the first resource for mathematics

Grandis, Marco

Higher dimensional categories. From double to multiple categories. (English) Zbl 07082237 Hackensack, NJ: World Scientific (ISBN 978-981-12-0510-1/hbk; 978-981-12-0512-5/ebook). xi, 522 p. (2020).

Higher dimensional categories began with (strict) double and multiple categories, introduced and investigated in [C. Ehresmann, Rev. Unión Mat. Argent. 20, 194-209 (1962; Zbl 0117.26104); Ann. Sci. Éc. Norm. Supér. (3) 80, 349-426 (1963; Zbl 0128.02002); C. R. Acad. Sci., Paris 256, 1891-1894 (1963; Zbl 0132.25703); Catégories et structures. Paris: Dunod. (1965; Zbl 0192.09803); A. Bastiani and C. Ehresmann, Cah. Topologie Géom. Différ. Catégoriques 15, 215-292 (1974; Zbl 0332.18005); A. Ehresmann and C. Ehresmann, Cah. Topologie Géom. Différ. Catégoriques 19, 295-333 (1978; Zbl 0415.18005)]. This book investigates double categories, n-tuple categoreis and multiple categories with their weak and lax versions. The main part of the book is divided into two parts.

The first part (Chapters $1-5$) is concerned with double categories. Chapter 1 is a review of classical category theory. Chapter 2 studies 2-dimensional categorical structures, from ordered categories to 2categories and bicategories. Chapters from 3 through 5 are concerned with weak double categories in general. Chapter 3 deals with strict and weak double categories, together with their functors and transformations. Chapters 4 and 5 address adjunctions and limits respectively for weak double categories after [the author, Ann. Mat. Pura Appl. (4) 157, 199-244 (1990; Zbl 0739.18004); Theory Appl. Categ. 18, 321-347 (2007; Zbl 1127.18003)].

The second part (Chapters 6-8) is engaged in the study of multiple categories, which are an extension of double categories to higher dimensions with one strict composition in direction 0 and various (possibly weak) compositions in positive directions. Beginning with a triple category built on the double category $\mathbb{D} b l$ of weak double categories, Chapter 6 defines strict, weak and lax multiple categories. The author's main form, partially lax, is a chiral multiple category. Intercategories, a laxer form of multiple categories, are also considered on the lines of [M. Grandis and R. Paré, Theory Appl. Categ. 30, 1215-1255 (2015; Zbl 1387.18012); J. Pure Appl. Algebra 221, No. 5, 999-1054 (2017; Zbl 1375.18036)]. Chapter 7, concerned with adjunctions in chiral multiple categories, is based upon [M. Grandis and R. Paré, Categ. Gen. Algebr. Struct. Appl. 6, No. 1, 85-105 (2017; Zbl 1386.18019)]. Chapter 8 deals with lax and colax monads on chiral multiple categories and their relationship with multiple adjunctions. The main non-standard results are concerned with the idempotent case. Multiple limits are considered only in particular cases, the reader being referred to [M. Grandis and R. Pare, Cah. Topol. Géom. Différ. Catég. 58, No. 1, 3-48 (2017; Zbl 1387.18013)] for a general study.

The book is accompanied by three appendices. The first appendix (Appendix A) addresses applications of weak double categories in homological algebra [the author, Homological algebra. The interplay of homology with distributive lattices and orthodox semigroups. Hackensack, NJ: World Scientific (2012; Zbl 1280.18001)] and algebraic topology [the author, Zbl 1127.18003; J. Homotopy Relat. Struct. 3, No. 1, 273-308 (2008; Zbl 1185.18005); Theory Appl. Categ. 18, 602-630 (2007; Zbl 1136.18004)]. The second appendix (Appendix B) is concerned with symmetries in cubical sets and weak cubical categories on the lines of [the author, Zbl 1127.18003; Zbl 1136.18004; Cah. Topol. Géom. Différ. Catég. 50, No. 2, 102-143 (2009; Zbl 1188.18003)]. The third appendix (Appendix C) contains solutions or hints for the exercises of the text.

Reviewer: Hirokazu Nishimura (Tsukuba)

Abstract

MSC: 18-01 Introductory exposition (textbooks, tutorial papers, etc.) from category theory 18Dxx Categorical structures

Full Text: DOI

