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This book addresses mathematics originating with Hermann Günther Grassmann [H. G. Graßmann, A
new branch of mathematics. The ‘Ausdehnungslehre’ of 1844, and other works. Transl. from the German
and with a note by Lloyd C. Kannenberg. With a foreword by Albert C. Lewis. Chicago, IL: Open
Court Publishing (1995; Zbl 0923.01019)] and the work of William Kington Clifford in 1878 [https:
//www.jstor.org/stable/pdf/2369379.pdf]. The main part of the book is divided into two parts,
namely, the first part (Chapters 2–5) dealing with basics of multivector algebra and the second part
(Chapters 7–12) dealing with mulivector analysis. Chapter 1 ia a quick review of linear algebra, and
Chapter 6 is an interlude for some preliminary material from analysis to be used in the remaining
chapters.
Chapter 2 is concerned with Grassmann algebras. §2.2 is engaged in the geometric interpretation of k-
vectors, the main result being the fundamental correspondence between simple k-vectors and k-dimensional
subspaces in V (Proposition 2.2.3). The main result of §2.3 is geometry of Cramer’s rule (Proposition
2.3.6). §2.4 gives composite k-vectors certain geometric meaning as oriented measures of curved k-surfaces
in an affine space X. §2.5 deals with multicovectors. §2.6 is concerned with interior products and Hodge
stars. The main result of §2.7 is geometry of cofactor formulas (Proposition 2.7.1). The main result of §2.8
is anticommutation relation between exterior and interior products (Theorem 2.8.1). The main result of
§2.9 is Plücker relations (Theorem 2.9.1).
Chapter 3 is concerned with Clifford algebras, combining the exterior and interior products to obtain a
hypercomplex associative product on ∧V in §3.1. §3.2 shows how the Clifford algebra reduces to Hamilton’s
classical algebra of quaternions. §3.3 addresses existence and uniqueness of Clifford algebras as well as
their universality. §3.4 discusses that the best way to view Clifford algebra is rather as an algebra of
matrices from a geometric viewpoint, the Clifford product corresponding to matrix multiplication.
Chapter 4 is concerned with rotations and Möbius maps. The main result of §4.1 is Cartan-Dieudonné
theorem (Theorem 4.1.3) claiming that every isometry is a composition of hyperplane reflections. In
classical complex analysis, multiplication by the exponential

z 7→ eiϕz

gives rotation counterclockwise through an angle ϕ. §4.2 shows how the argument iϕ of the exponential
function generalizes to bivectors ∆2V . Consider the smooth map

exp : SO(V ) → SO(V )

from the linear tangent space of skew-symmetric maps to the smooth manifold of isometries. The global
behavior of exp is considered in §4.3 and §4.4. The main result of §4.5 is Theorem 4.5.12 claiming that

fractional linear = Möbius = global conformal

§4.6 establishes a double homomorphism taking spacetime isometries to Euclidean Möbius maps.
Chapter 5 is concerned with spinors in inner product spaces. §5.1 gives the standard representation as
the most crucial example of a spinor space (Example 5.1.5). The main result of §5.2 is Theorem 5.2.3
claiming the uniqueness of minimal representations, which is indispensable for the geometric construction
of spinors. The main result of §5.3 is Proposition 5.3.5 claiming uniqueness of spinor maps. The principal
objective in §5.4 is to determine all possible abstract complex spinor and tensor spaces of three and
four-dimensional Euclidean space, up to isomorphism (Proposition 5.4.2 and Proposition 5.4.8).
Chapter 7 is concerned with multivector calculus. Every mathematical student knows well the fundamen-
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tal theorem of calculus ∫ b

a

f ′(x) = f(b) − f(a)

as well as its generalization to dimensions two and three, namely, the Green, Gauss and Stokes theorems.
§7.3 establishes the general Stokes theorem, from which all integral theorems of the above kind in affine
space follow. §7.6 discusses how Hodge decompositions work and how they can be used to solve boundary
value problems (BVPs), which is followed by Chapter 10 through a more thorough study of Hodge
decompositions. The highlight of §7.2 is commutation of pullback and exterior derivative (Theorem 7.2.9),
that of §7.4 is Cartan’s magic formula (Theorem 7.4.7), and that of §7.5 is the Poincaré theorem (Theorem
7.5.2).
Chapter 8 is concerned with hypercomplex analysis, a higher-dimensional generalization of classical com-
plex analysis to Euclidean spaces in general, in which Cauchy-Riemann equations are to be replaced by
a Dirac equation

∇∆F (x) = 0

using the nabla operator induced by the Clifford product. The higher-dimensional complex analysis
obtained from the Dirac equation and Clifford algebra has been developed since the 1980s, pioneered by
[F. Brackx et al., Clifford analysis. Boston - London - Melbourne: Pitman Advanced Publishing Program
(1982; Zbl 0529.30001)] under the name of Clifford analysis. Based on [S. Axler et al., Harmonic function
theory. New York: Springer-Verlag (1992; Zbl 0765.31001); Harmonic function theory. 2nd ed. New York,
NY: Springer (2001; Zbl 0959.31001)], §8.2 gives power series expansions in higher dimensions. §8.3
addresses splitting into Hardy subspaces. Theorem 8.3.2 is due to [R. R. Coifman et al., Ann. Math. (2)
116, 361–387 (1982; Zbl 0497.42012)], concerned with general Lipschitz graphs in the complex plane and
equivalent to the L2 boundedness of the Riesz transforms on Lipschitz surfaces. It has a much deeper
extension, known as the Kato square root problem, which was finally settled affirmatively in [P. Auscher
et al., Ann. Math. (2) 156, No. 2, 633–654 (2002; Zbl 1128.35316)].
Chapter 9 is concerned with Dirac wave equations. §9.1 deals with wave and spin equations. §9.2 de-
scribes briefly how Dirac equations appear in electromagnetic theory and quantum mechanics, showing
geometrically that the electromagnetic field is a multivector field and that the Maxwell equations, written
in terms of Clifford algebra, is no other than a Dirac wave equation. §9.3–§9.7 develop a theory for BVPs
for Dirac equations, which is applied to electromagnetic scattering. §9.5 formulates integral equations for
solving scattering problems for Dirac equations. §9.6 and §9.7 apply obtained good integral equations on
good function spaces to scattering problems for electromagnetic waves.
Following §7.6, Chapter 10 is devoted to Hodge decompositions. In the anaysis of Hodge decompositions
on domains, the regularity and curvature of the boundary play a significant role through Weitzenböck
formulas. Hodge decompositions can also be considered on manifolds, for which the curvature of the
manifold in the interior of the domain enters the picture. This is a central idea in Chapters 11 and 12. The
discussion in Chapter 10 is limited to domains in affine space lest one confronts the technicalities of vector
bundles. As in §§9.3–9.6, the author’s basic philosophy in Chapter 10 is that one should handle Hodge
decompositions by first-order operators, meaning concretely that one should study Hodge decompositions
as far as possible by using Γ, Γ∗ and Π rather than involving the abstract Laplace operator Π2. §10.1,
based on the survey paper [A. Axelsson and A. McIntosh, in: Advances in analysis and geometry. New
developments using Clifford algebras. Based on the satellite conference to the ICM 2002 in Beijing, Macau,
China, August 15–18, 2002. Basel: Birkhäuser. 3–29 (2004; Zbl 1174.58300)], shows how Hilbert space
operators Γ with the property Γ2 = 0 naturally induce splittings of the function space, generalizing Hodge
decompositions. From §10.2 the author studies the nilpotent operators d and δ on bounded domains D,
at least Lipschitz regular, in Euclidean space X. The main idea in §10.2 is to use the commutation
theorem (Theorem 7.2.9) so as to reduce the problems to smooth domains. The main result in §10.3 is
Theorem 10.3.1, concerned with Hodge decompositions on Lipschitz domains. §10.4 is concerned with
Bogovskij and Poincaré potentials. §10.5 deals with Čech cohomology, while §10.6 is engaged in de Rham
cohomology.
Base on the author’s graduate course in Gothenburg 2014, Chapters 11 and 12 consider general compact
Riemannian manifolds M , focusing on global smooth analysis in place of local nonsmooth analysis.
Chapter 11 is concerned with multivector and spinor bundles. It is rather straightforward to construct
a multivector bundle after Chapter 7, which is fulfilled in §11.2. In §11.6 the author uses Čech Z2
cohomology to investigate when there are topological obstructions for spinor bundles to exist, and if they
exist, how many different spinor bundles there are over M . §11.3, §11.5 and §11.6 deal with Weitzenböck
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identities in preparation for Chapter 12. §11.4 addresses Liouville’s theorem on conformal maps after [H.
Flanders, J. Math. Mech. 15, 157–161 (1966; Zbl 0141.27103)].
Chapter 12 studies two celebrated generalizations of the Gauss-Bonnet theorem, namely, the Chern-Gauss-
Bonnet theorem [S.-s. Chern, Ann. Math. (2) 46, 674–684 (1945; Zbl 0060.38104)] and the Atiyah-Singer
index theorem [M. F. Atiyah and I. M. Singer, Bull. Am. Math. Soc. 69, 422–433 (1963; Zbl 0118.31203)].
For both proofs the author uses the well-known heat equation method. The proofs of the index theorems
follow the book [Y. Yu, The index theorem and the heat equation method. Singapore: World Scientific
(2001; Zbl 0986.58013)], which does not rely on pseudodifferential operators. §12.1 and §12.2 contain
material on L2 Dirac operators and charts, preliminary to the proofs of the index theorems. §12.3 is
devoted to the Chern-Gauss-Bonnet theorem, and §12.4 deals with Atiyah-Singer index theorem.
All in all, the book is carefully prepared and well presented, and I recommend the book as well as [J. P.
Fortney, A visual introduction to differential forms and calculus on manifolds. Cham: Birkhäuser (2018;
Zbl 1419.58001)] for students who have just mastered vector calculus.

Reviewer: Hirokazu Nishimura (Tsukuba)
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