
REGULAR ARTICLE

Differentiation of schizophrenia using structural MRI with
consideration of scanner differences: A real-world multisite
study
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Aim: Neuroimaging studies have revealed that patients with
schizophrenia exhibit reduced gray matter volume in various
regions. With these findings, various studies have indicated
that structural MRI can be useful for the diagnosis of schizo-
phrenia. However, multisite studies are limited. Here, we
evaluated a simple model that could be used to differentiate
schizophrenia from control subjects considering MRI scan-
ner differences employing voxel-based morphometry.

Methods: Subjects were 541 patients with schizophrenia
and 1252 healthy volunteers. Among them, 95 patients and
95 controls (Dataset A) were used for the generation of
regions of interest (ROI), and the rest (Dataset B) were used
to evaluate our method. The two datasets were comprised of
different subjects. Three-dimensional T1-weighted MRI
scans were taken for all subjects and gray-matter images
were extracted. To differentiate schizophrenia, we generated
ROI for schizophrenia from Dataset A. Then, we determined
volume within the ROI for each subject from Dataset B. Using

the extracted volume data, we calculated a differentiation
feature considering age, sex, and intracranial volume for each
MRI scanner. Receiver–operator curve analyses were per-
formed to evaluate the differentiation feature.

Results: The area under the curve ranged from 0.74 to
0.84, with accuracy from 69% to 76%. Receiver–operator
curve analysis with all samples revealed an area under the
curve of 0.76 and an accuracy of 73%.

Conclusion: We moderately successfully differentiated
schizophrenia from control using structural MRI from differ-
ing scanners from multiple sites. This could be useful for
applying neuroimaging techniques to clinical settings for the
accurate diagnosis of schizophrenia.
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Schizophrenia is a mental disorder that affects around 1% of the general
population.1 Patients with schizophrenia suffer from various symptoms,
including positive symptoms, negative symptoms, and cognitive decline.
Indeed, according to the Global Burden of Disease Study, schizophrenia

causes a high degree of disability, which accounts for 1.1% of total
disability-adjusted life years and 2.8% of years lived with disability.2

Various neuroimaging studies have investigated structural brain
changes caused by schizophrenia using MRI. A region-of-interest
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(ROI) approach revealed that patients with schizophrenia exhibit lat-
eral ventricular enlargement as well as atrophy in medial temporal
lobes, including the amygdala, hippocampus, parahippocampal gyrus,
and superior temporal gyrus.3 In addition to the ROI approach, sev-
eral studies have employed a voxel-based-morphometry approach,
which allows investigation of focal differences in the whole brain.
Meta-analysis of voxel-based-morphometry studies has shown that
patients with schizophrenia exhibit reduced gray matter volume in the
medial temporal lobes, superior temporal lobes, anterior cingulate
gyrus, medial portion of prefrontal regions, or insulae.4–8 A recent
mega-analysis of subcortical structure by ENIGMA–Schizophrenia
reconfirmed that schizophrenia patients exhibit smaller hippocampus,
amygdala, thalamus, and accumbens volumes and larger pallidum and
lateral ventricle volumes.9 Related to this finding, schizophrenia-
specific leftward asymmetry in pallidum volume has also been
reported.10

That patients with schizophrenia exhibit gray-matter volume
reduction in certain regions has led to the idea of applying these find-
ings to the diagnosis of schizophrenia. Back in 1999, Leonard and
colleagues showed that they could classify patients with schizophrenia
from control with 77% accuracy using several variables derived from
brain MRI, including hemisphere and third ventricle volume, and nor-
malized location of three associated cortex sulcal landmarks.11 Since
then, several studies have investigated discrimination of schizophrenia
using thalamic and hippocampal shape12 or ventricle volume13 with
multivariate analyses. Subsequent to these reports, automatic
preprocessing of MRI as well as various methods of differentiation,
such as machine learning or multivariate pattern classification, have
been introduced.14–19 Kambeitz and colleagues performed a meta-
analysis of reports to examine the differentiation of schizophrenia
from control. With structural MRI, patients were differentiated from
controls with a sensitivity of 76.4% and a specificity of 79.0%.20

Although these reports indicate that structural MRI can be useful
for the diagnosis of schizophrenia, it is not widely used in clinical set-
tings. While there may be several reasons for this, one potential rea-
son is that these approaches are not fully tested in the real world. It is
well known that a fitting model for a cohort for machine learning can-
not be applied easily to another cohort. In addition, differences in
MRI scanners have a huge impact on image quality and compartment
volume,21 which could affect differentiation models.

Therefore, in this study, we tried to generate a simple model that
could be used to differentiate schizophrenia from control subjects
with consideration of MRI scanner differences employing voxel-based
morphometry. Then, we evaluated how measurements could allow the
differentiation of schizophrenia from control with real-world samples
from multiple sites.

Methods
Subjects
Subjects to generate ROI (Dataset A)

MRI data of 95 patients with schizophrenia (57 men, 38 women;
mean age � SD, 29.8 � 5.2 years) and the same number of age- and
sex-matched control subjects (57 men, 38 women; 29.9 � 5.1 years)
were used to generate ROI. Both patients and control subjects were

recruited from the University of Osaka and the University of Tokyo.
We chose these two institutes because demographics of patients in
these two institutes were similar and both had a sufficient number of
healthy control subjects for balanced datasets. As the number of sub-
jects scanned at the University of Osaka was greater than that at the
University of Tokyo, we first selected a balanced dataset from the
University of Tokyo, and then chose sex- and age-matched subjects
from the University of Osaka. The remaining data from the University
of Osaka were used for Dataset B, which is described in the following
section. Each patient with schizophrenia was assessed and diagnosed
according to the DSM-IV by at least two trained psychiatrists. Con-
trols were recruited through local advertisements and evaluated via
the DSM-IV Structured Clinical Interview, Non-Patient Version.22

Subjects were excluded if they had neurological or medical conditions
that could potentially affect the central nervous system, such as atypi-
cal headache, head trauma with loss of consciousness, chronic lung
disease, kidney disease, chronic hepatic disease, thyroid disease,
active stage cancer, cerebrovascular disease, and epilepsy or seizures.
Subject demographics are summarized in Table 1. The total pre-
scribed antipsychotics being taken by patients was calculated using
chlorpromazine equivalent (mg/day) based on Inada and Inagaki.23

Subjects to evaluate the model (Dataset B)

For the evaluation of the model we propose in this study, we used a
total sample of 1603 subjects (schizophrenia: 446; control: 1157)
from Osaka University, University of Tokyo, University of Toyama,
and Kyushu University. The subjects in this dataset were independent
of the subjects in Dataset A. As we wanted to estimate how useful
our model would be in clinical settings, we did not match age and sex
between patients and control subjects. Subject demographics are sum-
marized in Table 2. This study was approved by the ethics commit-
tees of each institute and performed in accordance with the guidelines
and regulations of these research institutions. All participants gave
written informed consent prior to participation.

MRI data acquisition
MRI data were obtained using seven different scanners. A 3-D volu-
metric acquisition of a T1-weighted sequence produced a gapless
series of sagittal sections. Table 3 provides a summary of the MRI
scanners and the pulse sequences for each scanner.

Preprocessing of imaging
All of the MR images were processed using SPM12 (Wellcome Depart-
ment of Imaging Neuroscience, University College London, UK, http://
www.fil.ion.ucl.ac.uk/spm) running on MATLAB R2015b (MathWorks,
Natick, MA, USA) on Ubuntu 16.04 based Lin4Neuro.24 Prior to
preprocessing, all data were co-registered to ‘icbm152’ standard image
implemented in SPM12 so that the origin of images would be close to the
anterior commissure–posterior commissure (AC-PC) and so that images
would be aligned with the AC-PC line. Each image was segmented into
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
using the segment function of SPM12. Subsequently, the segmented GM
images were spatially normalized using diffeomorphic anatomical regis-
tration through an exponentiated lie algebra (DARTEL) algorithm.25

Custom DARTEL templates were generated from all the GM and WM

Table 1. Demographics of Dataset A subjects

MRI scanner Diagnosis n Female (n)
Age (years)
(mean � SD)

Education (years)
(mean � SD)

Disease duration
(years) (mean � SD)

Chlorpromazine equivalent
(mg/day) (mean � SD)

Osaka A Schizophrenia 51 19 30.2 � 5.3 14.5 � 2.4 9.0 � 6.1 629.9 � 528.7
Control 51 19 30.4 � 5.3 15.1 � 2.1 — —

Tokyo A Schizophrenia 44 19 29.3 � 4.9 13.3 � 2.1 7.6 � 5.5 759.3 � 492.7
Control 44 19 29.2 � 4.8 16.6 � 1.6 — —
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images of the participants. After spatial normalization, the GM images
were modulated to preserve the volume, followed by smoothing with an
8-mm full width at half maximum Gaussian kernel. For this
preprocessing, default parameters were used. In addition to that, total
intracranial volume (TIV) was calculated by summing GM image, WM
image, and CSF image using the ‘Tissue Volumes’ function of SPM12.

ROI for schizophrenia
We used the ‘two-sample t-test’ model implemented in SPM12 to
detect regions where patients with schizophrenia exhibited decreased
volume compared with control subjects. Age, sex, and TIV were
input as covariates of no interest. In addition, to consider the use of
two different MRI scanners, we added another column to the design
matrix to account for scanner difference and designated ‘one’ for one
scanner and ‘zero’ for the second scanner as done by Mechelli et al.
for multi-scanner data analysis.26 As we wanted to obtain robust ROI,
we employed conservative statistical thresholds for both peak-level
and cluster-level. As for peak-level, statistical threshold was set to a
family-wise error (FWE)-corrected P-value of <0.05. With this
threshold as a cluster-defining threshold, an extent threshold of

250 voxels, which corresponded to a false discovery rate (FDR)-
corrected P-value of <0.05, was set as a cluster-level threshold. We
should note that we employed FDR instead of FWE for cluster-level
correction because the FWE-corrected P-value of <0.05 corresponded
to only one voxel. As described in the Results section, the ROI com-
prised four clusters. Since voxel values within these clusters were
highly correlated with each other, handling the values of each cluster
separately would introduce a multicollinearity problem. Therefore, we
united the clusters to form one ROI, binarized it, and obtained the
averaged modulated volume within the united ROI as a single value
for each subject.

Feature definition and statistical analysis
In clinical settings, MRI parameters vary from site to site. In this situ-
ation, it is almost impossible to accommodate a wide variety of scan-
ner differences with a single model. Therefore, we employed a
strategy to determine the coefficients of a model for each MRI scan-
ner. Voxel values of MRI data are subject to MRI scanner differences
as well as various subject factors, such as age, sex, TIV, or disease.
In order to estimate the effect of MRI scanners accurately, we also

Table 2. Demographics of Dataset B subjects

MRI scanner Diagnosis n Female (n)
Age (years)
(mean � SD)

Education (years)
(mean � SD)

Disease duration
(years) (mean � SD)

Chlorpromazine equivalent
(mg/day) (mean � SD)

Osaka A Schizophrenia 129 50 36.5 � 12.6 14.2 � 2.5 11.8 � 9.5 547.8 � 501.4
Control 404 217 35.5 � 12.6 15.0 � 2.2 — —

Osaka B Schizophrenia 74 40 34.4 � 12.0 13.3 � 2.4 11.1 � 9.0 868.8 � 844.9
Control 239 107 31.2 � 13.2 15.0 � 1.8 — —

Osaka C Schizophrenia 73 37 36.4 � 14.0 13.6 � 2.4 11.6 � 9.2 583.0 � 567.7
Control 244 101 29.0 � 12.1 14.8 � 1.8 — —

Tokyo B Schizophrenia 17 6 39.4 � 8.3 14.4 � 2.2 13.5 � 8.9 814.1 � 516.3
Control 54 31 32.9 � 9.2 15.6 � 2.2 — —

Toyama Schizophrenia 121 58 26.7 � 6.2 13.7 � 1.9 4.3 � 5.2 483.1 � 424.0
Control 130 60 26.1 � 6.3 16.1 � 2.4 — —

Kyushu Schizophrenia 32 22 39.6 � 9.5 14.0 � 1.9 15.1 � 9.4 571.4 � 409.8
Control 86 46 33.1 � 11.5 15.7 � 2.4 — —

Table 3. Summary of MRI scanners and pulse sequences

Osaka A Osaka B Osaka C Tokyo A Tokyo B Toyama Kyushu

Manufacturer GE GE GE GE GE Siemens Philips
Scanner name Signa EXCITE Signa Hdxt Discovery

MR750
Signa Horizon Discovery

MR750w
Magnetom
Vision

Achieva

Magnet strength 1.5 T 3 T 3 T 1.5 T 3 T 1.5 T 3 T
Head coil Head QD 8HRBRAIN HNS Head Circularly

polarized head
Head 24 CP head 8ch head

Pulse sequence Fast SPGR Fast SPGR Fast SPGR SPGR SPGR FLASH 3D T1-TFE
Number of slices 124 172 156 124 200 160 190
Echo time (ms) 4.2 2.9 3.2 7 3.1 10 3.8
Repetition time (ms) 12.6 7.2 8.2 35 7.7 24 8.2
Flip angle (degree) 15 11 11 30 11 40 8
Acquisition matrix 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 240 × 240
Number of
excitations (NEX)

1 1 1 1 1 1 1

Field of view (cm) 24 × 24 24 × 24 26 × 26 24 × 24 26 × 26 25.6 × 25.6 24 × 24
Voxel dimension (mm) 0.9 × 0.9 × 1.4 0.9 × 0.9 × 1.0 1.0 × 1.0 × 1.2 0.9 × 0.9 × 1.5 1.0 × 1.0 × 1.2 1.0 × 1.0 × 1.0 1.0 × 1.0 × 1.0
Slice thickness (mm) 1.4 1.0 1.2 1.5 1.2 1.0 1.0
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considered age, sex, and TIV in the model and estimated the effect of
MRI scanners using healthy control MRI data. This process is similar
to preparing a standard for a control experiment. We chose a general-
linear-model-based approach to extract a feature for differentiation.
Though recent studies have tended to employ a machine-learning
approach or multivariate analysis to extract features for classification,
it is difficult to evaluate the effect of how MRI scanner differences
are considered with these approaches. Therefore, we used a simple
linear model to see if the model could minimize scanner differences.
Using modulated volume within ROI as an objective variable (Y), we
defined the model as follows:

Y = β1 ×Age + β2 × Sex + β3 ×TIV+C + ε,

where the betas are coefficients for each independent variable, C is a
constant term in which we expect to include the scanner factor, and ε
is the residual, which we use as a classification feature. Given a
design matrix Y consisting of modulated volumes within the ROI
(n × 1 matrix where n is the number of subjects), X consisting of
age, sex, TIV and ‘one’ for each subject (n × 4 matrix), B consisting
of β1, β2, β3, and C (4 × 1 matrix), and E consisting of residuals
(n × 1 matrix), the formula can also be described as follows:

Y =XB+E

According to the ordinary least square method, B is estimated by
multiplying the inversion matrix of X by Y. However, X is not a
square matrix here, so we cannot directly compute the inversion
matrix of X. In this situation, considering XT, which is the transposed
matrix of X, XTX will always be a square matrix, so using the inver-
sion matrix of XTX, (XTX)−1, B can be estimated.

Y =XB

XTY=XTXB

XTX
� �−1

XTY= XTX
� �−1

XTXB

XTX
� �−1

XTY=B

This computation can be easily done with MATLAB using the pinv
function (B = pinv(X)*Y), so we used MATLAB R2015b to estimate the
Matrix B. After obtaining B, we applied Formula 1 to all subjects for
each scanner to obtain Matrix E, which comprises ε for each subject.
Matrix E represents the ‘schizophrenia likeness’ feature by

minimizing the MRI scanner effect and adjusting for age, sex, and
TIV at the same time. Figure 1 is the processing flowchart. We then
performed receiver–operator curve (ROC) analysis with the ROCR
package in R 3.4.3 (R Foundation for Statistical Computing, Vienna,
Austria) to evaluate the accuracy of the differentiation.27

Validation of our method
Our method for deciding the coefficient of the model is entirely
dependent on control subjects. We explored how coefficients from
different datasets would affect the results of ROC analysis. As Osaka
A was the largest dataset in Dataset B, we used it for validation. We
randomly divided the Osaka A dataset into two subsets. We prepared
Matrices Y1 and X1 from Subset 1 and Matrices Y2 and X2 from Sub-
set 2. From the control subjects of Subset 1, we calculated coefficient
Matrix B1. We also calculated coefficient Matrix B2 from the control
subjects of Subset 2. Then we calculated the residual Matrix E1 from
Subset 1 with E1 = Y1 – X1B2 and the residual Matrix E2 from Subset
2 with E2 = Y2 – X2B1. ROC analyses were performed on these
residuals.

Results
ROI for schizophrenia
Figure 2 and Table 4 show the ROI we used for further analysis.
Patients with schizophrenia showed a significant gray matter volume
reduction in the bilateral insulae, superior temporal gyri, the middle
frontal gyri, the medial portion of the superior frontal gyri, and the
hippocampi. These results are consistent with a previous meta-
analysis,5–7 so we used these areas as our ROI. We did not find any
volume increase in patients with schizophrenia with the statistical
threshold we employed.

ROC analysis
Table 5 shows the statistics for Dataset B. Figure 3 and Table 6 show
the results of ROC analysis. The purpose of this study was to evaluate
how a single model with a certain feature can be applied to different
sites, so we adopted a single cut-off among analyses. ROC analysis
with the Osaka A scanner (GE 1.5T) with the largest sample in this
study revealed that the cut-off score of the closest point to (0, 1) in
the ROC curve was −1.3. Therefore, we applied this value (−1.3) as
a cut-off score to evaluate sensitivity, specificity, and accuracy for
each ROC analysis. As a result, sensitivity ranged from 47% to 67%
as well as specificity from 75% to 84%. The area under the curve
(AUC) ranged from 0.74 to 0.84 and accuracy ranged from 69% to
76%. ROC analysis with all samples revealed an AUC of 0.76 and an

Calculate ICV

Segmentation Warping
with

DARTEL

Smoothing ROI

Calculate

regional

volume
within

ROI

Y = β1 × Age + β2  × Sex + β3 × ICV + C + Ɛ

Calculate β from control data
for each MRI scanner  

Calculate residual (ε ) for each
MRI scan  

Statistical analysis of ε 

Fig.1 Scheme of feature extraction. Segmentation of 3-D T1-weighted image was performed to extract gray matter image and intracranial volume (ICV), followed by
anatomical normalization with diffeomorphic anatomical registration through an exponentiated lie algebra (DARTEL) and smoothing. Then the within-region-of-interest
(ROI) volume was calculated. Using this volume as a dependent variable Y, a general linear model was fitted considering age, sex, ICV, and a constant that could
reflect scanner differences for each MRI scanner. Then the residual ε for each subject was calculated and this value was treated as a differentiation feature.
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accuracy of 73%. Table S1 shows the ROC results for the two subsets
of Osaka A. The results were similar, which indicates the validity of
our method to some extent.

Discussion
In this study, we tried to minimize the effect of scanner differences
for differentiation of schizophrenia patients from control subjects.

Even with a single cut-off score, overall accuracy remained around
70% among different sites/scanners, which implies the reproducibility
of our model for different datasets. Our results also have the potential-
ity for clinical application. Conventionally, in order to find the schizo-
phrenia likeness from brain MRI data, one needs to prepare datasets
for large numbers of patients and controls. In this situation, if a
facility’s MRI scanner is replaced, researchers and physicians must
create entirely new datasets with data from the new machine.

Fig.2 Regions of interest (ROI) for this study. ROI are defined from group comparisons between 95 patients with schizophrenia and age- and sex-matched controls.
Statistical threshold was set to a family-wise-error-corrected P-value of <0.01 with an extent threshold of 100 voxels. These regions include the bilateral superior tem-
poral gyri, the middle frontal gyri, the medial portion of the superior frontal gyri, and hippocampi.

Table 4. Volume reduction in patients with schizophrenia using Dataset A

Cluster Region Cluster size
Cluster-level
FDR corrected P

Peak-level
FWE corrected P T

MNI coordinates

x y z

Cluster 1 Lt. anterior insula 4787 <0.001 <0.001 8.34 −36 23 −5
Lt. hippocampus <0.001 6.58 −14 −6 −15
Lt. opercular part of inferior frontal gyrus <0.001 6.12 −50 12 4

Cluster 2 Rt. anterior insula 2792 <0.001 <0.001 7.48 39 21 −3
Rt. planum polare <0.001 7.03 57 −1 1
Rt. posterior orbital gyrus <0.001 6.9 36 18 −18

Cluster 3 Rt. medial frontal gyrus 5489 <0.001 <0.001 7.46 2 41 −20
Lt. superior frontal lobe medial segment <0.001 7.06 −3 51 3
Lt. medial frontal gyrus <0.001 6.93 0 54 −11

Cluster 4 Lt. middle cingulate gyrus 810 <0.001 <0.001 6.38 −8 −13 39
Rt. middle cingulate gyrus 0.003 5.38 6 −25 36

FDR, False discovery rate; FWE, Family-wise error; MNI, Montreal Neurological Institute.
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However, the model we propose in this study requires only control
subjects for a specific MRI scanner. Once the coefficients of the
model are determined, we can apply the model to as few as one
patient, eliminating the need for multiple datasets from multiple

individuals, to see if that single patient has a schizophrenia
likeness.

Though there are various reports that have discussed the classifi-
cation of schizophrenia patients from a control group using structural

Table 5. Statistics of Dataset B

Y: volume within ROI (mL) (mean � SD) TIV (liter) (mean � SD) ε: residuals (mean � SD)

Schizophrenia Control Schizophrenia Control Schizophrenia Control

Osaka A 24.70 � 2.97 26.38 � 3.20 1.41 � 0.14 1.40 � 0.13 −1.69 � 1.71 0.00 � 1.54
Osaka B 23.88 � 3.34 26.79 � 3.48 1.46 � 0.16 1.49 � 0.14 −2.14 � 1.84 0.00 � 1.60
Osaka C 24.75 � 4.00 28.54 � 3.79 1.48 � 0.15 1.50 � 0.13 −2.39 � 2.29 0.00 � 1.81
Tokyo B 26.29 � 2.97 25.05 � 2.66 1.33 � 0.49 1.56 � 0.50 −1.08 � 1.95 0.00 � 1.57
Toyama 26.58 � 3.09 28.21 � 2.83 1.44 � 0.16 1.43 � 0.13 −1.66 � 1.75 0.00 � 1.59
Kyushu 23.93 � 2.85 26.65 � 3.04 1.39 � 0.14 1.41 � 0.13 −1.60 � 2.07 0.00 � 1.61

ROI, region of interest; TIV, total intracranial volume.
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Fig.3 Receiver–operator curve (ROC) analysis. The area under the curve (AUC) ranged from 0.74 to 0.84, and accuracy from 69% to 76%. ROC analysis with all sam-
ples revealed an AUC of 0.76 and an accuracy of 73%.

Table 6. Results of receiver–operator curve analysis

Osaka A Osaka B Osaka C Tokyo B Toyama Kyushu All data

Schizophrenia 129 74 73 17 121 32 446
Control 404 239 244 54 130 86 1157
Area under curve 0.78 0.84 0.83 0.68 0.76 0.74 0.76
Sensitivity 0.60 0.67 0.70 0.44 0.57 0.56 0.63
Specificity 0.81 0.80 0.77 0.84 0.79 0.80 0.75
Positive predictive value 0.49 0.50 0.47 0.47 0.71 0.51 0.34
Negative predictive value 0.86 0.88 0.89 0.82 0.66 0.83 0.91
Accuracy 0.76 0.76 0.74 0.74 0.69 0.74 0.73
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MRI, multisite studies are limited. Rozycki and colleagues used mul-
tivariate analysis tools and found a neuroanatomical signature of
patients with schizophrenia, with which they achieved a prediction
accuracy of 72%–77%.28 They took into account the effect of MRI
scanner as a variable in the multivariate analysis. Our results are simi-
lar to theirs, which substantiates that structural MRI could be a useful
tool for schizophrenia at the individual level and indicates that our
approach of considering the MRI scanner as a factor in the model
could be as effective as their approach. From a diagnostic point of
view, the accuracy of our method did not exceed the previous reports.
Meta-analysis of brain volumes in schizophrenia showed that effect
sizes for gray matter structures ranged from −0.22 to −0.58.29 This
effect size means that there is substantial overlap between patients
with schizophrenia and controls. In this context, it might be difficult
to improve the accuracy of classification with structural data alone.
Another point of our result is that specificity is generally higher than
sensitivity in each site of Dataset B. Florkowski indicates that high
sensitivity is the ideal property of a ‘rule-out’ test while high specific-
ity is the ideal property of a ‘rule-in’ test.30 Considering this, our
results suggest that our method might be suitable to rule-in the possi-
bilities of schizophrenia rather than rule-out.

Not only structural MRI, but also other modalities, such as func-
tional MRI (fMRI) or diffusion tensor imaging, could contribute to
the differentiation of schizophrenia at the individual level. Recent
studies using the Alzheimer’s Disease Neuroimaging Initiative dataset
to investigate the combined biomarkers from different modalities,
such as structural MRI, fMRI, fluorodeoxyglucose–positron emission
tomography, or CSF, to discriminate between Alzheimer’s disease,
mild cognitive impairment, and control reported that classification
accuracy with a combination of modalities was better than that with a
single modality.31–33 Similar results have been reported for the classi-
fication of schizophrenia. Yang et al. reported that a classifier of
schizophrenia using combined features of structural and functional
MRI data achieved higher accuracy than did a single-modal-features
method.34 However, no multisite studies on the differentiation of
schizophrenia using multimodal imaging have been reported to date.
Scanner differences need to be considered for diffusion tensor imag-
ing or fMRI as well as for structural MRI. Our approach might pro-
vide a means to identify appropriate features of different modalities
while also considering scanner differences.

There are several limitations in our study. Our method for decid-
ing the coefficient of the model was entirely dependent on control
subjects. Though we showed that coefficients from different control
subjects did not change the result much, we have not explored the
minimum number of subjects required in order to obtain robust
results. In Dataset B, Tokyo B and Kyushu resulted in low sensitivi-
ties. The sample sizes of the control group for the Tokyo B and Kyu-
shu datasets were relatively small (less than 100) compared with
those for other facilities, which might have affected the results. We
must also consider the variation in control subjects. In Dataset B, the
subjects for Toyama were young and the standard deviation of age
was small. In this situation, two things need to be considered:
(i) brain volume changes might be subtle due to the shorter duration
of disease; and (ii) overfitting might occur when calculating coeffi-
cients, as the range of variables is limited. We used as many control
subjects as possible for this study, but in order for this approach to
become feasible in a clinical setting, further study is necessary to
determine the minimal sample size for control subjects. At the same
time, the Alzheimer’s Disease Neuroimaging Initiative uses phantom
and common pulse sequence to obtain images of similar quality
across MRI scanners. This kind of approach might also be useful in
our model. Another limitation is that the ROI we employed was deter-
mined using only 1.5-T MRI scanners. Though we set a statistically
conservative threshold in order to generate a robust ROI and the
results were consistent with a previous meta-analysis,5–7 larger bal-
anced datasets using different MRI scanners might be necessary to
generate a more robust ROI. One other limitation is that most of the
subjects with schizophrenia were on medication. It is known that

antipsychotics can affect brain volume, especially subcortical vol-
ume.35 As our model depends upon control subjects, we did not take
the medication dose into account. However, we defined the ROI with
a conservative threshold (family wise error P < 0.05 with extent
threshold of 250 voxels) in order to ensure the use of robust regions
for the present analysis.

In conclusion, we demonstrated that in considering scanner dif-
ferences we could differentiate schizophrenia from control using
structural MRI across multiple sites. This could be a useful method
for applying neuroimaging techniques to a clinical setting in order to
achieve an accurate diagnosis of schizophrenia.
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