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Chapter 1

Introduction

One important goal of education is to help students acquire new “skills” that are useful for
achieving their goals in life. In educational science, a skill refers to an elementary constituent
of knowledge obtained through learning [1]. Skill refers to any knowledge, not limited to
procedural ones, representing a general state of understanding often characterized by a
distinguishable moment of “getting it”. For example, knowing how to factor a polynomial
is a skill. Understanding the laws of motion is a skill too.

To be a good instructor, one must monitor how well each student is doing in acquiring
skills. Based on such monitoring, the instructor can adjust how fast they explains the
material or whether they should go back to what they has just presented.

In practice, however, it is not easy to know how well each student understood, especially
when there are many students in the classroom. It becomes even harder in online education,
which is becoming increasingly popular in recent years. It is therefore natural that instruc-
tors try to know how well students understood through requiring them to take a test. The
total score of a test reflects how well the student has understood about the whole subject.
However, if the aim is to know the level of understanding at a finer scale, that is, for each
skill rather than the whole subject, the instructor must explicitly assign to each problem
what skills are necessary to answer it correctly. The process would require much manual
work, so instructors often will not do it. Then they will not know what skills each student
has acquired and what skills he has not. Ｍ oreover, it is likely to lead to lessons where
students are left behind because students can not analysis for mistake of tests myself.

To confront this issue, we propose a method of automatic skill extraction from test
scores. The method defines skills by grouping problems and at the same time estimating
how well each student is doing in acquiring these skills. It frees instructors from tedious
work of specifying what skills are needed to solve each problem.

The approach we take is similar to clustering. Problems do not need to be assigned
to predefined skills manually. Instead, we define skills automatically as vectors consisting
of relevant problems. This is accomplished by sparse modeling, which is a mathematical
procedure that decomposes an observed matrix into a product of two matrices, one being
sparse. In our case, matrix representing test scores would be decomposed into matrix that
relates students to skills and two matrix that relates skills to problems. One merit of this
approach is that implicit and subtle skills that were previously unknown to the instructor
may be obtained in addition to obvious ones.
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Chapter 2

Related work

2.1 Test-result matrix, skill-acquisition matrix, Q-matrix

The result of a test can be represented using matrix that denote it by R. Each row represents
a student, and each column represents a problem. An element Rij represents the score
student i obtained for problem j. We will call such matrix a test-result matrix. A skill-
acquisition matrix D is matrix whose element Dih represents how well student i has
acquired skill h. For procedural knowledge, acquiring a skill can mean that one become
able to conduct a certain procedure. For conceptual knowledge, acquiring a skill means
grasping a specific concept.

A Q-matrix Q represents what skills are necessary to solve each of the problems in a
test. Each row represents a skill, and each column represents a problem. In other words,
Qhj represents how much skill h is required to solve problem j. Some researchers assume
that the elements of the Q-matrix should be binary, that is, be either 0 or 1. The value
represents whether the corresponding skill is necessary to solve the problem or not. In
this thesis, we define the Q-matrix to be real-valued. Each element of the Q-matrix then
represents how much each skill is required for solving each problem [2, 3, 4].

2.2 Matrix factorization for skill estimation

Let R ∈ Rm×n, D ∈ Rm×k, and Q ∈ Rk×n. An element Rij of a test-result matrix R is the
score that student i obtained for problem j. Our model assumes that the score Rij results
from the weighted sum of certain skills necessary to solve problem i.

An element Dih of skill-acquisition matrix D represents how well student i did in ac-
quiring skill h. An element Qhj of a Q-matrix Q represents how important skill h is to
solve problem j. The product DihQhj would contribute when student i tackles problem j.
Using h to represent the number of skills, the sum

∑k
h=1 DihQhj is the resulting score, and

it should be close to Rij . In other words, Rij ≈
∑k

h=1 DihQhj . Since this applies to all
i and j, three matrices R, D, and Q should fulfill R ≈ DQ. Therefore, skill estimation
can be formalized as matrix factorization problem that finds matrices D and Q that fulfill
R ≈ DQ. Since R can be approximated by D and Q in multiple ways, more restric-
tions are added to obtain a solution that is most suitable the purpose of modeling skills.
Depending on what kind of restriction is added to the elements of the factor matrices D

and Q, there are several ways to decompose matrix for skill estimation, as described in the
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following subsections.

2.2.1 Boolean matrix factorization (BMF)

A binary matrix is matrix where all of its elements are either 0 or 1. Boolean matrix
factorization (BMF) factors a binary matrix into a product of two binary matrices [5]. In
other words, it decomposes R ∈ {0, 1}m×n into a product of D ∈ {0, 1}m×k and Q ∈
{0, 1}k×n. If a score given to any of the problems are neither zero nor one, BMF cannot be
used. Further, BMF cannot express a state where a student has partially acquired a certain
skill since the elements of the skill-acquisition matrix cannot take a fractional value, i.e.
0.1, 0.01, etc.

2.2.2 Non-negative matrix factorization (NMF)

A non-negative matrix is matrix whose elements are all non-negative. Non-negative matrix
factorization (NMF) decomposes a non-negative matrix into a product of two non-negative
matrices [6]. Educational data mining researchers have been using it for obtaining skills
[1, 7]. However, one limitation of applying NMF for factorizing a test-result matrix is that
it adds the non-negatively constraint. For example, observed data (test scores) cannot be
statistically standardized, since it would result in negative values.

2.3 Sparse modeling

Sparse modeling is an approach where observed data is broken down into a superposition
of a few templates.When templates are given in advance, it is called sparse coding. In the
case of an image, it is thought that various images are generated by overlapping templates
called base images. Sparse modeling also covers the case where templates are obtained from
data, that is, in an unsupervised manner. It can be formalized as factorization into matrix
of templates and a sparse matrix of weights. Its alternative name is dictionary learning
since the matrix consisting of templates is often called a dictionary [8].

The observed datmatrix R can be considered as a series of samples, where each column
of R is a sample. Sparse modeling tries to reconstruct each sample R:j using a weighted
sum of templates. Templates are selected from dictionary represented by matrix D. For
each h, the hth column D:h of D is a template, and Qhj is a weight given to template D:h

for obtaining an observed sample j.

R:j ≈
k∑

h=1
D:hQhj (2.1)

The restriction is that each observed sample R:j should be reconstructed using as few
templates as possible. The maximum number of templates used for reconstructing each
sample is indicated by s. It corresponds to the maximum number of non-zero elements
allowed to appear in Q:j , and is a parameter that must be set in advance. In other words,
Q should be a sparse matrix. Hence the name, sparse modeling.

In sparse modeling, templates are constructed solely from observed data, and no tem-
plates need to be defined in advance. It is similar to the process of clustering. Samples
are grouped into clusters that naturally form based on how samples are distributed. There
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is no need to define clusters in advance. Like clusters, templates are constructed based on
how samples distribute.

Sparse modeling has attracted much attention in many fields including signal processing,
machine learning, and data science, due to its versatile nature of modeling a wide range of
phenomena [9]. In this thesis, we propose to apply sparse modeling for finding skills and
their relations to test problems and students from the test-result matrix. In this application,
the dictionary corresponds to the skill-acquisition matrix, and the sparse matrix corresponds
to the Q-matrix.
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Chapter 3

Feature analysis on students’
behavior

In this section, we describe our analysis on how students behave on an e-learning system.
When using e-learning system, one can predict the student’s performance by directly observ-
ing the learning method that mean “skills”. In addition, by analyzing the model predicting
performance, you can discover learning method that contributed to your grades.

Also, predicting the final grade scores of students from how they interacted with an
e-learning system is important for developing and improving system for online learning.
If some functions in the system affect students’ final grade scores significantly, it will be
worthwhile to put more effort in extending those functions. Also, teachers can guide students
to use the e-learning system in ways that would increase their expected final grade scores.

In this work, logs recorded on an e-learning system that provides online teaching material,
were used to predict the final grade scores of students. The system used for logging is
BookRoll [10, 11, 12]. BookRoll is a developed systems that allows to view digital materials
used in lectures. It is an online environment which allows teachers to upload content as
pdf file which the student can browse anytime and anywhere from web browser in their
personal devices (computer or smartphone). There are features like bookmarks, markers,
memo functions, which the students can use for learning. The data was provided for the
5th ICCE workshop on Learning Analytics (LA) Joint Activity on Predicting Student
Performance.

3.1 Datasets

Datasets colleceted by BookRoll consists of dataset 1, which is of one intensive lecture, and
dataset 2, which spans three lectures. For each of these courses, there are two main types
of features, namely clickstream and scores.

The details of the file columns are 3.1 and 3.2.
Dataset 1 includes 53 students’ scores and 28,826 logs operated by students. Dataset 2

includes 56 students’ scores and 36,929 logs operated by students.
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Table 3.1: Features related to clickstream
feature description example
userid Anonymized student userid ds1001,ds1002
action API verb for the action /xapi/adb/verbs/read
operationname The action that was done OPEN,CLOSE,NEXT,PREV
markercolor Color of the marker added to a page rgb(255,0,0)
processcode Grouping of event logs by event type
devicecode Type of device used to view BookRoll mobile
markerposition The position (x,y,w,h,onscreen w,onscreen h) 367,34,28,20,714,504
description The page the user moved to
pageno The current page
contentsid The id of the e-book that is being read
memotext The text contained in the memo
eventtime The timestamp of when the event occurred

Table 3.2: Features related to scores
feature description example
userid Anonymized student userid ds1001,ds1002
score The final score that received for the course 80,100

3.2 Designed features

Before training machine learning models, we carefully designed features (attributes) that
would contribute to making good predictions. In addition to features already provided in
the data sets, some extra features were constructed heuristically. Event time that student
was just using BookRoll system was split into parts representing year, month, day, day of the
week, and hour within the day. This is to see time in different time scales. By counting the
number of events happened within each time scale, we obtained new attributes representing
how often events happened in a certain time frame. For example, a feature named “hour_8”
represents how many times the student accessed the e-learning system between 8 am till 9
am of any day. A feature named “day_5” represents how many times the student accessed
in day 5 of any month. These features were added based on a hypothesis that times that
students access the system correlates with how motivated or involved they are to the course.
Similarly, the number of times the student accessed a certain page was turned into a feature.
For example, “pageno_10” represents how many times the student accessed page 10 of the
teaching material. This is based on a hypothesis that well-performing students would be
checking out more relevant or difficult part of the teaching material, whereas less-performing
students might be looking at less relevant or easier part of the material. The number of
times the student conducted a specific process is turned into a feature too. For example,
“processcode_3” represents how many times the student performed the process labeled by
3. After adding these features, we trained machine learning models. We evaluated models
with different levels of complexity. Specifically, we compared Lasso, Elastic Net, multilayer
perceptron regressor (MLP), kernel ridge regressor, random forest regressor, AutoSklearn
(Efficient and Robust AutoML for Scikit-learn, abbreviated as AutoML)[13], and gradient
boosting regressor.
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Figure 3.1: Ratio of students having specific scores, sorted in ascending order (for dataset 1)

3.3 Results

3.3.1 Dataset 1

Figures 3.1 and 3.2 illustrate how final grade scores are distributed. Most students scored
between 75 and 100, indicating much deviation from a fitted Gaussian distribution. This
suggests that methods that assume samples follow a Gaussian distribution may not perform
well. For example, since linear regressor is derived from maximum likelihood estimation
where error follows a Gaussian distribution, it may not be an appropriate method in this
case.

Learning curves for different machine learning models are illustrated in Figure 3.3 -
3.9. A learning curve is a graphical representation of how an learning score (measured on
the vertical axis) comes from iteration (the horizontal axis); or how the more someone (or
something) performs a task, the better they get at it. Also, learning curve include “training
scores” and “validation scores”. “Training score” and “validation score” are calculated by
machine learning model learning training data and validation data. Validation scores sig-
nificantly lower than training scores indicate overfitting occurring in some methods. Since
validation scores approach training scores as the number of training sample increases, it sug-
gests that more complex models such as AutoML may perform even better as the number
of samples is increased.

Distributions of RMSE (root mean squared error) for dataset 1 is indicated in Table
3.3 and Figure 3.10. They are obtained by 30 validations, resulting from performing 3-fold
cross-validation 10 times.

After training the random forest, we show the top 20 features that contributed more were
ranked using Gini-importance values. The result is indicated in Figure 3.11. It shows that
“hour_17” feature contributed significantly, which indicates that the number of accesses
that a student makes at 5 pm greatly affects how well the student performance in terms of
the final grade score. The random sequence of characters ranked third in Gini-importance
is an ID for a book that students could access from the e-learning system.

7



Figure 3.2: Score distribution (histogram), fitting by a Gaussian distribution (black line), and
Gaussian kernel density estimate (blue line). (for dataset 1)

Table 3.3: RMSE’s mean and standard deviation for methods compared by dataset 1
method mean std
LASSO 141.7914 200.6841
Elastic Net 137.4087 192.9349
MLP regressor 70.7624 50.5348
kernel ridge regressor 54.7972 26.6537
random forest regressor 23.4546 15.7610
AutoML 23.4572 15.4890
gradient boosting 25.7972 16.3673

3.3.2 Dataset 2

Figure 3.12 illustrates the distribution of final grade scores for dataset 2. It is less concen-
trated around score 100 when compared to dataset 1. However, it is still not well fitted to
a Gaussian distribution, indicating simple models like linear regressor would not be appro-
priate.

Figure 3.13 - 3.19 illustrates learning curves for dataset 2. Like in dataset 1, validation
scores are sometimes much lower than training scores in some models. It suggests that with
more data, complex models may have validation scores closer to training scores, resulting
in better predictions.

Distributions of RMSE (root mean squared error) for dataset 2 is indicated in Table
3.4 and Figure 3.20. They are obtained by 30 validations, resulting from performing 3-fold
cross-validation 10 times.

We show the top 20 features that contributed according to random forest are indicated

8



Table 3.4: RMSE’s mean and standard deviation for methods compared by dataset 2
method mean std
LASSO 1238.1671 5716.8297
Elastic Net 995.1362 4514.8347
MLP regressor 95.9370 130.1382
kernel ridge regressor 50.0973 26.7959
random forest regressor 14.9165 10.0090
AutoML 14.3660 9.4390
gradient boosting 13.3342 9.9282

in Figure 3.21. This time, the ID of a book contributed to most, suggesting referring more
or less to a specific book in the e-learning system greatly affected how well the student
performs in terms of the final grade score. A time feature “hour_5” was also important,
suggesting accessing at a certain time of the day also affects the student’s performance.

3.4 Discussion

Possibly due to the size of datasets, AutoML didn’t perform any better than random forest
or gradient boosting. Using more data might make these complex models more competitive.
Random forest performed best for dataset 1, and gradient boosting did so for dataset 2.
These are ensemble methods, showing their effectiveness with datasets of this size. The
difference in the performance of two models between datasets may result from distributions
of data. In order to explain it, we need to conduct further analysis on the distributions.
Features that contributed most to making predictions included ones regarding times, rep-
resenting at which time of the students were accessing the e-learning system. Features
representing which part of the teaching material were also important. RMSE obtained for
dataset 2 is as low as 13.34 where the grade ranges between 0 and 100, indicating using
log data from an e-learning system can be an effective way of predicting students’ perfor-
mance. One must note, however, that in the datasets used for analysis, scores are mostly
above 70, predictors at this moment may not be useful for predicting how well a moderately
performing student would perform among others. On the other hand, it could be useful for
detecting students that will perform significantly worse than others.

One interesting observation obtained from this analysis is that at what time (hour) of
the day students access the e-learning system greatly contributes to predicting the final
grade score of students. It may suggest that this feature represents a student’s attitude and
motivation toward the course. The results suggest that analyzing log data can contribute
to making e-learning better.
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Figure 3.3: Dataset 1, Lasso Figure 3.4: Dataset 1, ElasticNet

Figure 3.5: Dataset 1, MLP regressor Figure 3.6: Dataset 1, kernel ridge regres-
sor

Figure 3.7: Dataset 1, random forest Figure 3.8: Dataset 1, AutoSklearn regres-
sor

Figure 3.9: Dataset 1, gradient boosting
regressor
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Figure 3.10: Distributions of RMSE over 3-fold cross-validation using 10 different partitions.
Boxes represents the lower to upper quartile values of the data, with a red line at the median.
The whiskers show the range of data (for dataset 1)
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Figure 3.11: Features sorted by Gini-importance, indicating how much each feature contributed
to making predictions in random forest (for dataset 1)
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Figure 3.12: Score distribution (histogram), fitting by a Gaussian distribution (black line), and
Gaussian kernel density estimate (blue line) (for dataset 2)
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Figure 3.13: Dataset 2, Lasso Figure 3.14: Dataset 2, ElasticNet

Figure 3.15: Dataset 2, MLP regressor Figure 3.16: Dataset 2, kernel ridge regres-
sor

Figure 3.17: Dataset 2, random forest Figure 3.18: Dataset 2, AutoSklearn regres-
sor

Figure 3.19: Dataset 2, gradient boosting
regressor
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Figure 3.20: Distributions of RMSE over 3-fold cross-validation using 10 different partitions.
Boxes represents the lower to upper quartile values of the data, with a red line at the median.
The whiskers show the range of data (for dataset 2)
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Figure 3.21: Features sorted by Gini-importance, indicating how much each feature contributed
to making predictions in random forest. (for dataset 2)
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Chapter 4

Factorization of the score matrix

This section describes the method that we will use to extract the skills-acquisition matrix
D and the Q-matrix Q from the test-result matrix R using sparse modeling.

Our proposed method has two main features. One is that it uses K-SVD, an existing
method of sparse modeling that uses an iterative procedure to factorize the observed data
matrix into the product of a dictionary D and a sparse matrix Q. Another feature is to
employ bidictionary learning, which we newly proposed. The purpose of the latter is to
evaluate the number of columns in D, which corresponds to the number of templates. It is
a hyper-parameter usually required to set manually in K-SVD.

4.1 Sparse modeling by K-SVD

Let Ai: denotes the i-th row vector of matrix A and A:j denotes the j-th column vector
of matrix A. Given observed datmatrix R ∈ Rm×n, dictionary learning seeks a dictionary
D ∈ Rm×k and a sparse matrix Q ∈ Rk×n which fulfills R ≈ DQ. The columns of D are
called atoms. They are usually normalized using 2-norm, so that ∥D:h∥ = 1 for all h.

One of the most widely used dictionary learning methods, K-SVD [8], is outlined in Code
1. It starts with a randomly generated dictionary, and iteratively applies two stages, i.e.,
(1) sparse coding and (2) a dictionary update, for a set number of iterations. Dictionary
D stays fixed in the sparse coding stage, and the optimal Q is sought. Any method of
sparse coding can be used, e.g., orthogonal matching pursuit (OMP) or basis pursuit (BP).
Both D and Q are revised in the dictionary update stage. The main goal is to minimize
the norm of the error matrix, E = R−DQ. To measure the overall value of the elements
of E, its Frobenius norm, defined by ∥E∥2 =

√∑
i,j E2

ij , is used. In other words, it is the
square root of the sum of squares of all elements in E. It can be expanded as follows.

∥E∥F = ∥R−DQ∥F =

∥∥∥∥∥∥R−
k∑

j=1
D:jQj:

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
R−

∑
j ̸=h

D:jQj:

−D:hQh:

∥∥∥∥∥∥
F

= ∥Eh −D:hQh:∥F (4.1)

In the final term of Equation 4.1, Eh is defined as R −
∑

j ̸=h D:jQj:. This reduces the
problem to find the rank-1 approximation to Eh for each h. When this approximation is
conducted, Qh: must stay sparse. In order to do this, a smaller matrix Ẽh defined below

17



is introduced, so that the zero entries of Qh: are not revised in the iterative algorithm
described below. An ascending sequence of integers defined by ωh = (q|1 ≤ q ≤ n, Qhq ̸= 0)
is introduced for this purpose. ωh is often called support. ωh consists of the indices of the
non-zero entries of Qh:. Using this, projection matrix Ωh is defined as follows. Let |ωh|
indicate the number of elements in |ωh|. For i = 1, ..., |ωh|, the (wh(i), i)-th entries of Ωh

are 1, and all other entries are 0. Finally, define Ẽh = EhΩh, and Ẽh is then approximated
by a product of a column vector and a row vector. In other words, Ẽh is approximated
by a rank 1 matrix. In K-SVD, singular value decomposition (SVD) is used for this low
rank approximation. Let Ẽh = UΛV T be SVD. Then we can usse an approximation
Eh ≃ Λ11U:1(V:1)T . Finally, U:1 is substituted into D:h, while Λ11(V:1)T is substituted into
the non-zero entries of Qh:. The SVD part can also be replaced by a more computationally
efficient low-rank approximation method [14].

Code 1 K-SVD
Input: Observed data matrix R ∈ Rm×n

Output: Estimated dictionary D ∈ Rm×k and estimated source matrix Q ∈ Rk×n

Set D randomly
for t = 1 to τ

Sparse coding stage:
Get sparse Q that fulfills R ≈DQ

Dictionary update stage:
for h = 1 to k

Eh ←− R−
∑

j ̸=h D:jQj:
Obtain Ωh using Qh:
Ẽh ←− EhΩh

By applying SVD to Ẽh, get U:1, V:1, and Λ11
D:h ←− U:1
Replace the non-zero entries of Qh: by Λ11(V:1)T

end
end

4.2 Model selection by bidictionary learning

The number of columns k for D represents the number of templates. We call this value
the rank. More templates there are, their sum can fit observed data more. This is because
using more templates (which corresponds to the number of columns in D), it is easier to
reconstruct R using a weighted sum of templates. The rank k, therefore, represents how
complex the model is. If k is too large, the model tends to overfit to training data. More
templates there are, less difference there will be between R and DQ, because using more
templates (which corresponds to the number of columns in D), it is easier to reconstruct R

using a weighted sum of templates. However, that would result in overfitting. For example,
if k ≥ n, where n is the number of columns in R, then there is a trivial solution where
there is a template for each sample since there are more templates than there are samples.
It means that k should not be too big to make the dictionary applicable to newly observed
data. In our case, it is necessary to obtain skills that are general enough.

The rank is a hyperparameter that represents the number of templates used to construct
observed data. The value must be optimized to obtain skills that represents the underlining
structure of the test. Since it determines the complexity of the model, optimization of the
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Figure 4.1: Factorization of a test-result matrix R to D and Q by dictionary learning.
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Figure 4.2: In bidictionary learning, R is split into two parts, then dictionary learning is con-
ducted for each part.

column number in matrix factorization is a typical model selection problem. In this thesis,
we propose a way to evaluate k by seeing how stable templates are concerning variation in
observed data. We will call this method bidictionary learning, since two dictionaries are
constructed and compared. By checking how stable templates are when different parts of
observed data were used, we see the reliability of the obtained templates, meaning they are
more likely to correspond to implicit features (in this case, skills), rather than mere noise
and artifacts.

Figure 4.2 illustrates the process of bidictionary learning. First, separate the matrix
into two parts, R(1) and R(2). Second, dictionary learning is carried out for each of the two
parts, so that two dictionaries D(1) and D(2) are obtained. Finally, two learned dictionaries
are compared using the Frobenius norm of the difference.

If templates differ significantly between D(1) and D(2), they are not stable concerning
statistical variation in data. They do not represent the underlying skill structure. We
should choose the model that gives the most stable set of skills. In other words, with the
minimum difference between D(1) and D(2). The best model — or the number of templates
— is the one that makes the difference smallest.

One thing that should be taken care of when measuring the difference between D(1) and
D(2) is that the set of skills does not change by permuting columns in the dictionary and
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Code 2 bidictionary learning
Input: Observed data matrix R ∈ Rm×n and rank k
Output: Estimated difference d̂D

Split R into two parts, R(1) and R(2)

Set d̂D = 0
For h in [1, 2]

Do dictionary learning on R(h) and get D(h) ∈ Rm×k

For i in [1, k]
Find j that minimizes ∥D(1)

:i −D
(2)
:j ∥ and put it into ĵ

d̂D ←− ∥D(1)
:i −D

(2)
:ĵ ∥+ d̂D

Remove column D
(1)
:i from D(1)

Remove column D
(2)
:ĵ from D(2)

rows in the Q-matrix. Equation 4.2 shows that replacing columns of A and rows of B at
the same time results in the same product.

[ A :1A:2]
[

B1:

B2:

]
= A:1B1: + A:2B2: = A:2B2: + A:1B1: = [ A :2A:1]

[
B1:

B2:

]
(4.2)

When measuring the similarity between two dictionaries D(1) and D(2), a column of the
former must be matched to the one that is most similar to it among all columns of the
latter. In other words, we must find the minimum dissimilarity using different transforms
that permute columns of D(2), as expressed in Equation 4.3, where ρ represents a transform
(permutation) that changes the order of columns. m is the number of rows, and k is the
number of columns for D(1).

ďD = 1
mk

min
ρ
∥D(1) − ρ(D(2))∥ (4.3)

Since there are k! permutations of columns in D(2), computing ďD is not feasible when
D(2) has many columns. Instead, we use a greedy algorithm to approximate ďD. The
algorithm is described as Code 2. In each step, it finds the column D

(2)
:j that has the

minimum norm with D
(1)
:i . In other words, it finds D

(2)
:j that minimizes ∥D(1)

:i − D
(2)
:j ∥.

Then columns D
(1)
:i is removed from D(1), and the column D

(2)
:j is removed from D(2). The

sum of the differences obtained in such a greedy manner will be denoted by d̂D. It is an
estimate to ďD.

4.3 Model selection by information theoretic criteria

This section explains how to select models based on information theory. Akaike’s Informa-
tion Criterion (AIC) [15] is a typical example of model selection method based on informa-
tion theory. It is defined as

AIC = −2 ln(L) + 2κ, (4.4)

where L is the likelihood function, κ is the number of parameters.
For dictionary learning, κ is the number of elements in the dictionary D.
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Bayesian Information Criterion (BIC) [16] tries to improve AIC by penalizing it more
when the number of samples are large. It is defined as

BIC = −2 ln(L) + κ ln(n), (4.5)

where n is the number of samples.
The left side of the Equations 4.4 and 4.5 represents the goodness of fit of the model, and

the right side has the effect of regularization. In other words, these criteria are selecting the
most applicable parameters while keeping the model from becoming excessively complicated.
When selecting a model based on AIC or BIC, it is good to select a parameter that minimizes
the score. The likelihood function in dictionary learning is defined as

P (q|D, r) = 1
Z(r, D)

N∏
i=1

[(1− ρ)δ (qi) + ρϕ (qi)]
M∏

µ=1

1√
2π∆µ

e
− 1

2∆µ

(
rµ−

∑N

i=1 Dµiqi

)2

(4.6)

where q is the sparse vector, r is the test-result vector, δ is the Gaussian distribution, ϕ is
the Laplace distribution, ∆ is the noise parameter [17].

4.4 Dataset

By imposing students to take a final exam for a course provided in a university, we requested
that dataset of created by expert for evaluating our proposed method. The course was titled
an Introduction to Databases and targeted on undergraduate students.

In the exam, there were 45 multiple-choice questions. Most questions had four or five
options to choose from, as indicated in the following examples, translated from Japanese.

Sample questions from the exam used in evaluation� �
The set of attributes that a relation has is called Q1 . Two commonly ways to de-
sign Q1 are Q2 and Q3 . When there is a relation having to many attributes
after conducting Q2 , the relation is often further decomposed using Q3 .

Q1. a. dependency. b. transaction. c. SQL. d. candidate key. e. schema.

Q2. a. ER diagram. b. normalization. c. isolation level. d. index. e. relational al-
gebra.

Q3. a. primary key. b. ACID properties. c. index. d. inner join. e. normalization.� �
Among those taking the exam, 100 students agreed to join the experiment and have their

data processed for this work. The test-result matrix R has 45 rows and 100 columns, that
is, m = 45 and n = 100.

The average score of the students was 33.14 correct out of 45 questions. The highest
score was 45, and the lowest score was 16. The standard deviation of the score was 7.61.
The easiest question was the one that 96 students answered correctly. The most difficult
question was the one that only 7 students answered correctly.
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Figure 4.3: Reconstruction error ∥E∥F =
∥R−DQ∥F for different values of k.

Figure 4.4: The unstability ďD of the dic-
tionary as the rank k is changed from 1 to
50.

4.5 Results

4.5.1 Reconstruction error

Throughout the experiments, the number of iteration for dictionary learning is set to 500.
The number of non-zero elements s is set to 3.

The metric for how well the product of the skill-acquisition matrix D and the Q-matrix
Q represents the test-result matrix R is measured using ∥E∥F = ∥R − DQ∥F defined
by Equation 4.1. In this section we will call ∥E∥F the reconstruction error. Figure 4.3
illustrates the reconstruction error ∥E∥F = ∥R − DQ∥F for different values of k. As
expected, the error decreases as k increases, since R can be reconstructed more accurately
using more templates. However, when k is large, we expect that overfitting is happening.

4.5.2 Bidictionary learning

For evaluating bidictionary learning, we use ďD = 1
mk minρ ∥D(1) − ρ(D(2))∥2 introduced

in Section 4.2. We will call ďD the unstability of the dictionary. Figure 4.4 illustrates how
the difference between two dictionaries in bidictionary learning, represented by unstability
ďD, changes as rank k is increased.

The result shows that the instability drops significantly as k increases until k = 8 ∼ 10,
but then shifts to the phase of gradual decrease. It suggests that setting k to around 8 to 10
is suitable since it would give a small enough error without using an over-complex model.

It also happened to be that when the problems in the exam were manually categorized,
they grouped into ten categories. Since it is interesting that the numbers roughly matched,
we conducted a further experiment to see how well categorization based on estimated skills
correspond to manual categorization. The result is presented in the following subsection.

4.5.3 Information theoretic criteria

In order to evaluate the results based on information theory, we used two commonly used
information criteria, AIC and BIC, as described in Section 4.3. Figure 4.5 is the result of
computing AIC and BIC to the dataset. The smaller the score, the better the information
criterion. However, the result shows that the simplest model parameter has the best value.
This result implies that these criteria were not working properly for this model class and
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Figure 4.5: Applying the information criterion of AIC, BIC to experimental data.

Figure 4.6: Comparison of the likelihood
term with the regularization term using
AIC.

Figure 4.7: Comparison of the likelihood
term with the regularization term using
BIC.

the dataset. Figure 4.7 shows the composition of the loss function. The large discrepancy
between the likelihood term and the regularization term was the reason for assigning the
best value for the simplest model. The value of the likelihood term was too large compared
to the penalty imposed by the regularization term.

4.5.4 Comparison with manual categorization

The Q-matrix obtained by sparse modeling was further evaluated based on how well it
classifies problems. First, manual categorization was carried out, grouping problem based
on their similarity and knowledge required to solve them. It resulted in ten categories.
Since there were 45 problems, it means that each contained on average 4.5 problems. This
categorization can be represented by matrix G where Ghj = 1 if problem j is assigned to
category h, and Ghj = 0 otherwise. Next, for each skill h, the elements of the hth row
of Q were sorted, and the four largest elements were assigned to skill h. Since a column
of Q corresponds to a problem, it means four problems were assigned to skill h. This
categorization is represented by Q̃ where Q̃hj = 1 if problem j is assigned to skill h, and
Q̃hj = 0 otherwise.

We would like to compare how two ways of categorization differ. The difference can be
measured using the absolute error defined by ďG = minρ ∥G−ρ(Q̃)∥1, where ρ represents an
arbitrary permutation of rows. However, since checking all permutation of columns would
computationally intense, so ďG was estimated greedily. For each row Gh:, all rows of Q̃
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Figure 4.8: Comparison of error matrices created by an expert and created randomly.

were compared in terms of the absolute error ∥Gh: − Q̃ℓ:∥1, and the ℓth row having the
least value was selected, and removed from Q̃. In this way, we obtain a sequence of absolute
errors between matching pairs.

To evaluate if these errors are small or not, we generated a random assignment of test
problems into categories. For each skill h, four problems were randomly selected. It can be
represented by matrix H in the same way as G. The difference between H and Q̃ were
measured in the same way as between G and Q̃. Figure 4.8 compares error matrices by
expert and random. Figure 4.9 illustrates the result of comparison. In the figure, the skills
were sorted in ascending order of the absolute error. The random assignment had a larger
absolute error than categories assigned by estimated skills. For the random assignment,
the average absolute error was 6.4. For assignment based on estimated skills, the average
absolute error was 5.7.
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Figure 4.9: Absolute errors of categorization of problems based on estimated skills with respect
to manual categorization, compared with random categorization.
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Chapter 5

Conclusion

Sparse modeling of test results provides a way of knowing what problems constitute skills
and how well each student acquired them. In order to use it in practice, one needs to set
the model complexity. In this case, it corresponds to the rank of matrix factorization. We
proposed and compared various model selection methods, including our original method,
bidictionary learning.

We tested the method using an exam taken by college students. Information theoretic
criteria for model selection turned out to be unsuccessful to this task. We assumed it is
due to the complex nature of the dictionary learning task, compared to more well-behaved
statistical models that AIC and BIC has been applied to. On the other hand, bidictionary
learning suggested that the optimal rank could be obtained by measuring the unstability of
dictionaries.

The result of dictionary learning using the selected model complexity showed that the
estimated skills resembles manual categorization of test problems, suggesting the method
can uncover skills implicit in each problem.

Not only is the proposed method practically useful for helping students, but it can also
be used to find elementary units of knowledge that constitute problems. It will provide a
model on what it means to understand the subject taught in a course. This is of much
interest in the field of educational psychology.

Feature analysis for predicting students’ performance on an e-learning system revealed
that time related features play an important role in making good predictions. Students
accessing or not accessing the e-learning system at specific time of the day performed better
than students who didn’t. Among various machine learning methods being compared,
random forest, AutoML, and gradient boosting performed better than other methods. It
suggests that more recently proposed methods improve predictions in educational data
mining as well.

In this work, we only focused on optimizing the rank of matrix factorization, which
partially determines the model complexity. The rank corresponds to the number of tem-
plates used for reconstructing observed data. In sparse modeling, another important hyper-
parameter that determines the model complexity is the number of non-zero elements. In
the experiments, we have used a constant value for this. Optimizing the number of non-zero
elements together with the rank is a part of future work.
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