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Abbreviations: 1 

ABA, abscisic acid; AFP, antifreeze protein; BSA, bovine serum albumin; BSP, basic 2 

secretory protein; GLP, germin-like protein, IRI, ice recrystallization inhibition; LD, 3 

long-day; LDH, lactate dehydrogenase; LT, non-freezing low temperature; qRT-PCR, 4 

real-time quantitative reverse-transcription polymerase chain reaction; SD, short-day; 5 

SDS, sodium dodecyl sulfate; XSP, xylem sap protein 6 

7 

Abstract 8 

XSP25, previously shown to be the most abundant hydrophilic protein in xylem sap of 9 

Populus nigra in winter, belongs to a secretory protein family in which the arrangement 10 

of basic and acidic amino acids is conserved between dicotyledonous and 11 

monocotyledonous species. Its gene expression was observed at the same level in roots 12 

and shoots under long-day conditions, but highly induced under short-day conditions 13 

and at low temperatures in roots, especially in endodermis and xylem parenchyma in the 14 

root hair region of Populus trichocarpa, and its protein level was high in dormant buds, 15 

but not in roots or branches. Addition of recombinant PtXSP25 protein mitigated the 16 

denaturation of lactate dehydrogenase by drying, but showed only a slight effect on that 17 

caused by freeze–thaw cycling. Recombinant PtXSP25 protein also showed ice 18 

recrystallization inhibition activity to reduce the size of ice crystals, but had no 19 

antifreezing activity. We suggest that PtXSP25 protein produced in shoots and/or in 20 

roots under short-day conditions and at non-freezing low temperatures followed by 21 

translocation via xylem sap to shoot apoplast may protect the integrity of the plasma 22 

membrane and cell wall functions from freezing and drying damage in winter 23 

environmental conditions. 24 
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Introduction 5 

Due to their immobility, plants typically overcome abiotic stresses associated 6 

with seasonal climatic changes by altering their physiological and morphological status. 7 

In temperate and subarctic zones, perennial and winter annual plants must survive 8 

winter temperatures below 0 °C by overcoming freezing stress. Hence, deciduous trees 9 

form dormant buds in autumn and shed leaves in early winter as morphological 10 

adaptations, and they have also evolved a tolerance to freezing or acclimation to cold. In 11 

addition to the direct effects of freezing, plants cannot use soil water when the soil is 12 

frozen. Even under non-freezing low-temperature conditions, the supply of available 13 

water from roots decreases due to increased water viscosity and decreased water 14 

conductivity through water channels (aquaporins) in biological membranes (Wan et al. 15 

2001). Moreover, aquaporin gene expression is suppressed under non-freezing 16 

low-temperature conditions (Aohara et al. 2016; Jang et al. 2004). Therefore, plants that 17 

are not covered by snow must overcome drying stress in addition to direct freezing 18 

stress in winter (Larcher 2001b). 19 

The regulation of these adaptive physiological responses in shoots has been 20 

well studied in various plant species including trees (Larcher 2001a), and the regulatory 21 

functions of hormones and transcription factors, etc., have been largely clarified 22 

(Thomashow 1999; Welling and Palva 2006). In winter, when the temperature falls 23 

below the freezing point, ice is first formed extracellularly in the apoplast, including 24 
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xylem tracheary elements and intercellular spaces, and then intracellular freezing occurs, 1 

which damages the functions of biological membranes and the cytoplasm in plant 2 

tissues. Such extracellular freezing including extra-tissue and/or extra-organ freezing 3 

accompanied by the translocation of water from the cytosol to apoplasts leads to bud 4 

cytosol dehydration in some woody plant species (Ishikawa and Sakai 1982). Although 5 

intracellular freezing is suppressed by depression of the freezing point due to the rise in 6 

solute concentration within the cells, some plants produce antifreeze protein (AFP), 7 

which suppresses ice formation, thereby maintaining a supercooled state (Davies 2014; 8 

Wilson and Leader 1995; Wilson et al. 2010). 9 

However, cell functions are adversely affected if solute concentration in the 10 

unfrozen cytosol becomes too high due to dehydration. Therefore, some plants have 11 

developed mechanisms to withstand dehydration stress associated with freezing by 12 

producing plasma membrane components that stabilize the membrane even at low 13 

temperatures (Uemura et al. 2006) and by accumulating soluble low molecular weight 14 

organic substances and stress proteins, including hydrophilic polypeptides, such as LEA 15 

protein and dehydrin, which stabilize biological membranes and cytoplasmic proteins 16 

(Goyal et al. 2005; Karlson et al. 2003). In addition, some plants produce proteins that 17 

suppress the enlargement of ice crystals, often called ice recrystallization inhibition 18 

(IRI) activity (Capicciotti et al. 2013). As ice crystals often develop at the surface of 19 

plasma membrane below the cell wall (Yamazaki et al. 2009), it is possible that IRI 20 

proteins present in the apoplast reduce damage to the plasma membrane caused by the 21 

formation of large ice crystals. 22 

In contrast to the aboveground organs, annual changes in functions of the roots 23 

have yet to be fully clarified, although the roots play indispensable roles in the 24 
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absorption of minerals and water from soil, as well as the production of organic 1 

substances translocated to the inside and outside of the plant body. Xylem is one of the 2 

main components of the vascular system and functions as an extracellular route that 3 

systemically delivers root-absorbed inorganic and root-produced organic substances to 4 

aboveground organs (Satoh 2006). 5 

To monitor the annual variation in root functions in deciduous trees under 6 

natural environmental conditions, we analyzed the components of the sap that flows in 7 

xylem (xylem sap) seasonally collected from the stumps of cut branches of field-grown 8 

poplar (Populus nigra) using a suction pump. Calcium, potassium, glucose, and protein 9 

levels were found to increase from winter to early spring, suggesting that these 10 

inorganic and organic substances may be involved in adaptation to the winter 11 

environment and/or in preparation for spring bud burst (Furukawa et al. 2011a). 12 

Among the proteins present in poplar xylem sap, two highly abundant 13 

extracellular proteins, 25 kDa and 24 kDa xylem sap proteins (XSP25 and XSP24), 14 

have been shown to belong to the basic secretory protein (BSP) and germin-like protein 15 

(GLP) families, respectively, by mass spectrometry (Aohara et al. 2016; Furukawa et al. 16 

2011b). The XSP25 and XSP24 genes were found to be abundantly expressed in the 17 

roots of winter poplar soil-grown in outdoor pots and in the roots of soil-grown plants 18 

under short-day and low-temperature conditions in the culture room. 19 

As some GLPs have previously been reported to have oxalate oxidase and/or 20 

superoxide dismutase activities (Dunwell et al. 2008), these molecules have been 21 

suggested to be involved in stress tolerance. The BSPs, like XSP25, are hydrophilic 22 

extracellular proteins, some of which are inducible by abscisic acid (ABA) (Furukawa 23 

et al. 2011b; Kuwabara et al. 1999; Okushima et al. 2000), but their biological and 24 
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physicochemical functions have yet to be determined. 1 

Here, we clarified the accumulation of PtXSP25 protein in the shoots of 2 

Populus trichocarpa in winter and its physicochemical activities against freezing and 3 

drying, which are major environmental stresses encountered in winter, using 4 

recombinant PtXSP25 protein. 5 

6 

Materials and methods 7 

8 

Plant materials and culture conditions 9 

10 

P. trichocarpa (Torr. & Gray) genotype Nisqually 1 and hybrid aspen T89 lines (P.11 

tremula × tremuloides; Nilsson et al. 1992) kindly provided by Dr. C. J. Douglas, 12 

University of British Columbia, Canada, and Dr. B. Sundberg, Swedish University of 13 

Agricultural Sciences, Sweden, respectively, were aseptically cultured in pots as 14 

described previously (Ohtani et al. 2011) under long-day conditions (16 h light/8 h dark, 15 

23 °C) with light intensity of 60 μmol m–2 s–1. Plants aseptically cultured under 16 

long-day conditions for 3 weeks were sequentially transferred for culture under 17 

short-day conditions (8 h light/16 h dark, 23 °C) for 10 weeks, low-temperature 18 

conditions (8 h light/16 h dark, 4 °C) for 4 weeks, and long-day conditions (16 h light/8 19 

h dark, 23 °C) for 3 weeks. Xylem sap was collected as previously described (Furukawa 20 

et al. 2011a) from the cut stumps of branches of P. trichocarpa grown for 4 years on the 21 

campus of Tsukuba University in February 2016. Stems and dormant apical buds were 22 

also sampled from the same plants. 23 

24 
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Alignment of P. trichocarpa (Pt) XSP25 with the BSP family proteins 1 

2 

The amino acid sequence of PtXSP25, registered as XM_002300207.1 3 

(Potri.001G299500) in the P. trichocarpa database, was aligned with tobacco NtPRp27 4 

(BAA81904.1), Arabidopsis AT2G15220 (NP_565369.1), wheat WAS2 (AAD46133.1), 5 

and rice LOC_Os10g34930 (AAP54394.1) using Clustal W. The signal sequences for 6 

secretion and N-glycosylation sites were predicted using the SignalP 7 

(http://www.cbs.dtu.dk/services/SignalP/; Emanuelsson et al. 2007) and NetNGlyc 1.0 8 

(http://www.cbs.dtu.dk/services/NetNGlyc/) programs, respectively. 9 

10 

Gene expression analysis 11 

12 

Whole roots and shoots sampled at various time points were ground in liquid nitrogen 13 

and then homogenized in the same volume of RLC buffer using the RNeasy Plant Mini 14 

Kit (Qiagen, Tokyo, Japan) according to the manufacturer’s protocol, and the resultant 15 

RNA was used to analyze XSP25 expression by real-time quantitative 16 

reverse-transcription polymerase chain reaction (qRT-PCR) with ubiquitin 17 

(gi566172648; Potri.005G198700) as an internal standard (= 1). cDNA was synthesized 18 

by ReverTra Ace (Toyobo, Tokyo, Japan) using oligo (dT)20 primers at 42 °C for 60 min 19 

and 99 °C for 5 min, and real-time PCR was performed using the SYBR Premix Ex Taq 20 

II kit (TaKaRa Bio Inc., Shiga, Japan) under the following conditions: denaturation for 21 

30 s at 95 °C, annealing for 10 s at 63 °C, and extension for 31 s at 72 °C, for a total of 22 

50 cycles. PCR products were detected using the 7300 Real-Time PCR System (Thermo 23 

Fisher Scientific, Kanagawa, Japan). The following primers were used for qRT-PCR: 24 
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PtXSP25 forward 5′-ATGGACAAACACCAGGAGGA-3′, PtXSP25 reverse 1 

5′-ACCTTGATCCCACCTGTCAC-3′, UBQ forward 2 

5′-TGAACCAAATGATACCATTGATAG-3′, and UBQ reverse 3 

5′-GTAGTCGCGAGCTGTCTTG-3′. 4 

5 

Localization of PtXSP25 promoter activity 6 

7 

To produce PtXSP25promoter::GUS-transgenic plants, the promoter (1970 bp) of 8 

PtXSP25 was cloned into the pENTR-D-Topo vector (Thermo Fisher Scientific Inc., 9 

Tokyo, Japan) and used for transformation of the hybrid aspen T89 line according to the 10 

procedure described by Nilsson et al. (1992), because hybrid aspen T89 is a good plant 11 

material for genetic transformation. Roots of transgenic plants were embedded in 12 

Technovit 7100 resin (Kulzer, Hanau, Germany), and sections were prepared at the root 13 

hair region using an ultramicrotome, because the root hair region abundantly expresses 14 

genes that encode products delivered into xylem sap (Satoh 2006). Sections were 15 

subjected to immunohistochemistry using rabbit anti-GUS antibody and anti-rabbit IgG 16 

antibody coupled with fluorescein isothiocyanate as primary and secondary antibodies, 17 

respectively, according to the procedure described by Jasik et al. (2011), because the 18 

activity level was too low to identify β-glucuronidase-expressing tissues in the 19 

transformant lines. Immunofluorescence was visualized using a Leica DMRB 20 

fluorescence microscope (Leica, Wetzlar, Germany). 21 

22 

Production and purification of recombinant PtXSP25 protein 23 

24 
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The coding region of PtXSP25 without the signal peptide cloned into the pCold ProS2 1 

vector (TaKaRa Bio Inc.) was expressed in Escherichia coli, and recombinant PtXSP25 2 

protein was purified from the soluble fraction of E. coli lysate by Ni-chelate affinity 3 

resin, to release the protein from the resin, using Factor Xa protease and HRV3C 4 

protease for antigen and physicochemical assay, respectively, according to the 5 

manufacturer’s instructions. 6 

The primer sequences used to construct the recombinant PtXSP25 protein were 7 

as follows: rPtXSP25-HRV-F, 8 

5'-CTGTTCCAGGGGCCCGTGGACTACACTGTCACCAACAGAG-3'; 9 

rPtXSP25-Xa-F, 10 

5'-GGTATCGAAGGTAGGGTGGACTACACTGTCACCAACAGAG-3'; and 11 

rPtXSP25-Inf-R (common to rPtXSP25-HRV and rPtXSP25-Xa), 12 

5'-ACCGAGCTCCATATGCCTATTTTCCATACTTGGCCTTGTAGTC-3' 13 

14 

Detection of PtXSP25 protein in the tissues and xylem sap by immunoblotting 15 

16 

Proteins prepared from the xylem sap, branches, and dormant buds sampled from P. 17 

trichocarpa grown on the campus of Tsukuba University in February 2016 and whole 18 

roots and shoots sampled from aseptically cultured P. trichocarpa at various time points 19 

under artificial environmental conditions were subjected to sodium dodecyl 20 

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Tissue samples were ground 21 

in liquid nitrogen and then homogenized in the same volume of 2× sample buffer for 22 

SDS–PAGE followed by heating at 95 °C for 5 min; the supernatant (equivalent to 3 mg 23 

tissue/lane) was then used for SDS–PAGE. Xylem sap protein was precipitated using 24 
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80% ethanol, dissolved in the sample buffer, and subjected to SDS–PAGE (equivalent to 1 

1.25 mL xylem sap/lane) after heating at 95 °C for 5 min. Recombinant PtXSP25 2 

protein was used as a standard (5 ng/lane). Total proteins and PtXSP25 protein were 3 

then detected by Coomassie Brilliant Blue or silver staining and immunoblotting using 4 

an antibody raised against recombinant PtXSP25 protein, respectively, as described 5 

previously by Oda et al. (2003) for xylem sap and Sakuta and Satoh (2000) for tissues. 6 

Recombinant PtXSP25 protein was used as the standard. 7 

8 

Drying and freeze–thaw treatments and measurement of lactate dehydrogenase 9 

(LDH) activity 10 

11 

To evaluate the effect of drying, a drop (50 μL) of water containing 200 ng of LDH 12 

from rabbit muscle (Roche, Basel, Switzerland) mixed with recombinant PtXSP25 13 

protein or bovine serum albumin (BSA) at LDH:XSP25 or BSA molar ratio = 1:10 was 14 

placed on the wall of a polypropylene microtube, and left in a desiccator with 15 

phosphorus pentoxide for 3 or 12 h. Residual activity was measured after dissolution in 16 

50 μL of 100 mM Na-phosphate buffer (pH 6.0). To evaluate the effects of freeze–thaw 17 

cycling, 50 μL of 100 mM Na-phosphate buffer (pH 6.0) containing 200 ng of LDH was 18 

mixed with recombinant PtXSP25 protein or BSA at LDH:XSP25 or BSA molar ratio = 19 

1:10. The tube was immersed in liquid nitrogen to freeze and then thawed at room 20 

temperature. This freeze–thaw cycle was repeated three times. Initial and residual 21 

activities of LDH were measured by monitoring the decrease in absorbance at 340 nm at 22 

27 °C in the reaction mixture (1 mL) containing 2 μL of the solution mentioned above, 23 

100 mM Na-phosphate buffer (pH 6.0), 0.1 mM NADH, and 2 mM pyruvate. 24 
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1 

Measurement of antifreeze and ice recrystallization inhibition activities 2 

3 

To measure antifreeze activity, droplets of recombinant PtXSP25 protein (5 mg mL–1) 4 

and type III AFP (from Zoarces elongatus Kner, Notched-fin eelpout) (70 μg mL–1) 5 

solutions in water were frozen at a cooling rate of 0.05 °C min–1, and the morphology of 6 

ice crystals was observed as described previously (Nishimiya et al. 2005). To assess IRI 7 

activity, we used the “splat cooling” method (Capicciotti et al. 2015). A 10 μL droplet 8 

containing distilled water, a solution of recombinant PtXSP25 protein (5 mg mL–1 in 9 

water), or a solution of BSA (5 mg mL–1 in water) was dropped through a 2-m-high 10 

plastic tube onto a polished aluminum block cooled to approximately −80 °C. The wafer 11 

was separated from the surface of the block, transferred to a cryostage, stored at −6.4 °C 12 

for 30 min to allow annealing, and then photographed using a digital camera fitted to 13 

the microscope. We used ImageJ software to draw well-defined boundaries around the 14 

ice crystals within the image and to calculate the area of each crystal. The average ice 15 

crystal area (mean grain size) was compared with that of the control (distilled water). 16 

17 

Results 18 

19 

Structural characteristics of BSP family proteins 20 

21 

The amino acid sequence of PtXSP25, one of six BSP family proteins in the P. 22 

trichocarpa genome database, was aligned with BSPs from tobacco, Arabidopsis, wheat, 23 

and rice (Fig. 1; phylogenetic tree shown in Fig. S1). With the exception of that from 24 
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tobacco, these proteins all possess a signal peptide for protein secretion at the 1 

N-terminus. They are all hydrophilic with abundant charged amino acids, the positions2 

of which are well conserved between dicotyledonous and monocotyledonous plants. 3 

PtXSP25 has basic and acidic amino acids at 12.3% and 10.3%, respectively, with pI 7.9, 4 

and has a single putative N-glycosylation site. 5 

6 

Expression of PtXSP25 under artificial environmental conditions 7 

8 

To analyze the effects of environmental factors on PtXSP25 expression, qRT-PCR was 9 

performed on whole shoots and roots harvested at 23 °C under long-day conditions, 10 

after 6 weeks under short-day conditions, and after 2 weeks at 4 °C under short-day 11 

conditions. PtXSP25 was moderately expressed both in roots and shoots under long-day 12 

conditions, but highly expressed in roots under short-day conditions, and this high 13 

expression was maintained at 4 °C (Fig. 2). 14 

To analyze the tissue-specific expression of PtXSP25, the root hair region of 15 

hybrid aspen T89 transformed with the β-glucuronidase gene fused downstream of the 16 

PtXSP25 promoter after 6 weeks of culture under short-day conditions was embedded in 17 

Technovit resin, followed by immunostaining of thin transverse sections using an 18 

antibody against β-glucuronidase. Expression was localized in the endodermis and 19 

xylem parenchyma, and not detected in the pericycle or other tissues (Fig. 3). 20 

21 

Purification of recombinant PtXSP25 protein 22 

23 

The recombinant protein containing the coding region of PtXSP25 without the signal 24 
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sequence was expressed in E. coli using the pCold ProS2 vector and purified with 1 

Ni-chelate affinity resin using Factor Xa or HRV3C proteases for preparation of 2 

recombinant PtXSP25 protein used for antigen or physicochemical activity assays, 3 

respectively. The recombinant PtXSP25 protein was successfully purified from the 4 

soluble fraction of E. coli lysate as a single band in both cases (Fig. S2). 5 

6 

Immunological detection of PtXSP25 in poplar 7 

8 

For immunoblotting analysis, the proteins in xylem sap collected in February from the 9 

stumps of cut branches of P. trichocarpa grown on the campus of Tsukuba University 10 

using a suction pump and the proteins in branches and dormant buds collected from the 11 

same plants were separated by SDS-PAGE followed by immunological detection using 12 

anti-PtXSP25 antibody. Xylem sap contained a much lower total protein content 13 

compared with branches or buds; the amount and pattern of total protein was similar 14 

between branches and buds (Fig. 4a). However, a broad band representing the PtXSP25 15 

protein was detected on the immunoblots, including a higher-molecular-weight region 16 

than that in the recombinant PtXSP25, probably due to N-glycosylation in buds and 17 

xylem sap, but not in branches (Fig. 4b). Figure 5 shows the results of immunological 18 

detection of PtXSP25 protein in plants grown aseptically under artificial environmental 19 

conditions. PtXSP25 protein was weakly detected at the start of short-day conditions, 20 

but it was abundant after 10 weeks under short-day conditions and after 2 weeks at 4 °C 21 

in shoots but not in roots. A weak slightly higher molecular weight band, probably due 22 

to N-glycosylation, was also detected. 23 

24 



14 

Mitigation effects of PtXSP25 protein against denaturation of LDH by drying and 1 

freezing 2 

3 

As LDH is one of the fragile enzymes associated with drying and freezing damage, dry 4 

material from a drop of LDH solution mixed with the recombinant PtXSP25 protein was 5 

incubated with phosphorus pentoxide in a desiccator for 3 or 12 h and resolved with 6 

buffer. Residual LDH activity was measured using BSA as a positive control, because 7 

BSA is widely used as a protectant for various enzymes. LDH activity decreased to 8 

55.1% of that at 0 h without the addition of any protectant after 3 h of desiccation, but 9 

decreased to only 80.1% of that at 0 h with the addition of recombinant PtXSP25 10 

protein or BSA (Fig. 6). With the addition of PtXSP25 protein or BSA, 0.06% of LDH 11 

activity remained even after 12 h of desiccation, whereas no activity was detected at this 12 

time point without the addition of protectant. 13 

As BSA protects various enzymes from denaturation induced by freeze–thaw 14 

cycling, we examined the mitigation effects of recombinant PtXSP25 protein against 15 

damage associated with repeated freeze–thaw cycles. As shown in Fig. 7, the addition of 16 

BSA strongly protected LDH from inactivation after three cycles of freeze–thaw 17 

treatment. Addition of recombinant PtXSP25 protein also significantly suppressed the 18 

inactivation of LDH, but its effect was much weaker than that of BSA. 19 

20 

Effects of PtXSP25 protein on ice formation 21 

22 

To evaluate the antifreeze activity of PtXSP25, recombinant PtXSP25 protein solution 23 

(5 mg mL–1) was frozen and the shape of ice crystals was observed. A type III antifreeze 24 
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protein (AFP) (70 μg mL–1) from the sea fish Z. elongatus Kner (notched-fin eelpout) 1 

showed the formation of bipyramidal crystals due to AFP binding as a positive control 2 

(Fig. 8c) (Nishimiya et al. 2005). However, the formation of round, dinner-plate-shaped, 3 

ice crystals, i.e., lacking bipyramidal ice crystals, was observed with recombinant 4 

PtXSP25 protein (Fig. 8a, b), indicating a lack of antifreeze activity. The relationship 5 

between hexagonal bipyramids and some thermal hysteresis (or antifreeze activity) is 6 

well documented (Wilson and Leader 1995), and the lack of bipyramidal ice in this 7 

experiment suggested the absence of any hysteresis. It must be noted that the presence 8 

of bipyramidal ice does not necessarily indicate measurable thermal hysteresis but does 9 

indicate inhibition of recrystallization. In all cases to date where an organism produces 10 

proteins that result in hexagonal bipyramidal ice, some inhibition of recrystallization 11 

has been observed.  That is, if we measure thermal hysteresis or if we see hexagonal 12 

bipyramids there will be inhibition of recrystallization, but the manifestation of 13 

inhibition does not necessarily mean either bipyramids or hysteresis. 14 

Next, to evaluate the IRI activity of PtXSP25, recombinant PtXSP25 protein 15 

solution (5 mg/mL) was subjected to splat-cooling assay to measure the mean grain size 16 

of ice crystals. The ice crystals were reduced in size to 64% of the size in the water 17 

controls that is similar to the data of BSA (Fig. 9). PtXSP25 activity was similar to that 18 

of TaIRI-2 (IRI protein) (Tremblay et al. 2005) and WCS120 (dehydrin) (Houde et al. 19 

1995) in wheat measured previously in our laboratory (Chow-Shi-Yée et al. 2016). 20 

21 

Discussion 22 

23 

The functions of BSP family proteins including PtXSP25 are not yet known, but their 24 
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genes are widely distributed in dicotyledonous and monocotyledonous plants. The 1 

arrangement of basic and acidic amino acids is highly conserved among species (Fig. 1), 2 

suggesting that these abundant charged amino acids may have important functions in 3 

interactions with water molecules and other proteins. 4 

Gene expression of PtXSP25 was strongly induced in poplar roots under 5 

short-day conditions and at non-freezing low temperatures (Fig. 2). From fall to winter, 6 

boreal trees sequentially perceive and respond to changes in environmental signals 7 

(short days, non-freezing low temperatures, and freezing temperatures) to finally 8 

acquire maximum freezing resistance (Welling and Palva 2006). In late fall, plants may 9 

be exposed to mild freezing temperatures close to −5 °C before full acquisition of cold 10 

acclimation. Therefore, the induction of some level of cold tolerance in deciduous trees 11 

by short-day conditions may represent an adaptive response to such environmental 12 

changes. Leaves sense short-day conditions, resulting in cold acclimation through the 13 

production of ABA (Welling et al. 2002). Our previous study showed that XSP25 14 

expression in roots is induced by ABA application (Furukawa et al. 2011b). Therefore, it 15 

is possible that ABA synthesized in shoots under short-day conditions is translocated to 16 

the roots, and then induces PtXSP25 expression in the roots. 17 

PtXSP25 was highly expressed in roots under short-day conditions (Fig. 2), 18 

especially in the endodermis and xylem parenchyma within the central cylinder of the 19 

root hair region in roots (Fig. 3). As water absorption mainly occurs in the root hair 20 

region, the proteins produced and secreted in the central cylinder surrounded by 21 

endodermis in this region are thought to be efficiently transported to the shoots via 22 

xylem flow (Satoh 2006). In outdoor-cultivated poplar in winter, PtXSP25 protein was 23 

detected in xylem sap and dormant buds, but not in branches (Fig. 4). Xylem sap is 24 
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contained in branches, but at a low volume, and the concentration of XSP25 protein in 1 

xylem sap is low (approximately 50 ng mL–1). Moreover, XSP25 proteins may flow 2 

through branches but do not accumulate in the branches. Therefore, XSP25 protein may 3 

not be detected in branches. In poplar aseptically grown in pots under artificial 4 

environmental conditions, PtXSP25 protein was not detected in roots, and its 5 

accumulation in shoots increased under short-day conditions and at non-freezing low 6 

temperatures (Fig. 5). These results may imply that the PtXSP25 protein produced in 7 

roots is transported through xylem to the shoots (especially to the dormant buds). 8 

However, because PtXSP25 was also moderately expressed in shoots under short-day 9 

conditions (Fig. 2), PtXSP25 protein in buds may alternatively be produced within the 10 

buds themselves. Further analysis of PtXSP25 gene expression at the tissue level and 11 

PtXSP25 protein translocation between organs and tissues will be required. 12 

On the other hand, low temperatures in winter induce drying stress due to 13 

suppression of water movement in addition to freezing stress (Larcher 2001b). 14 

Therefore, the effects of PtXSP25 protein on denaturation of LDH by drying were 15 

investigated, and the results indicated that recombinant PtXSP25 protein significantly 16 

mitigated the decrease in LDH activity by drying (Fig. 6). Moreover, its effect was 17 

comparable to that of BSA, which is generally used as a protectant for various enzymes. 18 

This effect may have been because PtXSP25 protein has high hydrophilicity and is able 19 

to retain water molecules around the protein. PtXSP25 may function similarly to 20 

hydrophilic LEA proteins (Goyal et al. 2005). As PtXSP25 protein is present in xylem 21 

sap, a kind of apoplast (Furukawa et al. 2011b), it may prevent the inactivation of 22 

functional proteins, including plasma membrane aquaporins and 23 

hemicellulose/pectin-modifying enzymes on the surface of the plasma membrane and in 24 
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the cell wall. 1 

Many enzymes are denatured by freeze–thaw cycling, and BSA is often used to 2 

suppress this denaturation. PtXSP25 protein showed only a slight protective effect 3 

against denaturation of LDH by freeze–thaw cycling compared with BSA (Fig. 7). On 4 

the other hand, some organisms living in cold environments produce AFP to prevent 5 

freezing of their cells and body fluid (Wilson et al. 2010). Therefore, we examined the 6 

shape of the ice crystals formed when the solution of PtXSP25 protein was frozen, but 7 

no antifreeze activity was observed as compared with fish Type III AFP (Fig. 8). Certain 8 

organisms also produce proteins that inhibit the growth of ice crystals (IRI activity) 9 

(Wilson et al. 2003). Therefore, PtXSP25 solution was subjected to splat-cooling assay 10 

to evaluate IRI activity. PtXSP25 showed IRI activity that is similar to the data of BSA 11 

(Fig. 9). As a serum protein, BSA lacks IRI activity under high ionic conditions such as 12 

in phosphate-buffered saline (PBS) containing 130 mM NaCl (Eniade et al. 2003); some 13 

non-IRI proteins also show IRI activity in water (Knight et al. 1995), perhaps due to the 14 

presence of these animal proteins in body fluids with high ionic concentrations. In 15 

contrast, PtXSP25 is present in xylem sap, a kind of apoplast, the ionic concentration of 16 

which is very low (nearly 5 mM) (Furukawa et al. 2011a). Since 5 mg mL–1 PtXSP25 17 

was not soluble in PBS, we dissolved PtXSP25 and BSA in water for the IRI assay. 18 

Because PtXSP25 is generally present under low ionic conditions in the plant body, the 19 

IRI activity of PtXSP25 may be effective in plants. The IRI activity of PtXSP25 (Fig. 9) 20 

was comparable with those of wheat TaIRI (IRI protein) and WCS120 (dehydrin), 21 

which are involved in stress tolerance (Houde et al. 1995; Tremblay et al. 2005). 22 

Extracellular freezing is an important process that depresses the freezing point 23 

by decreasing the water content of the cytosol to induce supercooling (Ishikawa and 24 
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Sakai 1982); however, the formation of large extracellular ice crystals can damage the 1 

cell surface. Therefore, PtXSP25, an extracellular protein, is thought to reduce the size 2 

of ice crystals, with consequent reduction in physical damage to the plasma membrane, 3 

especially at the boundary between the plasma membrane and the cell wall. As 4 

recombinant PtXSP25 protein was insolubilized when the solution was concentrated 5 

using a membrane filter at concentrations greater than 5 mg mL–1, we could not 6 

determine the maximum IRI activity of PtXSP25 protein. N-glycosylation (Figs. 4, 5) 7 

may improve the solubility of PtXSP25 protein in plants. 8 

Taken together, these observations indicate that PtXSP25 protein was 9 

synthesized in the central cylinder of polar roots from fall to early winter by perception 10 

of short-day conditions and non-freezing low temperatures. PtXSP25 protein production 11 

in shoots and/or in roots followed by its translocation via xylem sap and accumulation 12 

in shoot apoplast may protect the integrity of the plasma membrane and cell wall 13 

against freezing and drying damage in winter, thus helping the plant to overcome winter 14 

stresses and facilitate bud flush in spring. 15 
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Figure Captions 10 

11 

Fig. 1 Amino acid sequence and alignment of PtXSP25 with other BSP family proteins, 12 

including tobacco NtPRp27, Arabidopsis AT2G15220, wheat WAS2, and rice 13 

LOC_Os10g34930. The characters in blue, red, green, and purple indicate the signal 14 

peptide, basic amino acids (R, K, H), acidic amino acids (D, E), and putative 15 

N-glycosylation sites, respectively. Identical amino acid residues are indicated by16 

asterisks, strongly similar sequences by two dots, and weakly similar sequences by one 17 

dot. 18 

19 

Fig. 2 Gene expression of PtXSP25 in P. trichocarpa cultured aseptically under artificial 20 

environmental conditions. The plants cultured under long-day conditions (16 h light/8 h 21 

dark, 23 °C) with light intensity of 60 μmol m–2 s–1 were sequentially transferred to 22 

culture under short-day conditions (8 h light/16 h dark, 23 °C) for 10 weeks, and 23 

low-temperature conditions (8 h light/16 h dark, 4 °C) for 4 weeks. Whole roots (white 24 



25 

column) and shoots (black column) were sampled from three plants each at the start of 1 

short-day conditions (SD0), after 6 weeks of short-day conditions (SD6), and after 2 2 

weeks of low-temperature conditions (LT2), and used for qRT-PCR. Error bars indicate 3 

standard deviation (n = 3). Asterisks indicate statistically significant differences versus 4 

SD0 in roots or shoots (*P < 0.05, †P < 0.1; Student’s t-test). 5 

6 

Fig. 3 Tissue-specific expression of PtXSP25 in poplar roots. GUS protein was detected 7 

by anti-GUS antibody on Technovit sections of the root hair region of 8 

pPtXSP25::GUS-transgenic hybrid aspen roots cultured for 6 weeks under short-day 9 

conditions. The sections (a) were treated with (b, c, d) or without (e, f, g) anti-GUS 10 

antibody followed by treatment with FITC-coupled secondary antibody. UV images 11 

(blue: b, e) and fluorescence images showing GUS protein (green: c, f) were merged (d, 12 

g) indicating the localization of PtXSP25 expression in endodermis and xylem13 

parenchyma in stele but not in pericycle. Bars = 100 μm. 14 

15 

Fig. 4 Detection of PtXSP25 protein in winter poplar by immunoblotting. Xylem sap, 16 

branches, and dormant buds were sampled from P. trichocarpa grown on the campus of 17 

Tsukuba University in February 2016, and subjected to SDS–PAGE with recombinant 18 

PtXSP25 protein (P) followed by Coomassie Brilliant Blue staining (a) or 19 

immunoblotting using an antibody raised against recombinant PtXSP25 protein (b). The 20 

arrow indicates the position of PtXSP25 protein. M, molecular weight marker. 21 

22 

Fig. 5 Detection of PtXSP25 protein by immunoblotting in roots and shoots of poplar 23 

cultured under artificial environmental conditions. Whole roots and shoots were 24 
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sampled from P. trichocarpa cultured aseptically as described in Fig. 2 at the start of 1 

short-day conditions (SD0), after 10 weeks of short-day conditions (SD10), and after 2 2 

weeks of low-temperature conditions (LT2), and subjected to SDS-PAGE with 3 

recombinant PtXSP25 protein (P) followed by silver staining (a) or immunoblotting 4 

using an antibody raised against recombinant PtXSP25 protein (b). The arrow indicates 5 

the position of PtXSP25 protein. M, molecular weight marker. 6 

7 

Fig. 6 Mitigation effect of PtXSP25 protein on the denaturation of LDH by drying. A 8 

drop (50 μL) of LDH solution mixed without (white bars) or with recombinant PtXSP25 9 

protein (gray bars) or with BSA (black bars) at LDH:XSP25 or BSA molar ratio = 1:10 10 

was left in the desiccator with phosphorus pentoxide for 3 or 12 h, and the residual 11 

activity was then measured after dissolution in 50 μL of buffer. Error bars indicate 12 

standard deviation (n = 3). ND, not detected. Asterisks indicate statistically significant 13 

differences versus without proteins at 0, 3, or 12 h (*P < 0.05; Student’s t-test). 14 

15 

Fig. 7 Mitigation effect of PtXSP25 protein on denaturation of LDH by freeze–thaw 16 

cycling. LDH solution mixed without (Control) or with recombinant PtXSP25 protein 17 

(XSP25) or with BSA (BSA) at LDH:XSP25 or BSA molar ratio = 1:10 was subjected 18 

to freeze–thaw cycling (3 times), and the residual activity was then measured. Error bars 19 

indicate standard deviation (n = 3). Initial, without freeze–thaw cycling. Asterisks 20 

indicate statistically significant differences versus the control (*P < 0.05; Student’s 21 

t-test).22 

23 

Fig. 8 Photomicrographs of ice crystals in PtXSP25 protein solution. Droplets of 24 
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recombinant PtXSP25 protein (5 mg mL–1) (a, b) and type III AFP (from Zoarces 1 

elongatus Kner, Notched-fin eelpout) (70 μg mL–1) (c) solutions in water were frozen at 2 

a cooling rate of 0.05 °C min–1, and the morphology of the ice crystals was examined. 3 

As a positive control, type III AFP showed formation of bipyramidal ice crystals due to 4 

AFP-binding (c), but PtXSP25 showed round-shaped crystals indicating no AFP activity 5 

(a, b). Scale bars = 500 μm (a, b), 50 μm (c: just below the crystal). 6 

7 

Fig. 9 Ice recrystallization inhibition activity of PtXSP25 protein. Distilled water (a), 8 

recombinant PtXSP25 protein solution (5 mg mL–1 in water) (b) or bovine serum 9 

albumin (BSA, 5 mg mL–1 in water) was subjected to a “splat-cooling” assay, and ice 10 

crystal images were taken after annealing at −6.4 °C for 30 min. PtXSP25 exhibited IRI 11 

activity with a mean grain size of 64% relative to water that is similar to the data of 12 

BSA (c). Error bars indicate the standard error of the mean. Each protein was assayed in 13 

triplicate (n = 3). Asterisks indicate statistically significant differences versus distilled 14 

water (*P < 0.05; Student’s t-test). 15 

16 

17 
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Fig. 1. Amino acid sequence and alignment of PtXSP25 with other BSP family proteins, including 

tobacco NtPRp27, Arabidopsis AT2G15220, wheat WAS2, and rice LOC_Os10g34930. The 

characters in blue, red, green, and purple indicate the signal peptide, basic amino acids (R, K, H), 

acidic amino acids (D, E), and putative N-glycosylation sites, respectively. Identical amino acid 

residues are indicated by asterisks, strongly similar sequences by two dots, and weakly similar 

sequences by one dot. 



Fig. 2. Gene expression of PtXSP25 in P. trichocarpa cultured aseptically under 

artificial environmental conditions. The plants cultured under long-day conditions (16 h 

light/8 h dark, 23°C) with light intensity of 60 μmol m–2 s–1 were sequentially 

transferred to culture under short-day conditions (8 h light/16 h dark, 23°C) for 10 

weeks, and low-temperature conditions (8 h light/16 h dark, 4°C) for 4 weeks. Whole 

roots (white column) and shoots (black column) were sampled from three plants each at 

the start of short-day conditions (SD0), after 6 weeks of short-day conditions (SD6), and 

after 2 weeks of low-temperature conditions (LT2), and used for qRT-PCR. Error bars 

indicate standard deviation (n = 3). Asterisks indicate statistically significant differences 

versus SD0 in roots or shoots (*P < 0.05, †P < 0.1; Student’s t-test). 1 
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Fig. 3. Tissue-specific expression of PtXSP25 in poplar roots. GUS protein was detected by anti-
GUS antibody on Technovit sections of the root hair region of pPtXSP25::GUS-transgenic hybrid 
aspen roots cultured for 6 weeks under short-day conditions. The sections (a) were treated with (b, 
c, d) or without (e, f, g) anti-GUS antibody followed by treatment with FITC-coupled secondary 
antibody. UV images (blue: b, e) and fluorescence images showing GUS protein (green: c, f) were 
merged (d, g) indicating the localization of PtXSP25 expression in endodermis and xylem 
parenchyma in stele but not in pericycle. Bars = 100 μm. 

endodermis 

stele 

1 

Transmit UV Merged GUS 

endodermis 

stele 

b a c 

e 

d 

g f 



M P M P 

100 
75 

50 

37 

25 

15 

100 

75 

50 

37 

25 

15 

(kDa) 
(kDa) 

Fig. 4. Detection of PtXSP25 protein in winter poplar by immunoblotting. Xylem sap, branches, 

and dormant buds were sampled from P. trichocarpa grown on the campus of Tsukuba University 

in February 2016, and subjected to SDS–PAGE with recombinant PtXSP25 protein (P) followed 

by Coomassie Brilliant Blue staining (a) or immunoblotting using an antibody raised against 

recombinant PtXSP25 protein (b). The arrow indicates the position of PtXSP25 protein. M, 

molecular weight marker. 

a b 



Fig. 5. Detection of PtXSP25 protein by immunoblotting in roots and shoots of poplar cultured 

under artificial environmental conditions. Whole roots and shoots were sampled from P. trichocarpa 

cultured aseptically as described in Fig. 2 at the start of short-day conditions (SD0), after 10 weeks 

of short-day conditions (SD10), and after 2 weeks of low-temperature conditions (LT2), and 

subjected to SDS-PAGE with recombinant PtXSP25 protein (P) followed by silver staining (a) or 

immunoblotting using an antibody raised against recombinant PtXSP25 protein (b). The arrow 

indicates the position of PtXSP25 protein. M, molecular weight marker. 
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Fig. 6. Mitigation effect of PtXSP25 protein on the denaturation of LDH by drying. A drop (50 μL) of 

LDH solution mixed without (white bars) or with recombinant PtXSP25 protein (gray bars) or with BSA 

(black bars) at LDH:XSP25 or BSA molar ratio = 1:10 was left in the desiccator with phosphorus 

pentoxide for 3 or 12 h, and the residual activity was then measured after dissolution in 50 μL of buffer. 

Error bars indicate standard deviation (n = 3). ND, not detected. Asterisks indicate statistically significant 

differences versus without proteins at 0, 3, or 12 h (*P < 0.05; Student’s t-test). 
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Fig. 7. Mitigation effect of PtXSP25 protein on denaturation of LDH by freeze–thaw cycling. LDH 

solution mixed without (Control) or with recombinant PtXSP25 protein (XSP25) or with BSA (BSA) at 

LDH:XSP25 or BSA molar ratio = 1:10 was subjected to freeze–thaw cycling (3 times), and the residual 

activity was then measured. Error bars indicate standard deviation (n = 3). Initial, without freeze–thaw 

cycling. Asterisks indicate statistically significant differences versus the control (*P < 0.05; Student’s t-

test). 
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Fig. 8. Photomicrographs of ice crystals in PtXSP25 protein solution. Droplets of 

recombinant PtXSP25 protein (5 mg/mL) (a, b) and type III AFP (from Zoarces 

elongatus Kner, Notched-fin eelpout) (70 μg/mL) (c) solutions in water were 

frozen at a cooling rate of 0.05°C/min, and the morphology of the ice crystals 

was examined. As a positive control, type III AFP showed formation of 

bipyramidal ice crystals due to AFP-binding (c), but PtXSP25 showed round-

shaped crystals indicating no AFP activity (a, b). Scale bars = 500 μm (a, b), 50 μm 

(c). 

a c b 
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Fig. 9. Ice recrystallization inhibition activity of PtXSP25 protein. Distilled water (a), recombinant 

PtXSP25 protein solution (5 mg/mL in water) (b) or bovine serum albumin (BSA, 5 mg/mL in 

water) was subjected to a “splat-cooling” assay, and ice crystal images were taken after annealing 

at −6.4 °C for 30 min. PtXSP25 exhibited IRI activity with a mean grain size of 64% relative to 

water that is similar to the data of BSA (c). Error bars indicate the standard error of the mean. Each 

proteins was assayed in triplicate (n = 3). Asterisks indicate statistically significant differences 

versus distilled water (*P < 0.05; Student’s t-test). 
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Fig. S1. Phylogenetic tree of PtXSP25 and its homologs in poplar (Potri), tobacco (NtPRp27), 

wheat (TaWAS2), Arabidopsis (At), and rice (LOC_Os), generated by the ClustalW program. 



Fig. S2. Production of recombinant PtXSP25 protein and its purification by Ni-chelate 

affinity resin. (a) PtXSP25 coding region without signal peptide cloned into the pCold ProS2 

vector was expressed in E. coli, and total cell lysate (T) was separated into soluble (S) and 

insoluble (P) fractions. (b) Recombinant PtXSP25 protein was purified from the soluble 

fraction by Ni-chelate affinity resin using Factor Xa protease and HRV3C protease for antigen 

(Xa) and for physicochemical assay (HRV), respectively, to release the protein from the resin. 

*1, 6xHis-Tag:ProS2-Tag:protease-cleavage-sites:PtXSP25 fusion protein; *2, PtXSP25 

protein purified by Ni-chelate affinity resin. 
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