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If ¢ is a root of unity, then the quantum group U,(g) associated to a finite-dimensional Lie algebra has a
finite-dimensional quotient u,(g) which has been used to construct invariants of 3-dimensional manifolds
forming a 3-dimensional topological field theory, as was discussed in [N. Yu. Reshetikhin and V. G. Turaev,
Commun. Math. Phys. 127, No. 1, 1-26 (1990; Zbl 0768.57003)]. These invariants have been linked to
the Jones polynomials by E. Witten [Adv. Ser. Math. Phys. 9, 239-329 (1989; Zbl 0726.57010); ibid.
17, 361-451 (1994; Zbl 0818.57014)]. L. Crane and I. B. Frenkel [J. Math. Phys. 35, No. 10, 5136-5154
(1994; Zbl 0892.57014)] suggested to replace such Hopf algebras as u,(g) by categories in the pursuit of
constructing 4-dimensional topological quantum field theories (TQFT) by algebraic means.

A categorification of quantum groups at roots of unity is needed in order to make 4-dimensional TQFT
a reality. An important idea was introduced in [M. Khovanov, J. Knot Theory Ramifications 25, No.
3, Article ID 1640006, 26 p. (2016; Zbl 1370.18017)] by observing that working algebra objects in the
category of modules over a finite-dimensional Hopf algebra H gives a way of categorifying algebras over
the Grothendieck ring of the stable category of H-modules. Khovanov’s idea was subsequently further
developed in [Y. @i, Compos. Math. 150, No. 1, 1-45 (2014; Zbl 1343.16010)], where p-dg algebras and
their modules are formally introduced in analogy to the theory of dg modules over dg algebras generalizing
complexes of modules over an algebra. It was in [M. Khovanov and Y. @4, Quantum Topol. 6, No. 2, 185—
311 (2015; Zbl 1352.81038)] and [B. Elias and Y. Qi, Adv. Math. 288, 81-151 (2016; Zbl 1329.81238); ibid.
299, 863-930 (2016; Zbl 1355.81096)] that milestones in realizing the program of categorifying quantum
groups at roots of unity were established.

The principal objective in this paper consisting of seven sections is to study p-dg enriched 2-categories and
to introduce cell 2-representations for a class of such structures obeying finiteness conditions. The authors
investigate their basic properties and relation to additive cell 2-representations. Structural results about
passing to stable 2-representations which are compatible with the triangulated structure of the stable
2-categories are presented. Now is a brief synopsis in order.

§2 introduces all technical results on the level of 1-categories enriched with p-differentials, and investigates
their compact semi-free modules, which are the suitable analogue of free modules in this context. §3
gathers preliminary results about the kind of p-dg 2-categories. Their p-dg 2-representations are studied
in §4. §5 and §6 are the core of the paper. §5 introduces cell 2-representations for strongly finitary p-dg
2-categories. In [V. Mazorchuk and V. Miemietz, Int. Math. Res. Not. 2016, No. 24, 7471-7498 (2016;
Zbl 1404.18014)] it was shown that any fiat 2-category that is simple in a suitable sense is biequivalent
to a certain 2-category C4 constructed from projective bimodules over a finite-dimensional algebra A.
§6 gives the construction of p-dg analogues C 4 of such 2-categories associated to a p-dg category A. §7
applies some results to the cyclotomic quotient Uy of the p-dg 2-category U introduced in [loc. cit., Zbl
1329.81238] to categorify the small quantum group associated to sls.
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