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Abstract. In the previous paper [5], we proved that if for any graph G, a homeomorphism
on a G-like continuum X has positive topological entropy, then the continuum X contains an
indecomposable subcontinuum. Also, if for a tree G, a monotone map on a G-like continuum
X has positive topological entropy, then the continuum X contains an indecomposable subcon-
tinuum. In this note, we extend these results. In fact, we prove that if for any graph G, a
monotone map on a G-like continuum X has positive topological entropy, then the continuum
X contains an indecomposable subcontinuum. Also we study topological entropy of monotone
maps on Suslinean continua.

1 Introduction

During the last thirty years or so, many interesting connections between topological dynamics
and continuum theory have been studied by many authors. In particular, we are interested in the
fact that several complicated dynamics should imply existence of complicated continua and in
many cases, such continua are indecomposable continua which are central subjects in continuum
theory (see the references [1,2,5-19,23-26,28,29]).

A continuum is a compact connected metric space. We say that a continuum is nonde-
generate if it has more than one point. A continuum is indecomposable ([21,22,27]) if it is
nondegenerate and it is not the union of two proper subcontinua. A continuum H is an n-od
(2 ≤ n <∞) if H contains a subcontinuum A such that the complement of A in H is the union
n nonempty mutually separated sets. For any continuum X, let

T (X) = sup{n | there is an n-od in X}.

For any continuum Z, the set Z(p) of all points of the continuum Z, which can be joined with the
point p by a proper subcontinuum of Z, is said to be the composant of the point p ∈ Z (see [21,
p.208]). It is well known that if Z is an indecomposable continuum, the family {Z(p)| p ∈ Z}
of all composants of Z is a family of uncountable mutually disjoint sets Z(p) which are dense
Fσ-sets in Z (see [21, p.212, Theorem 6]).

In this note, all maps are assumed to be continuous. Let N be the set of natural numbers.
A map g from X onto G is an ε-map (ε > 0) if for every y ∈ G, the diameter of g−1(y) is less
than ε. A continuum X is G-like if for every ε > 0 there is an ε-map from X onto G. It is easy
to see that if a continuum X is G-like for some graph G (=1-dimensional connected compact
polyhedron), then T (X) <∞. Our focus in this article is on G-like continua where G is a graph.
A surjectve map f : X → Y is a monotone map if f−1(y) is connected for each y ∈ Y . We recall
that this definition is equivalent to stating that the preimage of a continuum is a continuum
whenever nonempty.
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If f : X → X is a map, then we use lim←−(X, f) to denote the inverse limit of X with f as
the bonding maps, i.e.,

lim←−(X, f) =
{

(xi) ∈ XN| f(xi+1) = xi

}
⊂ XN

The topology on lim←−(X, f) is the subspace topology inherited from the product topology on XN.
In particular, if X is compact, then lim←−(X, f) is compact and, similarly, if X is a continuum,
then so is lim←−(X, f). The reader may refer to [21] and [27] for standard facts concerning contin-
uum theory.

2 Monotone maps of continua and topological entropy

Let X be a compact metric space and U ,V be two covers of X. Put

U ∨ V = {U ∩ V : U ∈ U , V ∈ V}.

The quantity N(U) denotes minimal cardinality of subcover of U . Let f : X → X be a map and
let U be an open cover of X. Put

h(f,U) = lim
n→∞

logN(U ∨ f−1(U) ∨ . . . ∨ f−n+1(U))

n
.

The topological entropy of f , denoted by h(f), is the supremum of h(f,U) for all open covers U
of X. The reader may refer to [3,4,20,23] for important facts concerning topological entropy.

In [5], we obtained the following theorem.

Theorem 2.1. ([5]) Let G be any graph. If a homeomorphism f on a G-like continuum X has
positive topological entropy, i.e., h(f) > 0, then X contains an indecomposable subcontinuum.

We will prove the following main theorem which is an extension of Theorem 2.1.

Theorem 2.2. Let G be any graph. If a monotone map f on a G-like continuum X has positive
topological entropy, then X contains an indecomposable subcontinuum.

To prove Theorem 2.2, we need the following lemma which is a result of continuum theory.

Lemma 2.3. Let X and Y be continua with T (X) <∞. If f : X → Y is an (onto) monotone
map and Z is an indecomposable subcontinuum of X such that f(Z) is nondegenerate, then f(Z)
is an indecomposable subcontinuum of Y .

Proof. Since f : X → Y is monotone, we see that T (Y ) ≤ T (X) <∞. For each x ∈ Z, let Z(x)
denote the composant of Z containing x ∈ Z. Let Comp(Z) be the set of all composants of Z.
We take a subset {xα ∈ Z| α ∈ Λ} of Z such that Z(xα) ∩ Z(xβ) = ∅ for α 6= β and

Comp(Z) = {Z(xα)|α ∈ Λ},

where Λ is an index set which is uncountable.
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For each α, β ∈ Λ, we define α ∼f β provided that f(Z(xα)) ∩ f(Z(xβ)) 6= ∅. Also, for
each α, β ∈ Λ, we define α ∼ β provided that there is a finite sequence α = α1, α2, ..., αs = β
of Λ such that αi ∼f αi+1 for each i = 1, 2, .., s − 1. Then the relation ∼ is an equivalence
relation on Λ. Note that f(Z(xα)) ∩ f(Z(xβ)) 6= ∅ if and only if there is a point y ∈ Y with
f−1(y) ∩ Z(xα) 6= ∅ 6= f−1(y) ∩ Z(xβ). We will show that for each α ∈ Λ, the cardinality |[α]|
of the set [α] = {β ∈ Λ| α ∼ β} is ≤ T (X). Suppose, on the contrary, that for some α ∈ Λ,
|[α]| ≥ n = T (X) + 1. Let Λ(n) be any subset of [α] with |Λ(n)| = n. Note that for each
β ∈ Λ(n), we can find a sequence xα = a1, ã1, a2, ã2, ..., as(β), ãs(β) = xβ of points of Z such that
for each i,
(1) ai and ãi are contained in the same composant of Z, i.e., Z(ai) = Z(ãi),
(2) Z(ãi) 6= Z(ai+1) and
(3) f(ãi) = f(ai+1).

For each i, we can choose a subcontinuum C(ai, ãi) in the composant Z(ai) containing ai
and ãi and we put

Aβ =

s(β)⋃
i=1

C(ai, ãi) ∪
s(β)−1⋃
i=1

f−1(f(ãi)).

Also, we put

A =
⋃

β∈Λ(n)

Aβ.

Since C(ai, ãi) is a continuum containing ai, ãi and f−1(f(ãi)) is a continuum containing ãi, ai+1,
we see that Aβ is a continnum containing xα and xβ. Since xα ∈

⋂
β∈Λ(n)Aβ, we see that A is

also a continuum. Since Z is indecomposable, we see that each C(ai, ãi) has the empty interior
in Z and hence Z − A is a nonempty open set of Z. Since each Z(xβ) (β ∈ Λ(n)) is dense in
Z, we can find a continuum Bβ in Z(xβ) such that Bβ −A 6= ∅ and Bβ ∩A 6= ∅. Note that the
family {Bβ| β ∈ Λ(n)} is a family of mutually disjoint sets. Let

H =
⋃

β∈Λ(n)

Bβ ∪A.

Note that H is a continuum which contains a subcontinuum A such that the complement of A
in H is the union of n nonempty mutually separated sets Bβ − A (β ∈ Λ(n)). Hence H is an
n-od in X. This is a contradiction. Hence |[α]| ≤ T (X) <∞.

Note that Λ is an uncountable set. By the fact that |[α]| is finite for each α ∈ Λ, we can
choose an uncountable subset Λ′ of Λ such that the family {f(Z(xα))| α ∈ Λ′} is a family of
mutually disjoint subsets of f(Z).

Finally, we will prove that f(Z) is indecomposable. Suppose, on the contrary, that f(Z)
is decomposable. There is a proper subcontinuum A of f(Z) with Intf(Z)(A) 6= ∅. Since each
composant of Z is dense in Z, for any αi ∈ Λ′ (i = 1, 2, ..., T (Y ) + 1) there is a subcontinuum Bi
of f(Z(xαi)) such that Bi ∩A 6= ∅ and Bi−A 6= ∅ for each i. Then Y contains a (T (Y ) + 1)-od

A ∪
T (Y )+1⋃
i=1

Bi.

This is a contradiction. Consequently, we see that f(Z) is an indecomposable subcontinuum of
Y .
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Now, we will prove Theorem 2.2.

Proof. Since X is G-like, then lim←−(X, f) is also G-like, and hence we see that T (X) < ∞ and
T (lim←−(X, f)) < ∞. Consider the shift homeomorphism σf : lim←−(X, f) → lim←−(X, f) defined by
σf ((x1, x2, ...)) = (f(x1), f(x2), ...) (= (f(x1), x1, x2, ...)). Note that the topological entropy of
f is equal to the topological entropy of σf . By [5, Theorem 5.5], there is an indecomposable
continuum Z in lim←−(X, f). For each n ∈ N, we consider the natural projection pn : lim←−(X, f)→
X defined by pn((x1, x2, ..., xn, xn+1, ...)) = xn. Note that for i ∈ N, f i is also monotone (e.g.
see [27, (8.46)]) and for y ∈ X,

p−1
n (y) = lim←−(X, f) ∩ ({fn−1(y)} × {fn−2(y)} × · · · × {f(y)} × {y} × f−1(y)× f−2(y)× · · · ).

Therefore p−1
n (y) can be represented by an inverse limit of continua. Hence p−1

n (y) is a continuum
and so pn is monotone. We can choose a sufficiently large natural number n ∈ N such that pn(Z)
is nondegenerate. By the above lemma, we see that pn(Z) is an indecomposable subcontinuum
of X.

For uniform positive topological entropy (see [5, Corollary 5.6]), we have the following.

Corollary 2.4. Let G be any graph. If a monotone map f on a G-like continuum X has uniform
positive topological entropy, then the continuum X is itself an indecomposable continuum.

A continuum X is hereditarily decomposable if X does not contain any indecomposable sub-
continua. A continuum X is Suslinean if X has no uncountable mutually disjoint nondegenerate
subcontinua. Note that Suslinean continua are herediterily decomposable. A continuum X is
regular if X has an open base {Ui| i ∈ N} such that the boundary Bd(Ui) of Ui is a finite set.
A continuum X is rational if X has an open base {Ui| i ∈ N} such that the boundary Bd(Ui) of
Ui is a countable set. Note that all rational continua are Suslinean continua.

Remark. (1) In Lemma 2.3, for a 1-dimensional continuum X we can not omit the condition
T (X) <∞. In fact, it is known that for any Peano continuum Y there exists a monotone map
from the Menger curve M onto Y . Hence there is a monotone map f : M(= X)→ [0, 1] and we
can take an indecomposable subcontinuum Z of M such that f(Z) is a nondegenerate interval.
(2) There is a regular curve X with T (X) =∞. For example, Wazewski’s universal dendrite X
is a regular curve with T (X) =∞ (see [27, (10.37)]).
(3) There is a 1-dimensional continuum X with T (X) =∞ such that X is hereditarily decom-
posable, non-Suslinean and X admits a homeomorphism with positive topological entropy. For
example, the topological cone X = Cone(C) of a Cantor set C is such a continuum (see [27,
(3.15)]).

In [28, 8], we obtained the following result.

Theorem 2.5. ([28, 8]) Any monotone map on a regular continuum has zero topological entropy.

In [26], Mouron proved the following.

Theorem 2.6. ([26]) Let X be a Suslinean continuum. Then any homeomorphism on X has
zero topological entropy. In particular, any homeomorphism on a rational continuum has zero
topological entropy.
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Theorem 2.2 implies the following.

Corollary 2.7. Let G be any graph and let X be a G-like continuum which is hereditarily
decomposable. Then any monotone map on X has zero topological entropy.

We will prove the following.

Theorem 2.8. Let X be a Suslinean continuum with T (X) <∞. Then any monotone map on
X has zero topological entropy.

Proof. The proof is similar to the proofs of Lemma 2.3 and Theorem 2.2. Suppose, on the
contrary that X admits a monotone map f : X → X such that f has positive topological
entropy. Consider the shift homeomorphism σf : lim←−(X, f) → lim←−(X, f). Since σf has positive
topological entropy, by [26] lim←−(X, f) is non-Suslinean. Let

Z ′ = {Z ′α| α ∈ Λ}

be a family of uncountable mutually disjoint nondegenerate subcontinua of lim←−(X, f). We may
assume that there is ε1 > 0 such that for each α ∈ Λ, diam(Z ′α) ≥ 5ε1. For each α ∈ Λ, we
choose a subcontinuum Zα of Z ′α such that ε1 ≤ diam(Zα) ≤ 2ε1. Put

Z = {Zα| α ∈ Λ}.

We can choose a sufficiently large natural number n1 ∈ N such that the projection pn1 :
lim←−(X, f)→ X is an ε1/2-map. Note that p−1

n1
(x) (x ∈ X) is a subcontinuum such that

diam(p−1
n1

(x)) < ε1/2.

Then we see that for any α ∈ Λ and any finitely many points xi (i = 1, 2, ..., k) of X,

(∗) Z ′α − [Zα ∪
k⋃
i=1

p−1
n1

(xi)] 6= ∅,

because that Z ′α − Zα contains a connected set whose diameter is larger than ε1 and

{p−1
n1

(xi)| i = 1, 2, ..., k}

is a finite family of mutually disjoint closed subsets whose diameters are less than ε1/2.
For each α, β ∈ Λ, we define α ∼f β provided that pn1(Zα) ∩ pn1(Zβ) 6= ∅. Also, for each

α, β ∈ Λ, α ∼ β if there is a finite sequence α = α1, α2, ..., αs = β of Λ such that αi ∼f αi+1 for
each i = 1, 2, .., s−1. Then the relation ∼ is an equivalence relation on Λ (see the proof of Lemma
2.3). We will show that for each α ∈ Λ, the cardinality |[α]| of the set [α] = {β ∈ Λ| α ∼ β}
is ≤ T (X). Suppose, on the contrary, that |[α]| ≥ m = T (X) + 1. Let Λ(m) be any subset of
[α] with |Λ(m)| = m. As in the proof of Lemma 2.3, we can construct a subcontinuum A of
lim←−(X, f) such that A is a union of Zβ (β ∈ Λ(m)) and some finitely many subontinua p−1

n1
(xi).

As in the proof of Lemma 2.3, we put

H =
⋃

β∈Λ(m)

Z ′β ∪A.
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By (∗), we see that Z ′β − A 6= ∅ (β ∈ Λ(m)). Since {Z ′β| β ∈ Λ(m)} is a finite family of
mutually disjoint subcontinua, there is a sufficiently small positive number ε2 < ε1 such that
d(Z ′β, Z

′
β′) ≥ ε2 for β 6= β′ (β, β′ ∈ Λ(m)). Then we can choose a sufficiently large natural number

n2 ∈ N such that the projection pn2 : lim←−(X, f)→ X is an ε2/2-map such that pn2(Z ′β)−pn2(A) 6=
∅ (β ∈ Λ(m)). Then

pn2(H) =
⋃

β∈Λ(m)

pn2(Z ′β) ∪ pn2(A)

is an m-od in X, because that {pn2(Z ′β)| β ∈ Λ(m)} is a family of mutually disjoint subcontinua.
This means T (X) ≥ m. This is a contradiction.

As in the proof of Lemma 2.3, we can choose an uncountable subset Λ′ of Λ such that the
family {pn1(Zα)| α ∈ Λ′} is a family of mutually disjoint nondegenerate subcontinua of X. This
means that X is non-Suslinean. This is a contradiction. Consequently, any monotone maps on
X have zero topological entropy.

Finally, the following problems remain open.

Problem 2.9. Let X be a hereditarily decomposable continuum with T (X) <∞. Is it true that
any homeomorphism (more general, monotone map) on X has zero topological entropy?

Problem 2.10. Let X be a Suslinean continuum. Is it true that any monotone map on X
has zero topological entropy? In particular, is it true that any monotone map on a rational
continuum has zero topological entropy?
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[24] P. Minc and W. R. R. Transue, Sarkovskĭi’s theorem for hereditarily decomposable chainable
continua, Trans. Amer. Math. Soc. 315 (1989), no. 1, 173-188.

[25] C. Mouron, Positive entropy homeomorphisms of chainable continua and indecomposable
subcontinua, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2783-2791.

7



[26] C. Mouron, Mixing sets, positive entropy homeomorphisms and non-Suslinean continua.
Ergod. Th. Dynamical Sys. to appear. doi:10.1017/etds.2015.10.

[27] S. Nadler, Continuum Theory. An introduction, Monographs and Textbooks in Pure and
Applied Mathematics 158, Marcel Dekker, Inc., New York, 1992.

[28] G. T. Seidler, The topological entropy of homeomorphisms on one-dimensional continua,
Proc. Amer. Math. Soc. 108 (1990), no. 4, 1025-1030.

[29] X. Ye, Topological entropy of the induced maps of the inverse limits with bonding maps,
Topology Appl. 67 (1995), no. 2, 113-118.

Hisao Kato
Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
e-mail: hkato@math.tsukuba.ac.jp

8


