementation that employ
a single NIR camera and SFC sensing circuits with Vive controllers.

* This work’s second contribution is the case that, with proposed camera sensor attached on
the controller, this study provides a new finger posture dataset from 20 different subjects.

* The third of this work’s contribution is that findings are reported in prototyping process and
this work evaluates the accuracy and real-time performance of the proof-of-concept proto-

types.

* Last, the practical feasibility with this work’s approaches are demonstrated by two developed
Unity demo VR applications in real-time.

Chapter 2

Related Work

This work explores two methods to increase inputs for controller devices using gesture sensing
technologies. One is the SFC sensing method and the other is a CNN-based gesture classification.
In this section, related work is reviewed on (i) hand gesture sensing approaches and (ii) around
device interaction, (iii) gesture tracking/recognition through augmenting VR HMD systems (iv)
literature of wearable cameras, (v) fingers’ freedom for on-device interaction and also introduce
(vi) gesture recognition for SFC sensor and (vii) vision methods for hand gesture classification

2.1 Hand Gesture Sensing Techniques

There are different sensing technologies to enable hand gesture recognition. For example, capaci-
tive sensing, it can enable touch sensing and can also determine the shape of grasp on instrumented
objects or devices [1] (see a review in [2]). Recent work [3] explored to use ultrasound imaging
for hand gesture recognition. They presented an approach for detecting discrete gestures and track-
ing continuous fingers’ angles through ultrasound images captured from a probe mounted on the
forearm. There are also combined sensing approaches to implement a hand gesture classifica-
tion. [4] explored the combination of Electromyography (EMG) and pressure. They found that
the combination of EMG and pressure data, which are only sensed at the wrist, can support the
accurate classification of gestures. Data glove can obtain robust finger movements using various
sensor technologies such as magnetic tracking or inertial tracking [5]. Optical methods are based
on employing cameras to determine hand position, which occupies most of the relevant literature
on gesture recognition. A review of the methods can be found in [6]’s work.

2.2 Hand Gesture Interaction Through Wearable Cameras

Based on vision methods, to enable a variety of interaction scenarios, body-worn camera system
has been extensively studied, camera can be mounted on different body positions, such as heads,
chests, shoulders, foot, wrists and fingers [7, 8, 9, 10, 11, 12, 13]. [7] present a HMD mounted
device, which includes a time-of-flight (TOF) module with a standard RGB camera, supporting
single-handed gestural interaction. [8] propose a single chest-mounted fish-eye camera device,
imaging the user’s body posture through a self-centered user view. [9] introduce a shoulder-worn
system using a wearable depth-sensing and a projection device. The system allows wearers to use
their hands, arms and legs as graphical interactive surfaces. [10] developed a wearable system
consisting in part of a shoe-mounted depth sensor pointing upward at the wearer. The system

provides three recognized gestures for which can be performed without visual attention. While [11]
first presented a wrist-worn sensor that recovers the full 3D pose of the user’s hand, [12] developed
a wrist-worn gesture input device specially designed for symbolic input in VR. Their prototype is
able to robustly sense thumb-to-finger taps on fingertips and minor knuckles. To increase the
hand-based and context-aware interactions in the environmental contexts, [13] showed a finger-
worn device. It allows users to interact with specific environment by gesture input. This work’s
prototype implementation with a Vive controller is close to the approach that attaches a camera
worn on wrist.

2.3 Gesture Tracking/Recognition through Augmenting VR HMD sys
tems

When specifically designed to interact with VR HMD systems, camera can also be instrumented
to existing VR headsets. [6] attach a lightweight stereo pair of fish-eye cameras onto a VR headset,
tracking boy movements as a motion capture system. Their approach allows full-body motion to
capture general indoor and outdoor scenes, including crowded scenes with many people nearby,
which allows for reconstruction on larger scales. [14] develop a new HMD that enables 3D facial
performance-driven animation in real-time, by combining a head-mounted depth camera and sur-
face strain signals. Also, [15] use a monocular camera attached to a HMD, performing various
facial expressions. Like these works that aim to enrich the experience of being immersed in VR,
this work first augments an existing VR controller with a prototype to provide a better model for
what the hands are actually doing while interacting with VR content.

2.4 Around device interaction

This work’s finger gesture control in air is similar to around device interaction, which is also known
as gesture interaction with mobile devices. It is focused on increasing the interaction space for the
devices rather than only relying on contact with touch screen. To enable this interaction technique,
beyond camera-based methods [16], there are also viable alternatives. Early methods use infrared
proximity sensors to let users interact with devices around the edge or above the display [17, 18].
Magnetic sensing can detect postures and finger positions by wearable sensors like ring devices.
Recent work on capacitive proximity sensing also investigated 3D gestures input around the elec-
trodes’ plane [19] or above the surface [20].

2.5 Fingers’ freedom for on-device interaction

To perform finger tracking when holding the controller, it is necessary to analyze the fingers’ move-
ments that do not require a grip change. Considering the grip gesture is similar to holing a smart-
phone device, which is most related to one-handed interaction, which is particularly for mobile
phone devices. [21] modeled the functional area of the thumb on mobile touchscreen surfaces.
[22] conducted qualitative experiments to evaluate the index finger area of movements on the back
of the device (BoD). Most recent work [23] use a quantitative method to empirically study all the
fingers’ range and comfortable area for one-handed smartphone interaction beyond the touchscreen.
They derive generalizable design implications for the placement of on-device input. Totally, pre-

vious work showed that thumb and index finger have more movements so intentional input control
using the fingers in one-hand interaction is proven effective. As for Vive and Touch controllers,
the grip gesture is similar to holding a smartphone, so the input control design is also expected to
should focus on these fingers.

2.6 Swept Frequency Capacitive Sensing (SFCS)

Capacitive sensing has been as a significant user interface in HCI community (see [2] for a survey).
In this research field, SFCS is a special sensing method which first proposed and named by Sato’s
work Touché [24]. Touché uses a range of frequencies as a profile for different touch gestures, while
conventional capacitive touch sensing method uses only a single operating frequency. Sato’s team
also utilize this SFCS method to explore the differentiation from impedance of different users using
Touché prototype on touch screens [25], while [26] embed Touché into plants to explore botanical
interaction on entertainment and aesthetic uses. Intrigued by Sato’s work, Mads Hobye !, Nikolaj
Mobius ? first employed SFCS on Arduino platform. [27] embed a signal generator module into
an Arduino Uno as a human-to-human interaction touch sensor for gaming apparatus.

However, no previous work report further performance for SFC sensor matrices. Original Touché [24]
project focused results and discussion on a single electrode solution. It is reported that SFC sensor
matrices would bring more unique sensing dimensions described in their paper. But the work uti-
lized a customized sensor device and it is difficult to continue from the original Touché project. [28]
provide an open source library of for Arduino micro-controller. They used it for their instrumental
plant application which is called Cultivating Frequencies >. The contributed SweepingCapSense *
library is used to turn each of their fifteen plants into touch sensors. But importantly, they did
not provide more implementation details about the plant application. It seems that they did not
construct SFC sensor matrices based on the survey knowledge from the source code of the library

and case study they provided.

This study selects the SFCS technology because it can provide richer touch information than tra-
ditional capacitive sensing technology. This study shows an exploratory implementation on con-
structing the SFC sensor matrix. This work utilizes the sensors with a Vive VR controller to
explore its practicality in actual implementation.

2.7 Vision Methods for Hand Gesture Classification

Vision-based hand gesture recognition, has been employed with researchers’ efforts by early work.
Optical methods are based on employing cameras to determine hand position. These approaches
can analyze the hand shape and motion information from captured video sequences by one or sev-
eral cameras. Traditional methods based on machine learning like Support Vector Machine (SVM),
Hidden Markov Model (HMM) are also reviewed in [6]’s work.

Thttp://www.hobye.dk
Zhttp://dzlsevilgeniuslair.blogspot.se
3https://colinhonigman.com/Cultivating-Frequencies
“https://github.com/chonigman/SweepingCapSense

But after CNN showed its power for visual classification task of objects in images and videos [29],
it has also been employed to solve the problem of hand gesture recognition. Besides the works
that recover the full hand pose using CNNs [30, 31, 32], the CNN classifier is also often used
in tasks of sign language recognition [33, 34, 35]. To improve the real-time performance of the
CNN classifier for mobile applications, lightweight models that decrease computational cost such
as Distilling [36], ShuffieNet [37], MobileNets [38] and MobileNetV2 [39] are recently attracting
attention. These network models mainly use model compression technologies to reduce the num-
ber of parameters used in deep learning to support some low-configuration equipment or mobile
device conditions.

Chapter 3

SFC Sensing Approach

3.1 Constructing SFC Sensor Matrices

When considering the construction of sensor matrices, there are two methods. One is to simply
add micro-controllers and circuits, and then attach each electrode into or onto objects. The other
is to add only circuits to make the electrodes independent of each other in software processing.
In order to achieve finger tracking when holding the controller, this work’s task is to attach the
sensor electrodes to the Vive controller. Because of the design of vive controller and the limitation
of finger movement, this study constructs a two-dimension (2D) sensor matrix. Two dimensions
correspond to thumb and middle finger. The circuit details can be referred to [28].

3.2 Embedding Electrodes Into Vive Controller

After building the circuits, the electrodes is attached to the aluminum foil and then fix them on the
surface of the controller where touched by fingers. In the evaluation section of previous work [28],
the authors embedded the sensing copper electrode into a small rosemary plant (The electrode
is placed in soil). They report that SFCS technique is not only sensitive to gesture but to the
plant’s position as well. This is because that different touch positions response different capacitive
profiles (the resulting 2D curve). But for this work’s task, the aluminum foil is small and is with
no changing capacitance. So, extra tape sheets are added onto the foil to changing the capacitance,
which resulting in a changed result curve when just touching the green tape. The prototype is
shown in Figure 3.1. This work’s SFC sensor consists of 2 circuits (Left, Upper) which can provide
2 sensing electrodes to detect touch information. Using the tapes (b, ¢) and aluminum foil (a), these
electrodes are attached on the surface (Right) of the Vive controller in this work’s experimental
implementation. It is noted again that touching the aluminum foil and touching only the green tape
are different touch events, which is because the capacitive profile [24] is different.

3.3 Recognizing Two Different Touch Events from One Electrode

Using one electrode from the SFC sensor, this study enables two kinds of touch events: Touch the
aluminum foil (Touch Alumi) and Touch only the green tape (Touch Tape), shown as Figure 3.2.
Besides not touching the sensing parts (a, No Touch), the sensor can distinguish if one is touching
only the green tape (b, Touch Tape) or is touching the aluminum foil, no matter whether the finger
is touching the tape (c, Touch Alumi). Designing any SFCS solutions is considered as a sampling

Figure 3.1: Main components of this work’s SFC sensor matrix.

(c)

Figure 3.2: Finger gestures recognized by the SFC sensor.

No Touch Touch Tape Touch Alumi

Figure 3.3: The finger tracking demo developed in Unity.

problem [24]. It depends on how many samples and what frequency bands would allow the system
to accurately identify the different states. The program of sample the response signal every 160
steps. In this work’s solution, for each SFCS circuit, the resulting curve are sampled between the
fiftieth and eightieth step. This make us enable the recognition processing at a latency about 100ms
in Unity. In actual operation, the frame rate of the system can reach 10 to 15 fps. A finger tracking
demo is created in Unity using the SFC sensor (See Figure 3.3). It should be noted that even
this work’s prototype is now applied to a Vive controller, this study did not enable the capacitive
sensing components of the Vive controller for software implementation such as the circle Touch
panel.

3.4 Discussion of Limitations

For this work’s current SFC sensor implementation , it needs a preprocessing of data record for a
user, which is to record a 2D graph data. This study improves runtime performance by decreasing
the sweep resolution, reducing the robustness of gesture recognition. For example, to achieve ro-
bust recognition it must be costumed for different users because the different capacity of human.
But in controlled experimental settings, this study achieved above 90% accuracy for the touch ges-
ture triggered with one subject from early tests. The accuracy is expected to improve by increasing
the sweep range of frequencies. Machine learning method is also expected to improve the gener-
alization among different subjects.

Another notable limitation is the unreliability for multi-touch. In early tests, the implementation
of sensor matrices with 2, 3, and 4 respective circuits are independently tried. The response sig-

nals are more stable when using the 2-circuits method, which means it support multi-touch for two
fingers more reliably. The reason can be referred to [24]. They discussed, "The amount of signal
change depends on a variety of factors. It is affected by how a person touches the electrode, e.g.,
the surface area of skin touching the electrode. It is affected by the body’s connection to ground,
e.g., wearing or not wearing shoes or having one or both feet on the ground.. For the same reason,
some experimental situation can also affect this work’s sensing prototype. For example, the result-
ing graph data is unreliable when charging the battery of the Vive controller, and the capacitance
is also changed when a user lift up his or her legs because of the changed capacitive path (not con-
nected to the ground). At the same time, because SFCS is a capacitive sensing method, when it is
very close to the touchpad without touching, it will cause the recognition error of the system. That
is, there is no touch but the touch event is recognized. This is also a problem on the capacitance
button of the Oculus Touch Controller.

10

Chapter 4

NIR Camera Sensing Approach

This study are motivated by impressive development on visual recognition tasks recent years. This
study explores to enrich the input capabilities through the finger postures using a vision method,
especially for room-scale VR environments. When first considering tracking finger movements,
using depth cameras to achieve high recognition rates is also thought about. But eventually a tra-
ditional webcam is chosen to be modified into a NIR camera, which is informed by [40]’s work.
While they explored how the NIR signal and controlled illumination can be used for depth sens-
ing, this study applies similar conditions to accomplish a gesture classification task for close-range.
There are three reasons why a depth camera is not chosen. First, considering that best effort should
be tried to make this work’s prototype compact and user-friendly, a large-sized depth camera is
excluded, such as Kinect. Secondly, finger movements are needed to be analyzed at very close dis-
tances (approximately between 0.04 and 0.09 meters). So, although a smaller RealSense ! seems
to be more suitable, its depth perception limit is 0.11 meters, and it seems not to perform satisfacto-
rily even if it is very close to 0.11 meters. Finally, it is about real-time performance. Using a depth
camera increases the computational burden of the computer, so it is difficult to achieve real-time
at an application level.

In addition to the benefits of using NIR reported in [40], under this work’s execution conditions,
selecting the use of a NIR camera also brings us three benefits. First, NIR provides less intru-
sive sensing than the visible spectrum when using a traditional webcam. This means that this
work’s prototype equipment can also be used at night or without indoor lighting. Second, under
the controlled illumination, the background of the input image become not obvious even seems to
be removed, which makes us be able try not to consider complex finger segmentation processing.
Finally, This work’s webcam costs about only 12 dollars which is not expensive. Even with the cost
of modification parts needed and 3D print required, the cost of this work’s prototype equipment
does not exceed 32 dollars. The details of the camera sensor are give in later section.

4.1 Camera Setup

The prototype overview is shown as Figure 4.1. Main components of the camera sensor is shown
as Figure 4.2. A regular webcam (a) is modified into a NIR camera by adding a bandpass filter (c),
and a wide-angle lens (b) with the LEDs ring (f) with 18 LEDs. The 3D printed ceases (d,e) are
used to embed the LEDs and attach to the wide-angle lens. The webcam is Logitch HD Webcam

Thttps://realsense.intel.com/depth-camera/#D415_D435

11

— 3l3'printgd sugwj‘t'rig

Figure 4.1: The prototype overview for the NIR camera sensing approach.

C270 2, capturing at 30fps with a resolution of 640 x 480 pixels. The camera is mounted with
a 0.4X wide-angle lens 3, so the field of view is changed from 60° to 150°, making the camera
a sensor of close-range hand capture that keeps the whole hand in the camera view. The original
camera does not contain an IR cut filter, so an IR bandpass filter * operating at 850nm is just added,
and aring of LEDs is then added to provide evenness illumination. The LEDs > used in this work’s
system have a beam angle of +15 degree with 80% attenuation at the periphery, again operating at
850nm. The support rig is 3D printed to make the camera operate at a proper and fixed distance
and angle. The angle and position is first adapt manually, then the configuration in the 3D model
is changed . But currently, just some seccotineuse is used to fix the camera with the 3D prints.

Figure 4.2: Main components of the NIR camera sensor.

Zhttp://support.logitech.com/en_us/product/hd-webcam-c270
3https://www.taotronics.com/TT-SHO14-Mobile-Phone-Camera-Lens-Kit.html
“http://fujifilm.jp/personal/filmandcamera/sheetfilter/ir.html
Shttp://pdf1.alldatasheet.jp/datasheet-pdf/view/635246/OPTOSUPPLY/OSI3CA5111A html

N

;'

i .

\ T
=72

(a) Left (b) Right (c) Top (d) Bottom

Figure 4.3: Four approaches to mount a single camera onto the controller.

4.2 Camera’s Placement

This is a first exploratory work that how to determine the placement of the camera. There are
mainly 4 different positions to mount a single camera onto the Vive controller, seen as Figure 4.3.
However, neither approach (b) nor approach (d) can obtain a full hand (including all fingers) image.
Approach (c) is a position of mirror symmetry to approach (a), which is from the back hand of view
that cannot distinguish small movements of middle and ring fingers The NIR camera is selected
to attach on the left for the right-hand controller, because this way seems to be able provide more
finger motion information than others. Considering the design of a controller, there is an angle and
position to setup the camera so that all fingers can be imaged by the modified camera. This allows
us to design as many as finger postures. The insights about camera’s positions are discussed in the
later discussion chapter.

4.3 Design Gestures

The following observational analysis of the movement range of each finger has been made when
holding the controller. When a user naturally and correctly holds the Vive controller, the individual
finger freedom of his or her hands is physically constrained. The main motion range of each finger
is illustrated as Figure 4.4. Besides touching the touch panel, the thumb mainly moves horizontally
and vertically (a). The index finger mainly touches the trigger, moves close to or far away from the
trigger (b). The middle finger mainly moves close to or far away the controller surface, including
touching the controller (c). For the ring finger and small finger, both of them need to help holding
the controller handle (d), but the ring finger’s fingertip have movements that touch or not touch
the controller. As an exploratory work, this study seeks to find whether the CNN classifier can
recognize minor changes among different direction, hight, distance of individual fingers, especially
when fingers are in air. So 12 different finger gestures are designed and showed as Figure 4.5

(a) Thumb (b) Index (c) Middle (d) Ring, (Little)

Figure 4.4: The main motion range of fingers.

4.4 Gesture Recognition Pipeline

To perform gesture recognition, users firstly have to learn to naturally and correctly hold the con-
troller. Figure 4.6 is an example when a user is trying the controller. The size of input images
captured by the NIR camera are 640 x 480 at a frame rate of 30 fps. Then the region of fingers are
segmented, and the images are resized to 32 X 32 to pass to the deep learning model.

4.4.1 Finger Segmentation

In traditional gesture recognition tasks, hand tracking and hand segmentation are important parts
before recognition. Under this work’s conditions, since users hold the controller most of the time,
hand tracking relies on the tracking devices of HTC VR system. For finger segmentation, the
advantage of fixing the camera on the controller is used, that is, the overall position of the hand
image is relatively unchanged. Therefore, the position relationship of the pixels are used to directly
segment the image of each finger part. Figure 4.7 illustrates this work’s system processing pipeline.
The rectangle boxes with different colors are like bounding boxes, but actually the finger images
are just segmented through the pixel position because the positional relation of camera and hand
is fixed.

4.4.2 CNN classifier

This work’s aim is to perform a real-time gesture recognition system in real VR applications. So
this needs us to select a model that does not require high computational resources. In the developed
Unity demo, TensorFlowSharp library 6 is used but that does not support a GPU-based version, so
currently a LeNet-5 [41] based CNN model is implemented. Shown as Table 4.1, the CNN model
is informed from the Chainer 7 library by the early test. There is a small change in C3 layer
compared to the initial LeNet-5 model, though there are not obvious improvement in accuracy.
About 27fps are achieved in the Unity environment on a consumer computer with this model. The
comparison results with a state-of-the-art CNN classifier MobileNetV2 [39] are also reported in
the later evaluation chapter.

4.4.3 Training

When training the model, the final dataset is used, which is after the data augmentation. All the
dataset images are converted into gray scale images and resized to a resolution of 32 x 32 pixels.

Shttps://github.com/migueldeicaza/TensorFlowSharp
7https://docs.chainer.org/en/stable/examples/cnn.html

14

Thumb

LY)
Frrys

Index

Air Alr Air Air Touch Alr | Alr

Left Middle Middle Right Trigger Close Far
High Trigger Trigger

(GO) (G1) (G2) (G3) (G4) (G5) (GB)

Ring Middle

Touch Mo Mo Mo Touch
R Touch Touch Touch M

Far Close
(G7) (G8) (G9) (G10) (G11)

Figure 4.5: Finger postures recognized by this work’s classifier applied to the NIR camera sensor

With this big dataset, a dropout rate of 0.6 and learning rate decay are used to make the model learn
more robust features. The model is trained on the dataset with 20 iterations. Finally, an average
95.6% accuracy is achieved on the training set, and 93.9% on the test set with this work’s model
using the dataset collected by Right-hand prototype (middle) in Figure 5.1.

15

S———

Figure 4.6: An example scene when a user is trying this work’s prototype with the Vive controller.

Table 4.1: The architecture of the CNN model.

Layer Layer Type Kernel Maps

Input input 1 x(32x32)
C1 convolution 5%5 6 %X (28 x 28)
M1 max pooling 2x2 6x (14 x 14)
Cc2 convolution 5%5 16 x (10 x 10)

M2 max pooling 2x2 16 X (5% 5)
C3 convolution 4 x4 120 x (2 X 2)

Output full connection 12x(1x1)

Thumb Index
[S |
Ring Middle
550*50 410*135
Initial input image Finger segmentation
640480 by pixel position
Thumb Index
32%32 3232 CNN Predicted
.. — Classifier Wi Posture

Ring Middle
32%32 32*32

Resize the images to fit CNN model

Figure 4.7: Data processing pipeline of the camera sensor.

16

Chapter 5

Evaluation

For the SFCS approach, this work’s contribution is focused on building a sensor matrix to increase
the touch input when holding the VR controller. But just as mentioned in the previous chapter
about the limitations of this work’s current prototypes and the limitations of the SFCS method
itself, especially the problem of multi-touch limits us from making more in-depth evaluations. So
in this chapter, the evaluation of NIR camera sensing approach is focused on.

5.1 Experimental Settings

All the experiments are conducted on one Windows 10 desktop with a CPU processor (Intel Core i7-
7700 3.6 GHz), 48GB SDRAM and a NVIDIA GeForce GTX 1080 Ti GPU with 11GB of memory.
The models are implemented using the Python libraries TensorFlow. With a dropout operation in
this work’s model and to achieve more objective results, all the trainings are conducted 3 times
and the average statistical results are showed. Because of the long time of the training cost, tests
on MobileNetV?2 are all conducted with the initial images that are without the data augmentation.

5.2 Data Collection

5.2.1 Prototypes

In this work’s implementation, all the datasets are collected using this work’s early test prototype,
the middle one in Figure 5.1. Besides the different weight, there are minor variances in fixed
camera positions and angles. The evaluation results of generalization across these prototypes are
also reported later.

5.2.2 Participants

The dataset is collected from 20 different subjects (13 males and 7 female) who are from this
work’s laboratory members and graduate students in this work’s university. They are aged from 19
to 26. The subjects are with widely varying height (mean = 169.6 cm, std = 9.85 cm), increasing
the variance in palm size. The length of their hands from the tip of the middle finger to the wrist
were recorded (mean = 18.23 cm, std = 1.89 cm). All participants were right handed.

17

Figure 5.1: Different prototypes tested.

5.2.3 Procedures

When collecting the dataset, the subjects are seated all the time and they are first asked to learn
how to correctly hold the controller, then they are asked to perform the 12 gestures in 12 trials.
The subjects are asked to move and rotate the controller in every direction to add variance in
backgrounds and finger position, which is also seen to simulate a way when one plays VR content
in real. In the room-scale VR system, the dataset is collected indoor both during the day and in
the evening. So the infrared light from fluorescent lamp and the sunlight through the window also
increased the variance in the image backgrounds.

5.2.4 Preprocessing

The cropped images are directly captured in a Unity application, which are across the 12 finger
gestures from the initial input image. Frames are extracted at about 10fps from real-time video
and collect the training images and test images individually. The number of train images for each
gesture of each subject is 1000, while the test image part is 300. This means the training set and
test set consists of 1000 x 12 images and 300 X 12 images separately. So this work’s initial dataset
includes a training set of 240,000 images and a test set of 72,000 images.

5.2.5 Data augmentation

In order to achieve a robust recognition result and avoid over-fitting, each image is randomly rotated
from -20%rc to +20%rc 5 times, and randomly adjusted the brightness 3 times, and randomly
adjusted contrast 3 times; thus, the number of final train images in the database reaches 1000 x
12 x 20 x 13=3, 120, 000, and the test set reached to 300 x 12 x 20 x 13=936, 000 images.

5.3 Technical Evaluation

Results of a technical evaluation with this work’s camera-based system are reported in this chapter
. These include (i) The leave-one-subject-out across-subject validation result and the confusion
matrix of the classifier, (ii) A comparison with MobileNetV2 in leave-one-subject validation and
the real-time performance, (iii) An initial generalization test among different test prototypes that
shown in Figure 5.1

18

Table 5.1: Leave-one-subject-out across-validation accuracy results using this work’s CNN model.

Thumb Index Ring Middle
GO Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 Gll1 | M
98.93 73.77 100.0 99.58 | 99.95 50.60 95.82 | 97.94 88.81 | 98.66 72.42 99.98 | §9.71
99.20 83.69 87.33 91.77 | 99.89 6938 97.77 | 97.56 78.47 | 7847 79.76 87.76 | 87.59
99.31 95.87 93.99 99.99 | 99.75 9491 89.02 | 99.13 9327 | 9191 9491 99.98 | 96.00
9847 6634 99.13 8557 | 94.01 41.67 96.78 | 93.03 94.21 | 83.47 90.25 99.57 | 86.88
97.74 9477 99.63 99.07 | 99.37 9691 73.18 | 77.75 66.92 | 96.03 90.36 99.99 | 90.98
99.24 32.58 92.05 99.77 | 97.40 0197 9786 | 57.24 6892 | 7235 69.74 69.42 | 71.55
65.87 73.81 29.88 7435 | 87.81 83.70 74.13 | 77.74 4352 | 87.62 9279 99.96 | 74.26
92.18 71.08 8532 99.76 | 93.85 93.72 86.26 | 86.44 90.50 | 85.83 56.64 93.35 | 86.24
9 |9244 9371 86.33 99.98 | 97.47 8822 73.17 | 97.90 62.69 | 96.56 43.68 70.71 | 83.57
10 | 99.69 9191 84.33 9439 | 92.68 90.83 94.14 | 50.76 94.40 | 99.06 73.16 95.11 | 88.37
11 | 87.87 9948 7797 93.02 | 99.49 68.13 88.67 | 9490 95.78 | 91.05 32.32 85.29 | 84.50
12 1 99.44 9936 9468 9531 | 99.61 90.71 85.81 | 83.61 8524 | 9497 9352 66.84 | 90.76
1319650 96.89 9894 9508 | 7833 71.41 89.72 | 69.84 99.08 | 96.17 73.94 99.31 | 88.77
14 | 96.03 96.63 97.28 99.55 |1 99.92 9920 54.13 | 88.79 99.75 | 97.75 92776 95.47 | 93.10
1519992 9941 97.75 100.0 | 98.05 75.35 68.37 | 78.43 83.76 | 9542 89.81 89.89 | 89.68
16 | 97.59 93.60 9245 9424 | 97.08 94.66 9229 | 86.08 96.98 | 96.61 93.93 84.11 | 93.30
17 | 7998 8134 9236 99.62 | 95.18 95.19 97.00 | 87.49 97.29 | 76.05 61.29 54.36 | 84.76
18 1 96.10 97.61 90.32 68.77 | 97.93 8397 8732 | 4353 89.09 | 80.48 51.35 96.16 | 81.89
19 | 86.99 5595 86.66 91.13 | 98.98 9826 9048 | 1580 74.26 | 65.07 39.35 99.43 | 75.19
20 | 98.07 89.53 72.54 63.15] 99.85 9241 99.13 | 9525 5441 | 8291 9094 97.79 | 86.33
M | 94.08 84.37 87.95 92.21 | 96.33 79.06 86.55 | 78.96 82.87 | 88.32 74.15 89.22 | 86.17

*Note: "S" means Subject. "G" means Gesture. "M" means "Mean".

[BN e NNV S S s %2

5.3.1 Generalization across different subjects

Shown as Table 5.1, this work’s method (LeNet-5 based classifier) achieved 86.17% average ac-
curacy in the across-subject test. The top-3 accuracy are all more than 92% which are Air Left
(94.08%), Air Right (92.21%) of thumb postures, Touch Trigger (96.33%) of index finger postures.
And the fourth high No Touch Far (89.22%) of middle finger postures.

5.3.2 Misclassification

The confusion matrix of this work’s classifier is shown as Figure 5.2. The confusion matrix shows
that minor differences between different heights in air (thumb), and different distances (index fin-
ger and middle finger) are often misclassified. There are some outliers with a lower recognition
rate (< 50%) that the number text is made red in Table 5.1. In the index postures, Air Close Trig-
ger of subject6 (1.97%) , it is supposed that this is because subject6 did not correctly perform the
gesture, or he did not perform the difference between Air Close Trigger and Air Far Trigger, and
the same reason as Air Close Trigger of subject4 (41.67%). After confirming the images and the
confusion matrix of subject6 and subject4, a founding is that the classifier almost misclassified
Air Close Trigger as Air Far Trigger. It is noted that all the subjects are asked to move and rotate
the controller in every direction while keeping the finger posture immobile during the collection
time, which is actually hard for them. Because they were moving and rotating the controller when
performing the postures, so sometimes they had to make mistakes in performing different heights
(high or low), and distances (far or close).

In the thumb postures, For Air Middle of subject6 (32.58%) and Air Middle High of subject?
(29.88%), the difference between the two thumb postures is only the height (Air Middle High is

19

100

[I ikl 301 080 058) 054 015 : 006 040 010

G1 7Yl 914 375 013 008 003 010 002 071 015

G2 7.69 250 015 007 001 004 005 031 009 80
G3 464 177 010 008 029 007 001 021 005

G4 014 004 006 265 035 004 003 005 003 -
G5 006 003 005 347 1663 001 001 010 0.02

G6 002 002 006 026 1256 EGEEN 008 006 005 0.02

G7 001 006 001 000 001 021 2057 005 010 40
G8 005 006 001 000 006 007 1572 EZEIM 054 045

G9 009 010 013 011 020 005 ; 0.40 973 20
G10 007 005 001 004 009 008 ; 027 1567

G11 002 003 003 001 003 001 : 006 056 994 .

0 1 2 3 & 5 6 7 8 9 10 11

Figure 5.2: Confusion matrix that corresponds to the result of the leave-one-subject-out test. X-axis:
Prediction, Y-axis: Actual.

more like a "Good job" posture). Some subjects reported that it was hard for them to perform the
difference.

However, the outliers are also related to the hand size and the grip strength of subjects. In the
ring finger and middle finger postures, some subjects whose hands are too small even were not
able to perform the same posture (Touch R of ring finger) as others such as subject19 (152cm of
height and 15cm of hand size). And it was still difficult to perform the small difference between
the two postures, for example, some subjects can leave their ring fingers very far when performing
No Touch, while another some subjects can not. QOutliers in postures of middle finger are thought
to be the same reason.

As a summary, the results show that subjects whose thumb fingers are straight (shape of thumb
of a few subjects is not very straight) resulted in a better recognition in thumb postures. Results
of subjects that have strong grip strength or subjects with a big hand size seem to achieve higher
recognition rates.

5.3.3 Comparison with MobileNetV2

MobileNetV?2 is a state-of-the-art CNN network specifically tailored for mobile and resource con-
strained environments. In this work’s test, the specific model of Python code is informed from
github open source community !. The real-time performance is tested in TensorFLowSharp li-
braries in Unity. The accuracy results are shown in Table 5.2, it shows that with the data augmen-
tation, accuracy is improved by about 2.29% (from 83.88% to 86.17%). The MobileNetV2 can
classified the postures with higher accuracy (89.38% than 86.17%), and the top-4 accuracy results
are also improved obviously (more than 93%). For a more detailed comparison of the results,

Uhttps://github.com/neuleaf/MobileNetV2

20

100

GO 437 084 074 110 063 033 010 002 022
G1) 1200 653 005 004 001 007 009 129

G2 8.45 170 015 003 000 018 008 043 0. 80
a3 447 147 014 008 007 010 008 016

G4 012 009 o010 [CERP] 453 079 001 003 025 -
G5 009 009 021 333 69 001 005 056

G6 004 002 015 052 11. R o001 o002 o027

G7 006 006 002 002 002 044 1875 004 40
G8 001 022 001 001 003 017 1582 RCRON 043

G9 021 042 012 011 041 004 001 055 @Al 087 20
G10 003 019 004 005 007 024 004 092 1192 -

G11 002 014 010 002 001 000 001 010 038 1094 .

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.3: Confusion matrix for this work’s model without data augmentation.

reader can refer to the confusion matrices in Figure 5.3 and Figure 5.4. Remember all the results
are tested with the leave-one-subject-out technique, and the X-axis is for prediction label while
Y-axis is for actual label.

The real-time performance and recognition test results are shown as Table 5.3. Because the cur-
rent TensorFLowSharp liabraries only support the CPU version of TensorFlow, so the time test
are mainly all from CPU processing. But early test in Python libraries on GPU did not show any
improvements in recognition time (about 4ms of this work’s model and 836ms of MobileNetV2
model). The recognition cost does not occupy many computer resources, but it is the procedure of
transforming from inputs to tensors of TensorFlow that takes much time to process (OpenCVSharp
and Unity libraries are used to solve this). The Prediction function is operated 4 times on each
frame, which is because the input images are just cropped to 4 input images to classifier for the 4
fingers separately. So the 27fps is mainly resulted from (6ms + 1.4ms + 2ms + other processing
) x4 which is equal to a latency about 37ms. Future optimization may improve the real-time per-
formance by implementing the recognition pipeline using C/C++ then call dynamic link library
(DDL) files in real-time. Maybe the GPU support of the future version of TensorFlowSharp can
also allow us to use MobilNets [38] to improve the recognition rate through GPU.

Table 5.2: Results compared to MobileNetV2.

Thumb Index Ring Middle

GO Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 G1ll | Mean
Ours 91.64 7796 87.29 9224|9352 69.96 86.78 |81.12 79.40|87.27 71.22 88.20 | 83.88
no DA
Ours 94.08 84.37 87.95 92.24|96.33 79.06 86.55|78.96 82.87|88.32 74.15 89.22 | 86.17
DA*
MobileNetV2 | 98.64 89.34 89.09 95.38|97.07 83.61 92.46|81.68 91.36|89.37 70.95 93.66 | 89.38
no DA

* "DA" means the training is implemented with Data Augmentation.

21

100
GO 98.64 JVE I 013 005 000 000 000 0.01 0.00 000 0.00

G1 CEREE 726 192 0.00 0.00 0.1 0.00 000 0.01 0.01 0.00

G2 771 QeENOcE 243 0.01 0.00 0.01 0.00 0.01 002 002 0.00 80

G3 259 192 EEEER 001 0.00 0.01 000 000 0.00 0.00 000

G4 ; 0.01 003 0.01 268 009 008 000 0.01 0.00 0.00 60

G5 002 002 000 680 945 000 0.01 0.01 0.00 0.00

G6 0.01 0.01 0.01 0.16 (W7 31 000 000 0.00 0.00 000

G7 000 011 000 036 000 0.01 1783 0.00 000 0.00 40

G8 0.00 0.01 000 0.00 0.00 007 842 meikicw 005 002 0.08

G9 : 0.01 0.01 000 0.01 0.00 0.01 002 002 969 085 20
G10 000 003 000 000 003 o001 0.01 002 17.20 - 11.75

G111 0.00 0.01 000 000 000 000 000 000 043 5091

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.4: Confusion matrix for MobileNetV2 without data augmentation.

Table 5.3: Real-time test between this work’s model and MobileNetV2 model.

Frame Recognition Time to transform

rate time input to tensorr
Ours 27 ~ 30fps 1.4ms 5 ~ 6ms
MobileNetV2 | 1fps 251.2ms 5 ~ 6ms

5.3.4 Generalization across different prototypes

The camera currently is just attached using seccotine, so there are variances in distance or angle of
the mounted camera. And for a left hand controller, there are also variances between the fingers of
one’s left hand and right hand. The grip strength of different users is also a variance. So to present
a general understanding for readers who want to reproduce this work, the evaluation across the
three prototypes is shown in Figure 5.1. The New Right-hand version is different mainly from the
weight compared to the Right-hand version, which is a new designed prototype for right hand and
is more lightweight than another two prototypes.(An Arduino micro-controller is ever used as a
switch of the LEDs.) Without the Vive controller (weighs 206g), the weight of the Right-hand
prototype is about 284g, which is as same as the Left-hand one, while the New right-hand on is
about 185g. The Left-hand version is just like a mirror flip version to the Right-hand one.

All the tests are implemented with the data collected from subject1, subject4, and subject15, and all
the tests are the leave-one-subject out test, i.e.training on 19 subjects using the dataset collected by
the Right-hand prototype (the dataset used in implementation), test on dataset collected by another
two prototypes. This means the data is also collected using the Left-hand prototype and the New
Right-hand prototype from the three subjects who are subjectl, subject4, subject15. The results
on this work’s model and MobileNetV?2 are showed in Figure 5.5 and Figure 5.6. It shows a lower
accuracy on another two prototypes. Beyond the Air Left posture, top-3 postures are relatively
robust across different prototypes. Results on a stronger classifier shows reliable generalization

22

across different prototypes. Results on the Left-hand prototype is the lowest one, the main reason
is thought that because the different grip gesture when one uses left hand. The grip strength of the
left hand is usually weak than one’s right hand, so it is hard to perform just the same posture when
using right hand.

Accuracy results on the New Right-hand prototype is lower than the original right-hand one but
the top-3 high accuracy is relatively not changed (Air Left, Air Right, Touch Trigger). There are
also outliers in the results.

Overall, this work’s approach is reliable across different prototypes in the top-3 postures aver-
agely. And from the comparison to MobileNetV2, it showed that better classifier can be applied to
increase the posture robustly recognized in the future. The decline in accuracy is thought because
of the minor changes of the camera’s position (distance and angle to the hand).

100

7
90 = 8787 8389 9
80 76
70
60 56
50
40
30
20
10
0

Air Left AlerddIeAlerddIe AirRight Touch AirClose AirFar TouchR No Touch No Touch No Touch TouchM Mean
Trigger Trigger Trigger

mleft-hand = Newright-hand = Right-hand Results oL model

Figure 5.5: Results on generalization across different prototypes using this work’s model.

100

% o8 0
20 82
80
70
60
50
40
30
20
10
0

Air Left AlerddIeAlr Mlddle AirRight Touch AirClose AirFar TouchR No Touch No Tou(:h No Touch Touch M Mean
Trigger Trigger Trigger

sleft-hand = New right-hand = Right-hand Res“'ts on M°b"e""°“’2 model

Figure 5.6: Results on generalization across different prototypes using MobileNetV2.

23

Chapter 6

Example Applications

With the top-3 high accuracy postures, inputs from thumb and index finger are able to be design
interaction applications. However, the middle or ring finger need to help to hold the controller,
so these fingers’ postures are not intentional control input that thought to be not applicable. The
application cases can be mainly divided into two types based on the extra finger postures inputs:
(i) Control a third-person virtual character, vehicle, or other objects and extend the input pattern.
(ii) Enhance the hand presence leveraging each finger posture to map matched finger animations
or to render a hand model.

6.1 Extend third-person controls of VR contents

The thumb postures in air can extend the inputs beyond the thumb stick or touch panel of Vive
controller. In this work’s implementation with the Vive controller, the inputs can be designed
to control third-person vehicles. Also, the Touch Trigger posture can extend the trigger input of
Vive controller. For example, a transformable robot game is developed . Figure 6.1 illustrates
this work’s gesture control design for the transform robot game. In the illustration, Touch Trigger
posture extends the attack pattern (A). Touch Trigger triggers a move pattern while Press Trigger
triggers an another move pattern. When fingers do not touch the controller, a transform input is
triggered to transform the robot to a tank robot. Leveraging the touch pad input to control a move

B

Button press

Thumb in air, right

Thumb up Thumb in air, left

Figure 6.1: The transformable robot game developed.

24

operation of the tank robot on the ground. Gesture of free the fingers enable a transform input (B,
Left). While performing the Air Middle High posture, it enables the rise of the air plane and using
the Air Left/Right posture to control the direction of flight. Move the tank robot on the ground by
the touch panel while control the plane through thumb postures in air. (B, Right)

6.2 Improve the sense of hand in VR

With further improvements on top-4 high accuracy, touch events from the touch panel of Vive and
Touch Trigger, Touch M posture, can perform a grip gesture can be controlled to grasp a virtual
object or throw the object. For example, showed in Figure 6.2 (A), leveraging Touch M and Touch
R posture with the touch pad of Vive controller can enable a grab gesture to control VR objects.
When posture a grab gesture by thumb, index finger and middle fingers, a virtual object is attracted
to the hand just like some kind of gravity. Just like the solution of Oculus Touch, using the posture
inputs can also render discrete hand poses to enhance the hand presence in VR. The demo showed
in Figure 6.2 (B) is a finger tracking example developed in Unity. It controls a state machine of
each fingers to map a corresponding finger animation, which provides a model that shows what
the user’s finger are doing when holding the controller. This enables first-person input control
interaction. It is noted that the trigger component and the press button for middle finger on Vive
controller do not support touch event input.

moving

ﬁ

Grab with fingers

Figure 6.2: The finger tracking demo developed.

25

Chapter 7

Preliminary Experiment for
Combination of the Approaches

In the chapters above, two methods to enhance the interaction ability for VR controllers are in-
troduced, the SFC sensing method and the CNN-based vision sensing method. SFC sensing can
reliably recognize the user’s holding or touch gestures than traditional capacitive sensing, but can
not perceive the fingers’ gesture in the air. On the contrary, visual sensing can analyze the move-
ment of fingers in the air, so it is expected that the combination of these two methods is a promising
approach to achieve hand recovery for VR controllers. In this chapter, an initial exploration of the
combination of these two methods is presented . Furthermore, based on this work’s attempts, de-
sign insights learned from this work are reported.

7.1 Prototype Overview

Figure 7.1 shows the main hardware components of this work’s prototype for the combination
of the two approaches. The hardware parts have not changed much compared to the two sensor
parts described in the previous chapters. For this hardware device, a finger tracking demo is also
implemented. The execution mechanism of the demo system is shown in Figure 7.2. It is noted
that the input of touched fingers represents the touch input from SFC sensor, while finger position
classification label represents the input of finger postures from camera sensor. The software oper-
ating conditions of the system are the same as the experimental settings mentioned in the previous
chapter.

7.2 State Machine Method

A state machine method is used to combine the output of two sensors. Considering that the SFC
sensor can detect touch events more reliably, the middle finger gestures from the camera sensor
is not used to input the gesture of the middle finger, but the middle finger gestures from the SFC
sensor. The corresponding 14 gestures (states) are shown in Table 7.1. A state machine is also
called a state transition graph. The transition mechanism of this work’s state machine is shown in
Figure 7.3. In total, 14 discrete gestures are classified for the combination system.

26

SFCS Sensor with 2 sensing electrodes

3D printed supporting rig

Modified NIR camera

HTC Vive VR handheld controller

Figure 7.1: Main hardware components of this work’s prototype that attached to a Vive controller.

Arduino USB cable

Unity with 5Vpower USB cable

C# Script
Camera USB cable \

Excontroller

Windows Desktop PC

Arduino

Input of touched fingers

Finger 3D
Finger position classification label
Animation Controller

Camera
Figure 7.2: Overview of the combination system diagram.
Sensor || Thumb \ Index | Middle | Ring [Num. of gestures
Touch Almui Touch Almui
SFC / Touch Tape / 5
Touch Tape No Touch
Air Left Touch Trigger

Air Middle Touch

Camera Air Right Air Close Trigger / 9
Air MiddleHigh | Air Far Trigger No Touch

Table 7.1: States created for the state machine.

27

Finger type:
Thumb, Index, Middle, Ring

Is SFCS triggered? 2
Yes
Finger in air
Block NIR output NIR output ON

Finger animation controller

Finger animation: Thumb, Index, Middle, Ring

Figure 7.3: Diagram of system logic processing.

7.3 Limitations

In this work’s test, although when the two sensors work separately, the real-time frame rates can
reach 15 fps and 30 fps respectively. But when combining the input parts of the two sensors
together, the frame rate of the system decreases to about 1 fps. Since the whole system almost
relies on the CPU for calculation and processing, it is an option to upgrade the hardware. But for
the combination of the two methods, as it is still a preliminary attempt, it is thought to be entirely
feasible to optimize the software processing to improve the running frame rate. Similarly, the
weight of the whole controller is increased by simply putting the two sensor parts together. This
is a burden on users. These limitations will be discussed in detail in later chapters.

28

Chapter 8

Discussion

Because the traditional camera-based method and data glove method still cannot meet the user’s in-
teraction needs, such as the occlusion problem and the uncomfortable wearing sense of data glove.
Oculus Touch controller and Knuckles controller provide users with a more real sense of hand
ownership by finger tracking while holding the controller. These controllers inspired this work’s
exploration of the possibilities of finger tracking for handheld controller-based interaction. In this
paper, two approaches of adding different sensors are explored in order to improve the possibil-
ity of interaction using VR controllers. One is to use the sensor matrix method based on SFCS.
Compared with the traditional capacitive sensing method, SFCS can detect two-dimensional data
based on time stamp and frequency, thus providing more detectable touch information. The other
is gesture classification method based on deep learning, which is applied to a modified webcam.
These two methods are used to implement the prototypes of the conceptual device. As for the fin-
ger tracking demo, frame rates of the two software systems can reach 15 fps and 30 fps respectively
in real-time.

8.1 Limitations

Based on the principle of SFCS, the method of constructing sensor metrics can increase the res-
olution, but its recognition results still depend on machine learning method. Not only that, but
it still relies on specific design tasks when try to construct a sensor matrix. For example, in this
work’s experiment, for the middle finger, when the Touch Tape gesture is triggered, the result curve
of Touch Tape is one pattern, while when Touch Alumi is triggered at the same time, the result
curve of Touch Tape of middle finger gesture is another pattern. This problem is called multi-touch
problem by this work. Although the sensor matrix has been constructed, and each circuit has been
made independent in software processing. However, when two fingers (in this work’s implemen-
tation, the middle finger and the thumb) touch the sensing electrode at the same time and when
two fingers touch the sensing electrode at different times, the capacitive profiles of Touch Tape in
these two cases are different. Because the electrical circuit composed by the body and the sensor
itself has changed, the capacitance of the whole circuit has also changed. This problem may be
solved by increased the number of samples, but meanwhile this way could add extra latency of the
recognition program. In total, decreasing the sweep resolution improved real-time performance of
this work’s prototype, but also reduced the robustness of gesture recognition in this work’s applica-
tion. Another limitation is that this work’s current software processing only uses the consistency
of curve results to distinguish different touch events. Machine learning method can increase the

29

reliability of the results, but it still needs to face the problem of generalization in different subjects.
Team of Touché [24] project used a customized device, so using the same device may also improve
the accuracy of recognition.

In the camera method, this work’s finger gesture recognition accuracy results show that the clas-
sifier can be reliably recognized in the top-4 high accuracy gestures. But misclassification shows
that the classifier can’t recognize finger gestures in the air very well. In addition, in the actual
test of finger tracking demo, it seems that the matching effect of gesture animation with accuracy
over 95% makes subjects feel more reliable visually. Three different prototype devices are tested.
Because of the slight difference between the position and angle of the camera, the accuracy of
prototype devices that not used for data collection is lower. Especially, the left-hand device in Fig-
ure 5.1 decreased much. By making the camera fixed into the 3D model when designing the 3D
print from the beginning, it is thought that this problem can be solved to some extent. It should be
emphasized that the accuracy test results provided by us are generalization tests among different
20 experimental objects, so this work’s equipment has a certain practical reliability.

From previous work on fingers’ freedom for on-device interaction, it is known that the thumb
has a larger range of motion, so the thumb-based gesture interaction may be better designed. Es-
pecially based on intentional interaction, such as left and right position and up and down position
that are able to control the movement of virtual objects or interactive interfaces. In the previous
chapter, four different methods to attach the camera are given. It is expected that if the camera
is positioned directly above the controller in Figure 4.3, the recognition rate of the Air Left, Air
Middle and Air Right gestures of the thumb could be recognized with higher rates, but the pre-
diction of the Air Middle and Air Middle High gestures may be misclassified. This is because it
is difficult to distinguish depth information from two-dimensional images. For example, in this
work’s current installation, similar misclassification also occurred in the Air Middle posture and
the Air Right posture. But furthermore, it is also considered to add two or even three cameras to
increase the accuracy of posture recognition. In this case, choosing a camera with a larger angle of
view and smaller size could make the prototype more compact. At the same time, using multiple
cameras can also support to analyze the depth information of finger position to recovery the 3D
gesture of the whole hand.

And for both of the sensors, a common limitation is that, for both of the approaches, it is neces-
sary that users must naturally and correctly hold the controller to enable the SFC sensor or camera
sensor correctly. For the SFC sensor, especially for the middle finger, because the size of each
person’s hand and the length of the finger are different, when the user holds the controller with the
most natural grip, the place where each person’s middle finger falls correspondingly differs. Then,
because of the different grip strength of subjects, the middle finger and ring finger may locate on
different positions of the controller surface, resulting in an unreliable recognition.

The combined testing of the two initial methods shows that there is still space for improvement
in the software and hardware parts. With regard to improving the frame rate of finger tracking
demo, the input and recognition programs of SFC sensor and camera sensor can be rewrited into
a dynamic link library (DDL) file based on C++, and then call the library functions in real time
when the Unity program runs. In this way, the latency are thought to be decreased. In terms of

30

A B

Figure 8.1: Conceptual design illustration of feasible VR example applications.

hardware equipment, choosing smaller micro-controller device should reduce the weight of the
whole prototype equipment.

8.2 Design Insights

In this paper, on-controller based gesture recovery are explored. However, due to the difficulty
of obtaining depth information from very close range images, the issue of continuous full hand
recovery is still challenging. Even so, this work is thought to create a meaningful step forward
in this design space. In this section, design insights about other application tasks based on this
work’s device prototype are discussed.

This paper provides a discrete real-time gesture recovery performance for Vive VR controller held
by users. Based on the design of Vive controller, proposed prototype is suitable for VR applica-
tions that require a highly visual finger performance. It is also applicable to VR tools that need
to be held by users. Specially, ideally it is thought that this prototype is suitable for a simulation
of VR woodwind string instruments, which can be used in education field of instruments teach-
ing. Illustrated as Figure 8.1 (A), For example, when designing a VR flute application, both of
the controllers can be together used to simulation the real finger gesture when play a flute. The
flute generally has six holes for users to blows across, by which users can play a melody. The six
holes can be mapped to six different touch gestures from a pair of Vive controllers. One 2D SFC
sensor matrix prototype can provides at least 4 different touch gestures, so it entirely satisfies the
design requirements. The movement of finger in the air can be visually seen for users to give them
a realistic experience of playing the flute. As for a generalization, it can be applicable to most
woodwind musical instruments.

Another application design is shown as Figure 8.1, when a user is driving a car, this work’s pro-
totype can provide the user his or her finger movement visually so that the immerse experience is
increased. Also, the touch information can be used to provide a interaction design, user can learn
how to drive by using the steering wheel. Additionally, with the proper design of VR controller, it
is believed that this work’s system can be scaled well to other VR applications.

31

Chapter 9

Future Work

Exploratory prototypes are designed with different finger postures to perform finger tracking on
Vive controllers. Because of the different hand size and grip strength of subjects, the middle finger
and ring finger may locate on different positions of the controller surface, resulting in an unreliable
recognition. This is found by this work’s real-time demo test on middle and ring finger postures.
But the ring finger postures seem not able to provide effective interaction based on the grip ges-
ture of Vive controller, so just training the dataset without the ring finger data may improve the
recognition rate. So a future work can be conducted by changing the camera distance and angle so
that the camera only images the thumb, index, and middle fingers. For the combination approach,
using 3D printing to customize a controller model to embed the two sensors may make the device
prototype look less bulky.

Through this work, implementation like this work’s NIR camera approach is thought to be fea-
sible for other VR controllers. It is because based on the design of a controller, there is always an
appropriate distance and angle to mount a camera onto it to image all fingers.For example, other
VR controllers such as Oculus Touch controller, even the grip gesture is totally different from the
Vive controller, this work’s approach is thought to be applied like a design of Figure 9.1. The
image from the camera view. Based on the design of Oculus Touch, thumb and index fingers has
more movements in air. But a smaller camera, and other suitable IR LEDs should be reconsidered

Camera View

|

Figure 9.1: A tentative design of prototype for Touch controller.

32

based on the controller’s design. Still, designing a customized 3D print controller should be more
feasible for specific tasks.

With the development of hardware technology, if a depth camera is able to work in a close range
(< 10cm). Future work are also considered to recover the full hand pose for VR controllers. But
the occlusion problem from the controllers is a challenging issue. This work also can be seen a ex-
ploratory approach that recover the discrete hand pose by developed image classification approach.

33

Chapter 10

Conclusion

This paper presented two approaches that enables a real-time finger gesture recognition system for
VR handheld controller. Each prototype is implemented by two different components. One is the
SFC sensor that provide the system for touch information. Another is a NIR camera that applied
with a trained CNN model to obtain the positions of fingers. This paper also explored an initial
prototype to apply a combination of both of the proposed sensing approach to a VR handheld con-
troller. A finger tracking demo is developed in Unity for the two sensors. Real-time performance
of 15 fps and 30 fps were achieved respectively on a consumer computer.

Specially, the NIR camera approach is an enabling technology designed to provide extra inputs
to extend interaction capabilities with VR controllers. The proposed prototype is currently de-
signed for the Vive controller which is able to recognize 12 different finger gestures with relatively
high accuracy. The predictive model is able to generalize on users not occurring during training
with a cross-validation accuracy of 86.17%. Foundlings are that 3 postures can be robustly recog-
nized across different subjects and across different prototypes. This work has taken the first step on
finger tracking based on VR controller and believe that this study can bring new insights to other
researchers in the field of human-computer interaction in VR.

34

Appendix

Dataset sample of finger postures captured the NIR camera.

Air Left Air Middle Air Middle High Air Right

Touch Trigger Air Close Trigger Air Far Trigger

Touch R No Touch
B A T aE
No Touch Far No Touch Close Touch M

35

References

[1] H. M. Elfekey and H. A. Bastawrous. Design and implementation of a new thin cost effective
ac hum based touch sensing keyboard. In 2013 IEEE International Conference on Consumer
Electronics (ICCE), pages 602-605, Jan 2013.

[2] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar Bechtold,
Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith. Finding common ground: A
survey of capacitive sensing in human-computer interaction. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI *17, pages 3293-3315, New
York, NY, USA, 2017. ACM.

[3] Jess Mclntosh, Asier Marzo, Mike Fraser, and Carol Phillips. Echoflex: Hand gesture recog-
nition using ultrasound imaging. In Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, CHI *17, pages 1923-1934, New York, NY, USA, 2017. ACM.

[4] Jess MclIntosh, Charlie McNeill, Mike Fraser, Frederic Kerber, Markus Lochtefeld, and An-
tonio Kriiger. Empress: Practical hand gesture classification with wrist-mounted emg and
pressure sensing. In CHI, 2016.

[5] L. Dipietro, A. M. Sabatini, and P. Dario. A survey of glove-based systems and their appli-
cations. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(4):461-482, July 2008.

[6] Siddharth S. Rautaray and Anupam Agrawal. Vision based hand gesture recognition for
human computer interaction: a survey. Artificial Intelligence Review, 43(1):1-54, Jan 2015.

[7] Andrea Colago, Ahmed Kirmani, Hye Soo Yang, Nan-Wei Gong, Chris Schmandt, and
Vivek K. Goyal. Mime: Compact, low power 3d gesture sensing for interaction with head
mounted displays. In Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology, UIST *13, pages 227-236, New York, NY, USA, 2013. ACM.

[8] Liwei Chan, Chi-Hao Hsieh, Yi-Ling Chen, Shuo Yang, Da-Yuan Huang, Rong-Hao Liang,
and Bing-Yu Chen. Cyclops: Wearable and single-piece full-body gesture input devices. In

Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
CHI ’15, pages 3001-3009, New York, NY, USA, 2015. ACM.

[9] Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. Omnitouch: Wearable multitouch in-
teraction everywhere. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST *11, pages 441-450, New York, NY, USA, 2011. ACM.

[10] Gilles Bailly, Jorg Miiller, Michael Rohs, Daniel Wigdor, and Sven Kratz. Shoesense: A new
perspective on gestural interaction and wearable applications. In Proceedings of the SIGCHI

36

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Conference on Human Factors in Computing Systems, CHI 12, pages 1239-1248, New York,
NY, USA, 2012. ACM.

David Kim, Otmar Hilliges, Shahram Izadi, Alex D. Butler, Jiawen Chen, Iason Oikonomidis,
and Patrick Olivier. Digits: Freehand 3d interactions anywhere using a wrist-worn gloveless
sensor. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and
Technology, UIST 12, pages 167-176, New York, NY, USA, 2012. ACM.

Manuel Pritorius, Dimitar Valkov, Ulrich Burgbacher, and Klaus Hinrichs. Digitap: An eyes-
free vr/ar symbolic input device. In Proceedings of the 20th ACM Symposium on Virtual
Reality Software and Technology, VRST ° 14, pages 9—-18, New York, NY, USA, 2014. ACM.

Liwei Chan, Yi-Ling Chen, Chi-Hao Hsieh, Rong-Hao Liang, and Bing-Yu Chen. Cyclop-
sring: Enabling whole-hand and context-aware interactions through a fisheye ring. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Technology,
UIST 15, pages 549556, New York, NY, USA, 2015. ACM.

Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun Hsieh, Aaron
Nicholls, and Chongyang Ma. Facial performance sensing head-mounted display. ACM Trans.
Graph., 34(4):47:1-47:9, July 2015.

Kyle Olszewski, Joseph J. Lim, Shunsuke Saito, and Hao Li. High-fidelity facial and speech
animation for vr hmds. ACM Trans. Graph., 35(6):221:1-221:14, November 2016.

Xing-Dong Yang, Khalad Hasan, Neil Bruce, and Pourang Irani. Surround-see: Enabling
peripheral vision on smartphones during active use. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology, UIST * 13, pages 291-300, New York,
NY, USA, 2013. ACM.

Alex Butler, Shahram Izadi, and Steve Hodges. Sidesight: Multi-"touch" interaction around
small devices. In Proceedings of the 21st Annual ACM Symposium on User Interface Software
and Technology, UIST 08, pages 201-204, New York, NY, USA, 2008. ACM.

Sven Kratz and Michael Rohs. Hoverflow: Expanding the design space of around-device
interaction. In Proceedings of the 11th International Conference on Human-Computer In-
teraction with Mobile Devices and Services, MobileHCI ’09, pages 4:1-4:8, New York, NY,
USA, 2009. ACM.

F. Aezinia, Y. Wang, and B. Bahreyni. Touchless capacitive sensor for hand gesture detection.
In SENSORS, 2011 IEEE, pages 546-549, Oct 2011.

Mathieu Le Goc, Stuart Taylor, Shahram Izadi, and Cem Keskin. A low-cost transparent
electric field sensor for 3d interaction on mobile devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’ 14, pages 3167-3170, New York,
NY, USA, 2014. ACM.

Joanna Bergstrom-Lehtovirta and Antti Oulasvirta. Modeling the functional area of the
thumb on mobile touchscreen surfaces. In Proceedings of the 32Nd Annual ACM Confer-
ence on Human Factors in Computing Systems, CHI *14, pages 1991-2000, New York, NY,
USA, 2014. ACM.

37

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Hyunjin Yoo, Jungwon Yoon, and Hyunsoo Ji. Index finger zone: Study on touchable area
expandability using thumb and index finger. In Proceedings of the 17th International Con-
ference on Human-Computer Interaction with Mobile Devices and Services Adjunct, Mobile-
HCI ’15, pages 803-810, New York, NY, USA, 2015. ACM.

Huy Viet Le, Sven Mayer, Patrick Bader, and Niels Henze. Fingers’ range and comfortable
area for one-handed smartphone interaction beyond the touchscreen. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, CHI °18, pages 31:1-31:12,
New York, NY, USA, 2018. ACM.

Munehiko Sato, Ivan Poupyrev, and Chris Harrison. Touché: Enhancing touch interaction on
humans, screens, liquids, and everyday objects. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI *12, pages 483-492, New York, NY, USA,
2012. ACM.

Chris Harrison, Munehiko Sato, and Ivan Poupyrev. Capacitive fingerprinting: Exploring
user differentiation by sensing electrical properties of the human body. In Proceedings of the
25th Annual ACM Symposium on User Interface Software and Technology, UIST *12, pages
537-544, New York, NY, USA, 2012. ACM.

Ivan Poupyreyv, Philipp Schoessler, Jonas Loh, and Munehiko Sato. Botanicus interacticus: In-
teractive plants technology. In ACM SIGGRAPH 2012 Emerging Technologies, SIGGRAPH
"12, pages 4:1-4:1, New York, NY, USA, 2012. ACM.

Mert Canat, Mustafa Ozan Tezcan, Celalettin Yurdakul, Eran Tiza, Bugra Can Sefercik, Idil
Bostan, Oguz Turan Buruk, Tilbe Goksun, and Oguzhan Ozcan. Sensation: Measuring the
effects of a human-to-human social touch based controller on the player experience. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16,
pages 3944-3955, New York, NY, USA, 2016. ACM.

Colin Honigman, Jordan Hochenbaum, and Ajay Kapur. Techniques in swept frequency
capacitive sensing: An open source approach. In NIME, pages 74-77, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran
Associates, Inc., 2012.

Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time continuous pose
recovery of human hands using convolutional networks. ACM Trans. Graph., 33(5):169:1-
169:10, September 2014.

Xingyi Zhou, Qingfu Wan, Wei Zhang, Xiangyang Xue, and Yichen Wei. Model-based deep
hand pose estimation. CoRR, abs/1606.06854, 2016.

Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan Kim, Stephen Tyree, and Jan
Kautz. Online detection and classification of dynamic hand gestures with recurrent 3d con-
volutional neural network. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2016.

38

[33] Lionel Pigou, Sander Dieleman, Pieter-Jan Kindermans, and Benjamin Schrauwen. Sign
language recognition using convolutional neural networks. In Lecture Notes in Computer
Science, pages 572-578. Springer, 2015.

[34] Ao Tang, Ke Lu, Yufei Wang, Jie Huang, and Houqiang Li. A real-time hand posture recogni-
tion system using deep neural networks. ACM Trans. Intell. Syst. Technol., 6(2):21:1-21:23,
March 2015.

[35] Brandon Garcia and Sigberto Alarcon Viesca. Real-time american sign language recognition
with convolutional neural networks. Convolutional Neural Networks for Visual Recognition,
2016.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015.

[37] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices, 2017.

[38] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications, 2017.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks, 2018.

[40] Sean Ryan Fanello, Cem Keskin, Shahram Izadi, Pushmeet Kohli, David Kim, David
Sweeney, Antonio Criminisi, Jamie Shotton, Sing Bing Kang, and Tim Paek. Learning
to be a depth camera for close-range human capture and interaction. ACM Trans. Graph.,
33(4):86:1-86:11, July 2014.

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov 1998.

39

Publications and Conference
Presentations

[1] Junjian Zhang, Yaohao Chen, Satoshi Hashizume, Naoya Muramatsu, Kotaro Omomo,
Riku Iwasaki, Kaji Wataru, and Yoichi Ochiai. 2018. EXController: enhancing interac-
tion capability for VR handheld controllers using real-time vision sensing. In Proceed-
ings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST
"18), Stephen N. Spencer (Ed.). ACM, New York, NY, USA, Article 87, 2 pages. DOI:
https://doi.org/10.1145/3281505.3283385

40

Acknowledgement

Firstly, I would like to express my sincere gratitude to my principal supervisor Professor Yoichi
Ochiai for the continuous support of my master study. Furthermore, I am very grateful to members
of my research lab who helped me, especially to Yaohao Chen, Satoshi Hashizume, Naoya Mura-
matsu, Kotaro Omomo, Riku Iwasaki, and Kaji Wataru, for the useful comments and cooperation,
. Also, I would like to thank to all the subjects who participated in the data collection task. With
their time to join this research, I complete the implementation successfully. Finally, I want to thank
all the institutions for making their valuable comments on this thesis.

41

