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This paper introduces a new capability for group signatures calledmessage-dependent opening. It is intended toweaken the high trust
placed on the opener; i.e., no anonymity against the opener is provided by an ordinary group signature scheme. In a group signature
scheme with message-dependent opening (GS-MDO), in addition to the opener, we set up an admitter that is not able to extract
any user’s identity but admits the opener to open signatures by specifying messages where signatures on the specified messages
will be opened by the opener. The opener cannot extract the signer’s identity from any signature whose corresponding message is
not specified by the admitter. This paper presents formal definitions of GS-MDO and proposes a generic construction of it from
identity-based encryption and adaptive non-interactive zero-knowledge proofs. Moreover, we propose two specific constructions,
one in the standardmodel and one in the random oraclemodel. Our scheme in the standardmodel is an instantiation of our generic
construction but the message-dependent opening property is bounded. In contrast, our scheme in the random oracle model is not
a direct instantiation of our generic construction but is optimized to increase efficiency and achieves the unbounded message-
dependent opening property. Furthermore, we also demonstrate that GS-MDO implies identity-based encryption, thus implying
that identity-based encryption is essential for designing GS-MDO schemes.

1. Introduction

Group signatures [1] are anonymous signatures that allow
members of a group to anonymously sign messages on behalf
of the group. Signatures are verified with a single group
public key, and the verification process does not reveal the
identity of the signer. A designated authority, called the
opener, identifies the actual signer in various exceptional
cases.However, ordinary group signatures provide the opener
with an extreme privilege; i.e., the opener can freely identify
the originator of any signature that he chooses. In other
words, ordinary group signature schemes provide absolutely
no assurance of privacy against the opener. For example, in
an anonymous auction the opener can extract all bidders’
identities, which will be explained later in more detail.

This paper investigates a way of “decentralizing” this
strong authority of the opener. Towards this end, we propose
a new kind of group signatures involving the message-
dependent opening (MDO) property. It divides (or decen-
tralizes) the strong authority of the opener by introducing
another authority called the admitter. In exceptional cases
that a signature on a problematic message is found, the
admitter issues a token that corresponds to the message (as
opposed to all signed messages). The opener extracts the
signer’s identity from the signature using this token, whereas
without it, he is not able to do so. For instance, in an
anonymous bulletin board system using our group signature
scheme, if the admitter decides that the message “Mr. XXX
is a fool!” should not be publicized as a signed message by an
anonymous groupmember, he issues a token for thismessage.
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Then, by using it, the opener can immediately identify the
signer’s identity of any signature if it corresponds to this
message.

At first glance, one may think that the popular threshold-
ing technique (i.e., thresholding the opener intomultiple less-
trusted openers) [2] would already be sufficient to achieve
the above property. However, this is not true. Namely, in
our context, the token is generated on the message that the
admitter chooses but not the signature for such messages.
Therefore, once a token for a message (which is chosen by
the admitter) is issued, the signers’ identities for all signa-
tures on this message can immediately be extracted by the
opener without him having to interact with any other party.
Consequently, the opener can noninteractively identify the
signer’s identity for a message that has already been specified
as problematic. Furthermore if the admitter considers that
there is no longer any need to specify further messages that
should be opened, then he can erase his memory to avoid
having his secret leaked.Note that evenwhen the admitter has
erased his secret, the opener can still open the signer’s identity
of any signature provided that its corresponding message was
previously specified by the admitter.

1.1. Contributions. This paper proposes group signatures with
a new additional capability, called group signatures with
message-dependent opening (GS-MDO). We introduce an
admitter in GS-MDO, as previously mentioned, that issues
tokens for specific messages, and by using these tokens, the
opener can extract signers’ identities from signatures only if
their corresponding messages have been specified. We can
flexibly restrict the capabilities of the opener utilizing this
property without implementing any complicated interactive
procedures (e.g., threshold decryption).

The main contributions of this paper are threefold. First,
we provide a formal model and a security definition for GS-
MDO. Our model and security definition are extensions of
the Bellare-Micciancio-Warinschi (BMW) model [3], which
is considered to be the basic security definition for group
signatures in the static setting. More specifically, our security
model is a natural modification of this model extended
according to the difference between a standard group signa-
ture scheme and ourswhich introduces theMDOproperty. In
addition, we demonstrate that it is possible to derive identity-
based encryption (IBE) from any GS-MDO scheme in a black-
boxmanner if the underlying GS-MDO is secure in the above
sense.

Secondly, we present a generic construction of GS-
MDO from a public key encryption (PKE) scheme, an
IBE scheme, and an adaptive noninteractive zero-knowledge
(NIZK) proof system. (Technically, we use a tag-based KEM
(key encapsulation mechanism) and an identity-based KEM
instead of a PKE scheme and an IBE scheme). Given the above
result that GS-MDO implies IBE, it is expected to be quite
hard to construct GS-MDO without using IBE or similar
primitives as a building block. We note that simulation-
soundness [4] is not required for NIZK in our generic
construction, while the generic construction of the (ordinary)
group signature [3] requires this strong property.

Finally, we propose two efficient instantiations of GS-
MDO, one in the standard model and one in the random
oracle model. Our scheme in the standard model uses the
Groth-Sahai proof system [5] as an NIZK proof system in
our generic construction. To utilize the Groth-Sahai proof
system in our generic construction, we note that an IBE
scheme that is compatible with the Groth-Sahai proof (such
as structure-preserving signatures [6]) is necessary since our
generic construction requires IBE. To be compatible with the
Groth-Sahai proof system, an IBE scheme needs to be able
to encrypt a base-group element and to have its ciphertext
consist of only base-group elements. Although Libert and
Joye [7] proposed an IBE scheme whose plaintext space
is a base group, and the IBE scheme is compatible with
the Groth-Sahai proof, the size of the group signature of
the resulting GS-MDO scheme depends on the number of
group members. In order to construct a GS-MDO scheme
with constant-size signature, we also construct a new IBE
scheme that has only 𝑘-resilient security [8]. Therefore, the
resulting GS-MDO scheme inherits this restriction (i.e., the
admitter can issue at most 𝑘 tokens). The size of a signature
is approximately 10 kilobytes when a 170-bit prime-order
group is used. (We adopt the estimates of bit sizes for group
elements used in [9]). Our scheme in the random oracle
model, on the other hand, is based on the Boneh-Boyen-
Shacham (BBS) group signature [10] and uses the Boneh-
Franklin (BF) IBE scheme [11] and a variant of the Cramer-
Shoup encryption scheme [12, 13]. As we can use IBE (which
is not 𝑘-resilient) in the random oraclemodel, GS-MDOwith
an unbounded MDO property (i.e., the number of tokens
issued by the admitter is unlimited) can thus be constructed.
The idea behind this construction is based on our generic
construction, but the instantiation is not straightforward
since the PKE scheme and the IBE scheme cannot directly
be combined. Hence, we modify the building blocks and
the construction to combine them. To be more precise, we
design a dedicated extension of the linear encryption scheme
[10] with chosen-ciphertext security and public verifiability
to enable our efficient construction. The size of the signature
of the scheme is 3636 bits in 80-bit security, which is 20 times
smaller than that of our standard model scheme.

Note that our security notions and proposed schemes
assume that the system setup is carried out honestly. This
setup includes the generation of a common reference string,
the opener’s and the admitter’s secret keys, and the group
members’ signing keys. However, the goal of the current
paper is to provide a feasibility study of the MDO property
in group signatures. Namely, we study the possibility of
constructing a GS-MDO scheme in a simple setting where
several parameters and secret keys are generated honestly.
We defer to future work a more comprehensive study on the
possibility of constructing a scheme with a more complicated
and realistic scenario such as that allowing maliciously
generated parameters and on providing a hedge against this
types of attack.

1.2. Applications. As previously mentioned, a straightfor-
ward application of GS-MDO schemes is in detecting the
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originators of inappropriate messages in anonymous bulletin
board systems. We further discuss more potential applica-
tions of GS-MDO schemes in what follows.

The first application we discuss is anonymous auctions,
where bidders form a group of anonymous signers. Each
bidder produces a group signature on his bidding price. The
admitter issues a token for opening signatures on the highest
price to detect the winner(s). The opener is then only able to
open the signatures on the highest price.

The main advantage (of the MDO approach) over the
threshold approach becomes clear in this application. Sup-
pose that there are many winners who all have bid the
highest price resulting in a tie. As an interaction will be
needed for each winner in the threshold approach, the total
communication cost will be proportional to the number of
winners. In contrast, if one takes the MDO approach, only
a small communication bandwidth from the admitter to the
opener is needed. The communication cost does not depend
on the number of winners.

Another application in which theMDOproperty is useful
is identity escrow. Although our primitive is a rather general
purpose primitive for identity escrow scenarios, for the ease
of understanding, let us discuss this with a concrete example.
Consider a customerwho enters an automated parking garage
[14], where he generates a group signature on a message that
encodes the date when he enters the car park (say, the string
“2012-02-20”). Let us assume a felony has been committed
(e.g., a person is murdered) in the garage. The opener in this
case will open the signatures on the date when the murder
occurred to identify who was there on that day.

The opener in this application needs to open many
signatures on the same message. If one adopts the threshold
technique to decentralize the authority, many interactions
are required to open all the signatures. The MDO property
removes interactions between authorities, i.e., the admitter
issues a token for the day, and the opener opens all the
signatures without interactions.

As an application of GS-MDO, Arai et al. [15] proposed
a privacy-preserving anomaly detection framework. In their
framework, the admitter plays the role of analyzing data,
and the opener plays the role of detecting adversarial users.
Briefly, a user generates a group signature on data, and sends
it to the admitter. Then, the admitter can detect anomaly
data without identifying users. For detecting adversarial
users who generate anomaly data, the admitter generates
tokens that correspond to the anomaly data, and sends
them to the opener. This framework allows the admitter to
detect adversarial users, while other honest users are kept
anonymous.

1.3. RelatedWork. Since group signatures were first proposed
by Chaum and van Heyst [1], many efficient constructions
have been proposed, most of which depend on a random
oracle [10, 16–23]. Many earlier schemes were based on the
strong RSA assumption [24, 25]. Group signature schemes
based on assumptions related to the discrete-logarithm type
were achieved, to name a few, by Camenisch and Lysyanskaya
[17] and by Boneh, Boyen, and Shacham [10]. The former

scheme is based on the LRSW assumption [26], while the
latter is based on the 𝑞-strong Diffie-Hellman (𝑞-SDH)
assumption [27].

Group signature schemes without random oracles were
also achieved. Ateniese et al. [28] first proposed a group
signature scheme from interactive assumptions avoiding
random oracles. Following this scheme, Groth proposed a
group signature scheme that avoids random oracles and
interactive assumptions [29], but his scheme has a very large
signature size. Boyen and Waters [30, 31] proposed highly
efficient constructions, although the security guarantees of
their schemes are not very strong, i.e., they only achieve so-
called CPA-anonymity. Groth [32] proposed another group
signature scheme, which is almost as efficient as the Boyen-
Waters schemes and satisfies higher security guarantee of
the Bellare-Shi-Zhang (BSZ) model [33]. Libert et al. [34]
proposed a group signature scheme secure in the standard
model from standard assumptions.

Regarding decentralizing and distributing the power
of the group manager, the separability of a cryptographic
protocol was introduced by Kilian and Petrank [14] in the
context of identity escrow. Later, this notion was refined and
adopted to the context of group signature by Camenisch
and Michels [35]. The separability notion requires that keys
of several entities involved in a cryptographic primitive be
generated independently of each other. In their setting, the
power of a group manager is separated into two authorities.
The first authority is able to allow a new member to join
the group but is not able to identify the originator of a
group signature, and the other authority is able to identify
the originator of a group signature but is not able to allow
a new member to join the group. More formal modeling of
these separated authorities has been proposed by Bellare et
al. [33] and Kiayias and Yung [36]. Sakai et al. [37] further
extended the BSZ model by considering signature hijacking
attacks.

Libert et al. [38, 39] proposed scalable group signature
schemes with revocation, and Attrapadung et al. [40] and
Nakanishi et al. [41] also proposed revocable group signature
schemes with a compact revocation list.

Traceable signatures are an extended notion of group sig-
natures and were introduced by Kiayias, Tsiounis, and Yung
[42]. This primitive allows the group manager to specify a
groupmember as “misbehaving”. Once amember is specified
by the manager, anyone becomes able to detect the signatures
of the specified user without interacting with the manager.
In this case, signatures of other group members continue to
be anonymous. In our terminology, this primitive achieves
a somewhat “signer-dependent opening” property, but the
MDO property is not achieved. A contractual anonymity
system [43] based on group signatures with verifier-local
revocation [44] has been proposed. In this system, when a
user breaks a contract, an accountability server revokes the
anonymity of the user and notifies the identity of the user
to the service provider. (In this system, a user is said to
break a contract when the user sends a message breaking the
contract policy of the service provider). Since this scheme
uses a conventional open algorithm, this system also differs
fromMDO.
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As follow-up works to our results [45, 46], Libert and Joye
[7] proposed an unbounded GS-MDO scheme in the stan-
dard model with logarithmic signature size. They proposed
a partially structure-preserving IBE scheme and used it as a
building block of GS-MDO. The signature of their scheme
consists of 53 log𝑁 + 35 group elements, where 𝑁 is the
number of group members, whereas our GS-MDO schemes
achieve constant-size signatures, though our standard model
scheme does not achieve the unbounded MDO property.
Constructing an unbounded GS-MDO scheme secure in the
standardmodel with constant-size signatures is an interesting
open problem. Libert, Mouhartem, and Nguyen [47] pro-
posed a lattice-based (unbounded) GS-MDO scheme in the
random oracle model. Their scheme was proved secure from
the short integer solution (SIS) assumption and the learning
with errors (LWE) assumption. The signature size of this
scheme is still logarithmic in the number of signers, whereas
our two constructions have constant-size signatures.

Preliminary versions of this paper were presented at the
5th International Conference on Pairing-Based Cryptogra-
phy (Pairing 2012) [45] and at the 8th ACM Symposium
on Information, Computer and Communications Security
(ASIACCS 2013) [46]. This is the merged full version. In this
version, we give security proofs omitted in the proceedings
versions.

1.4. Paper Organization. The rest of this paper is structured
as follows. Section 2 briefly describes definitions and security
notions of several building blocks. Section 3 presents the
notion of GS-MDO, its syntax and security definitions.
Section 4 discusses difficulties behind constructing efficient
GS-MDO schemes. Specifically, we argue the use of IBE
in a construction of GS-MDO is essential by showing a
generic construction of IBE from GS-MDO. In Section 5, we
propose a generic construction of GS-MDO, and Sections
6 and 7 show reasonably efficient instantiations in the
standard model and the random oracle model, respectively.
In Section 8, we compare the efficiency of our GS-MDO
schemes with previous group signatures. In Section 9, we
conclude the paper and list open problems.

2. Preliminaries

In this section, we describe the syntax of building blocks and
some computational assumptions we use for constructing
GS-MDO.Throughout the paper, we use the following nota-
tions: 𝑥 ←󳨀 𝑋 denotes that 𝑥 is uniformly and independently
sampled from the set𝑋. For an algorithm A, an input 𝑥, and
a randomness 𝑟 we denote 𝑦 ←󳨀 A(𝑥; 𝑟) to run A with an
input 𝑥 and a randomness 𝑟 and let 𝑦 be the output. When
the randomness is implicit, we denote 𝑦 ←󳨀 A(𝑥). For an
integer 𝑛 ∈ N, let [𝑛] = {1, . . . , 𝑛}.
2.1. Signatures. A signature scheme consists of the following
three algorithms:

(i) SigKg: this is the key generation algorithm that takes
as an input a security parameter 1𝜆 and outputs a pair(V𝑘, 𝑠𝑘) of a verification key and a signing key.

(ii) Sign: this is the signing algorithm that takes as inputs
a signing key 𝑠𝑘 and a message 𝑀 and outputs a
signature 𝑠 on the message𝑀.

(iii) Verify: this is the verification algorithm that takes
as inputs a verification key V𝑘, a message 𝑀, and a
signature 𝑠 and outputs ⊤ or ⊥, which, respectively,
indicate “accept” or “reject.”

For correctness, we require that for all 𝜆 ∈ N, all pairs(V𝑘, 𝑠𝑘) ←󳨀 SigKg(1𝜆), and all messages 𝑀, it is satisfied
that Verify(V𝑘,𝑀, Sign(𝑠𝑘,𝑀)) = ⊤.

A signature scheme is said to be existentially unforge-
able under chosen-message attacks (EUF-CMA), if for any
probabilistic polynomial-time adversary the advantage in the
following game is negligible:

(i) Setup: the challenger runs (V𝑘, 𝑠𝑘)←󳨀SigKg(1𝜆) and
gives the adversary V𝑘.

(ii) Query: the adversary adaptively issues signing queries𝑀 in an arbitrary order. For each signing query 𝑀,
the challenger runs 𝑠 ←󳨀 Sign(𝑠𝑘,𝑀) and returns 𝑠
to the adversary.

(iii) Forge: finally the adversary outputs a forgery (𝑀∗ , 𝑠∗).
The adversary wins the game if𝑀∗ is not queried as
a signing query, and Verify(V𝑘,𝑀∗, 𝑠∗) = ⊤.

The advantage of the adversaryA is defined as the probability
that the adversary wins and is denoted by AdvEUF-CMA

A (𝜆).
A signature scheme is said to be a strongly unforge-

able one-time signature scheme, if for any probabilistic
polynomial-time adversary the advantage in the following
game is negligible:

(i) Setup: the challenger runs (V𝑘, 𝑠𝑘)←󳨀SigKg(1𝜆) and
gives the adversary V𝑘.

(ii) Query: the adversary issues a signing query 𝑀 only
once. The challenger runs 𝑠 ←󳨀 Sign(𝑠𝑘,𝑀) and
returns 𝑠 to the adversary.

(iii) Forge: finally the adversary outputs a forgery (𝑀∗ , 𝑠∗).
The adversary wins the game if (𝑀∗, 𝑠∗) ̸= (𝑀, 𝑠)
and Verify(V𝑘,𝑀∗, 𝑠∗) = ⊤.

The advantage of the adversaryA is defined as the probability
that the adversary wins and is denoted by AdvOT-CMA

A (𝜆).
2.2. Tag-Based Key Encapsulation Mechanism. A tag-based
key encapsulation mechanism (tag-based KEM) (Tag-based
encryption, an encryption analogue of tag-based KEM, is
originally introduced as “encryption with labels” by Shoup
and Gennaro [49]. Tag-based KEM is different from “tag-
KEM”, introduced by Abe, Gennaro, Kurosawa, and Shoup
[50]. However, any chosen-ciphertext secure tag-KEM can
be immediately converted to a tag-based KEM satisfying
security that is sufficient for our purpose) [51, 52] scheme
consists of the following three algorithms:

(i) TKg: this is the key generation algorithm that takes as
an input a security parameter 1𝜆 and outputs a pair(𝑝𝑘, 𝑑𝑘) of a public key and a secret key.
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(ii) TEnc: this is the encapsulation algorithm that takes as
inputs a public key 𝑝𝑘 and a tag 𝑡 and outputs (𝐶, 𝐾)
where a ciphertext 𝐶 for a tag 𝑡 encapsulates a session
key 𝐾 ∈ KPKE and KPKE is the session key space
associated with the scheme.

(iii) TDec: this is the deterministic decapsulation algo-
rithm that takes as inputs a secret key 𝑑𝑘, a tag 𝑡, and a
ciphertext𝐶 and outputs a decapsulated session key𝐾
or a special symbol ⊥ indicating an invalid ciphertext.

For correctness, we require that for all 𝜆 ∈ N, all (𝑝𝑘, 𝑑𝑘)←󳨀TKg(1𝜆), all tags 𝑡 ∈ {0, 1}∗, and all (𝐶,𝐾)←󳨀TEnc(𝑝𝑘, 𝑡),
it holds that TDec(𝑑𝑘, 𝑡, 𝐶) = 𝐾.

A tag-based KEM is said to be selective-tag weakly chosen-
ciphertext secure if for any probabilistic polynomial-time
adversary the advantage in the following game is negligible:

(i) Setup: the adversary is given a security parameter1𝜆 and outputs a challenge tag 𝑡∗. The challenger
runs (𝑝𝑘, 𝑑𝑘)←󳨀TKg(1𝜆), then the challenger gives
the adversary the public key 𝑝𝑘.

(ii) Query (Phase I): the adversary issues decryption
queries (𝑡, 𝐶) in an arbitrary order. The challenger
runs 𝐾 ←󳨀 TDec(𝑑𝑘, 𝑡, 𝐶) and returns 𝐾 to the
adversary. Here the adversary is not allowed to issue
queries with 𝑡 = 𝑡∗.

(iii) Challenge: at some point the adversary requests a
challenge. The challenger chooses a random bit 𝑏 ←󳨀{0, 1}, runs (𝐾0, 𝐶∗)←󳨀TEnc(𝑝𝑘, 𝑡∗), chooses 𝐾1 ←󳨀
KPKE, and sends (𝐶∗, 𝐾𝑏).

(iv) Query (Phase II): after receiving the challenge the
adversary is again allowed to issue decryption queries.
The same restriction for queries is applied as before.

(v) Guess: finally the adversary outputs a bit 𝑏󸀠. The
adversary wins the game if 𝑏 = 𝑏󸀠.

The advantage of the adversary A is defined by |Pr[𝑏 = 𝑏󸀠] −1/2| and is denoted by Advtb-KEMA (𝜆).
2.3. Identity-Based KEM and Its 𝑘-Resilient Variant. An
identity-based KEM [8] consists of the following four algo-
rithms:

(i) ISetup: this is the setup algorithm that takes as inputs
a security parameter 1𝜆 and a collusion threshold 1𝑘
and outputs a pair (𝑝𝑎𝑟,𝑚𝑘) of a public parameter
and a master secret key.

(ii) IExt: this is the key extraction algorithm that takes as
inputs a master secret key𝑚𝑘 and an identity 𝐼𝐷 and
outputs a user decapsulation key 𝑑𝑘𝐼𝐷.

(iii) IEnc: this is the encapsulation algorithm that takes as
inputs a public parameter 𝑝𝑎𝑟 and an identity 𝐼𝐷 and
outputs (𝐶, 𝐾)where a ciphertext𝐶 for an identity 𝐼𝐷
encapsulates a session key 𝐾 ∈ KIBE andKIBE is the
session key space associated with the scheme.

(iv) IDec: this is the deterministic decapsulation algo-
rithm that takes as inputs 𝑑𝑘𝐼𝐷, 𝐼𝐷, and𝐶 and outputs

a decapsulated session key 𝐾 or a special symbol ⊥
indicating an invalid ciphertext.

For correctness, we require that for all 𝜆 ∈ N, all 𝑘 ∈ N,
all (𝑝𝑎𝑟,𝑚𝑘)←󳨀ISetup(1𝜆, 1𝑘), all identities 𝐼𝐷 ∈ {0, 1}∗,
all 𝑑𝑘𝐼𝐷 ←󳨀IExt(𝑚𝑘, 𝐼𝐷), and all (𝐶,𝐾)←󳨀IEnc(𝑝𝑎𝑟, 𝐼𝐷), it
holds that IDec(𝑑𝑘𝐼𝐷, 𝐼𝐷,𝐶) = 𝐾.

An identity-based KEM is said to be 𝑘-resilient if for any
probabilistic polynomial-time adversary the advantage in the
following game is negligible:

(i) Setup: the challenger runs (𝑝𝑎𝑟,𝑚𝑘)←󳨀ISetup(1𝜆),
then the challenger gives the adversary the public
parameter 𝑝𝑎𝑟.

(ii) Query (Phase I): the adversary issues extraction
queries 𝐼𝐷 in an arbitrary order. The challenger runs𝑑𝑘𝐼𝐷 ←󳨀 IExt(𝑚𝑘, 𝐼𝐷) and returns 𝑑𝑘𝐼𝐷 to the
adversary. The total number (the summation of those
in Phase I and Phase II) of extraction queries during
the game is restricted to be smaller than or equal to 𝑘.

(iii) Challenge: at some point the adversary requests
a challenge with an identity 𝐼𝐷∗. The challenger
chooses a random bit 𝑏 ←󳨀 {0, 1}, runs (𝐶∗, 𝐾0)←󳨀IEnc(𝑝𝑎𝑟, 𝐼𝐷∗), chooses 𝐾1 ←󳨀 KIBE, and sends(𝐶∗, 𝐾𝑏). The adversary is not allowed to request a
challenge with an identity whose user decapsulation
key is queried before.

(iv) Query (Phase II): after receiving the challenge the
adversary is again allowed to issue extraction queries.
This time querying a user decapsulation key for 𝐼𝐷∗
is disallowed.

(v) Guess: finally the adversary outputs a bit 𝑏󸀠. The
adversary wins the game if 𝑏 = 𝑏󸀠.

The advantage of the adversary A is defined by |Pr[𝑏 = 𝑏󸀠] −1/2| and is denoted by Advib-KEMA (𝜆).
A fully secure IBE scheme is defined analogously with the

difference that the setup algorithm does not take 1𝑘 as an
input and in the game the number of extraction queries is
unbounded.

2.4. Adaptive Noninteractive Zero-Knowledge Proofs. A non-
interactive proof system for a polynomial-time computable
relation 𝑅 consists of the following three algorithms:

(i) 𝐾: this is the common reference string generation
algorithm that takes as an input a security parameter1𝜆 and outputs a common reference string Σ.

(ii) 𝑃: this is the proof algorithm that takes as inputs
a common reference string Σ, a statement 𝑥, and a
witness 𝑤, where 𝑅(𝑥, 𝑤) = ⊤ and outputs a proof𝜋.

(iii) 𝑉: this is the verification algorithm that takes as inputs
a common reference string Σ, a statement 𝑥, and a
proof 𝜋 and outputs either ⊤ or ⊥.

We say that a noninteractive proof system (𝐾, 𝑃, 𝑉) has
perfect completeness, if for all 𝜆 ∈ N, for all (𝑥, 𝑤) such that
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𝑅(𝑥,𝑤) = ⊤, for all Σ ←󳨀 𝐾(1𝜆), for all 𝜋 ←󳨀 𝑃(Σ, 𝑥, 𝑤) it
holds that 𝑉(Σ, 𝑥, 𝜋) = ⊤.

A noninteractive proof system is said to have adaptive
perfect soundness, if for any probabilistic polynomial-time
adversary the advantage in the following game is equal to
zero:

(i) Setup: the challenger runs Σ ←󳨀 𝐾(1𝜆) and gives the
adversary the common reference string Σ.

(ii) Forge: the adversary outputs a pair (𝑥, 𝜋) of a state-
ment and a proof. The adversary wins if 𝑉(Σ, 𝑥, 𝜋) =⊤ and 𝑅(𝑥, 𝑤) =⊥ for any 𝑤.

The advantage of the adversaryA is defined by the probability
that the adversary wins and is denoted by AdvsoundA (𝜆).

We say that a noninteractive proof system (𝐾, 𝑃, 𝑉) is
adaptively zero-knowledge if there is a pair of algorithms(𝑆1, 𝑆2) such that for any probabilistic polynomial-time adver-
sary the advantage in the following game is negligible:

(i) Setup: the challenger generates a bit 𝑏 ←󳨀 {0, 1}. If𝑏 = 0 the challenger runs Σ ←󳨀 𝐾(1𝜆). If 𝑏 = 1 the
challenger runs (Σ, 𝜏) ←󳨀 𝑆1(1𝜆).Then the challenger
gives the adversary the common reference string Σ.

(ii) Query: the adversary is allowed to issue a query (𝑥,𝑤)
such that 𝑅(𝑥, 𝑤) = ⊤ only once. If 𝑏 = 0 the
challenger runs 𝜋 ←󳨀 𝑃(Σ, 𝑥, 𝑤). If 𝑏 = 1 the
challenger runs𝜋 ←󳨀 𝑆2(Σ, 𝜏, 𝑥).The challenger gives
the adversary 𝜋.

(iii) Guess: finally the adversary outputs a bit 𝑏󸀠.
The advantage of the adversary A is defined by |Pr[𝑏 = 𝑏󸀠] −1/2| and is denoted by AdvzkA (𝜆).
2.5. Computational Assumptions. Let G be a probabilistic
polynomial-time algorithm that takes a security parameter1𝜆 as an input and generates a parameter (𝑝,G,G𝑇, 𝑒, 𝑔) of
bilinear groups, where 𝑝 is a 𝜆-bit prime,G andG𝑇 are groups
of order 𝑝, 𝑒 is a bilinear map from G × G to G𝑇, and 𝑔
is a generator of G. We then describe several computational
assumptions on which the proposed schemes are based.

The 𝑞-Strong Diffie-Hellman Assumption [27]. Let 𝑞 ∈ N and
let (𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆), 𝛾 ←󳨀 Z𝑝 and 𝐴 𝑖 ←󳨀 𝑔𝛾𝑖 for𝑖 ∈ [𝑞]. The 𝑞-strong Diffie-Hellman problem in G is stated
as follows: given (𝑔, (𝐴 𝑖)𝑖∈[𝑞]), output (𝑐, 𝑔1/(𝛾+𝑐)) where 𝑐 ∈
Z𝑝. The advantage of an algorithm A in solving the 𝑞-strong
Diffie-Hellman problem is defined as

Advq-SDH
A (𝜆)= Pr [A (𝑔, (𝐴 𝑖)𝑖∈[𝑞]) = (𝑐, 𝑔1/(𝛾+𝑐)) ∧ 𝑐 ∈ Z𝑝] . (1)

We say that the 𝑞-strongDiffie-Hellman (𝑞-SDH) assumption
holds if Adv𝑞-SDH

A
(𝜆) is negligible in 𝜆 for any probabilistic

polynomial-time algorithm A.

For some fixed base 𝑔 ∈ G and a fixed group element𝑤 = 𝑔𝛾 ∈ G we say that a pair (𝑥, 𝐴) ∈ Z𝑝 ×G is an SDH pair
if 𝐴 is equal to 𝑔1/(𝛾+𝑥).
The Decision Linear Assumption [10]. Let (𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀
G(1𝜆), 𝑢, V, ℎ ←󳨀 G \ {1}, 𝛼, 𝛽 ←󳨀 Z𝑝, and 𝛾 ←󳨀
Z𝑝 \ {𝛼 + 𝛽}. The decision linear problem in G is stated
as follows: distinguish the distribution (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝛼+𝛽)
from the distribution (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝛾). The advantage of an
algorithmA in solving the decision linear problem is defined
as

AdvDLINA (𝜆) = 󵄨󵄨󵄨󵄨󵄨Pr [A (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝛼+𝛽) = 1]− Pr [A (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝛾) = 1]󵄨󵄨󵄨󵄨󵄨 . (2)

We say that the decision linear (DLIN) assumption holds
if AdvDLINA (𝜆) is negligible in 𝜆 for any probabilistic
polynomial-time algorithm A.

For some fixed bases 𝑢, V, ℎ ∈ G, we say that a tuple(𝑇1, 𝑇2, 𝑇3) is a linear tuple if there exist exponents 𝛼, 𝛽 ∈ Z𝑝

that satisfy (𝑇1, 𝑇2, 𝑇3) = (𝑢𝛼, V𝛽, ℎ𝛼+𝛽).
The Decision Bilinear Diffie-Hellman Assumption [53]. Let(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆) and 𝑎, 𝑏, 𝑐, 𝑑 ←󳨀 Z𝑝. The decision
bilinear Diffie-Hellman problem in (G,G𝑇) is stated as
follows: distinguish the distribution (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑒(𝑔, 𝑔)𝑎𝑏𝑐)
from the distribution (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑒(𝑔, 𝑔)𝑑). The advantage
of an algorithm A in solving the decision bilinear Diffie-
Hellman problem is defined as

AdvDBDHA (𝜆) = 󵄨󵄨󵄨󵄨󵄨󵄨Pr [A (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑒 (𝑔, 𝑔)𝑎𝑏𝑐) = 1]− Pr [A (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑒 (𝑔, 𝑔)𝑑) = 1]󵄨󵄨󵄨󵄨󵄨󵄨 . (3)

We say that the decision bilinear Diffie-Hellman (DBDH)
assumption holds if AdvDBDHA (𝜆) is negligible in 𝜆 for any
probabilistic polynomial-time algorithm A.

The Simultaneous Flexible Pairing Assumption [54]. Let(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆), 𝑔𝑧, 𝑔𝑟, ℎ𝑧, ℎ𝑢 ←󳨀 G are
generators of G and (𝑎, 𝑎̃), (𝑏, 𝑏) ←󳨀 G × G. For𝑖 ∈ [𝑞], let 𝑅𝑖 = (𝑧𝑖, 𝑟𝑖, 𝑠𝑖, 𝑡𝑖, 𝑢𝑖, V𝑖, 𝑤𝑖) ∈ G7 which
satisfies 𝑒(𝑎, 𝑎̃) = 𝑒(𝑔𝑧, 𝑧𝑖)𝑒(𝑔𝑟, 𝑟𝑖)𝑒(𝑠𝑖, 𝑡𝑖) and 𝑒(𝑏, 𝑏) =𝑒(ℎ𝑧, 𝑧𝑖)𝑒(ℎ𝑢, 𝑢𝑖)𝑒(V𝑖, 𝑤𝑖). The simultaneous flexible pairing
problem is stated as follows: given (𝑔𝑧, 𝑔𝑟, ℎ𝑧, ℎ𝑢, 𝑎, 𝑎̃, 𝑏, 𝑏)
and 𝑅1, . . . , 𝑅𝑞, output 𝑅∗ = (𝑧∗, 𝑟∗, 𝑠∗, 𝑡∗, 𝑢∗, V∗, 𝑤∗)
where 𝑒(𝑎, 𝑎̃) = 𝑒(𝑔𝑧, 𝑧∗)𝑒(𝑔𝑟, 𝑟∗)𝑒(𝑠∗, 𝑡∗) and 𝑒(𝑏, 𝑏) =𝑒(ℎ𝑧, 𝑧∗)𝑒(ℎ𝑢, 𝑢∗)𝑒(V∗, 𝑤∗) satisfying 𝑧∗ ̸= 1 and 𝑧∗ ̸= 𝑧𝑖
for every 𝑖. The advantage of an algorithm A in solving the
simultaneous flexible pairing problem is defined as

AdvSFPA (𝜆) = Pr [A (𝑔𝑧, 𝑔𝑟, ℎ𝑧, ℎ𝑢, 𝑎, 𝑎̃, 𝑏, 𝑏, (𝑅𝑖)𝑖∈[𝑞])= (𝑧∗, 𝑟∗, 𝑠∗, 𝑡∗, 𝑢∗, V∗, 𝑤∗) ∧ 𝑒 (𝑎, 𝑎̃)
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= 𝑒 (𝑔𝑧, 𝑧∗) 𝑒 (𝑔𝑟, 𝑟∗) 𝑒 (𝑠∗, 𝑡∗) ∧ 𝑒 (𝑏, 𝑏)= 𝑒 (ℎ𝑧, 𝑧∗) 𝑒 (ℎ𝑢, 𝑢∗) 𝑒 (V∗, 𝑤∗) ∧ 𝑧∗ ̸= 1 ∧ 𝑧∗̸= 𝑧𝑖 ∀𝑖] .
(4)

We say that the simultaneous flexible pairing (SFP) assump-
tion holds if AdvSFPA (𝜆) is negligible in 𝜆 for any probabilistic
polynomial-time algorithm A.

3. Group Signatures with
Message-Dependent Opening

In this section we introduce the syntax and security defini-
tions for GS-MDO. As an ordinary group signature scheme,
a GS-MDO scheme allows group members to sign a message
anonymously, that is, without revealing their identities but
only showing that one of the group members actually signed.
In exceptional cases, a designated third party, called the
opener, can “open” exceptional signatures to identify the
originator of the signatures. In contrast to ordinary group
signature schemes, aGS-MDO scheme requires the opener to
cooperate with another authority, called the admitter, to open
signatures. The admitter issues a message-specific token, and
the opener is able to open a signature on the message only
when a token for the message is issued from the admitter.

In this section, we define the formal model and the
security requirements of GS-MDO.

3.1. The Model of GS-MDO. Formally, a GS-MDO scheme
consists of the following five probabilistic polynomial-time
algorithms:

(i) GKg: this is the key generation algorithm that takes
as inputs a security parameter 1𝜆, the number of
group members 1𝑛, and the maximum number 1𝑘
of message-specific tokens that can be issued and
outputs a group public key 𝑔𝑝𝑘, an admitting key𝑎𝑘, an opening key 𝑜𝑘, and 𝑛 group signing keys(𝑔𝑠𝑘𝑖)𝑖∈[𝑛]. We note that the input 1𝑘 is omitted when
the number of message-specific tokens that can be
issued is unbounded.

(ii) GSig: this is the signing algorithm that takes as inputs
a group public key 𝑔𝑝𝑘, a group signing key 𝑔𝑠𝑘𝑖, and
a message𝑀 and outputs a group signature 𝜎.

(iii) Td: this is the message-specific token generation
algorithm that takes as inputs a group public key 𝑔𝑝𝑘,
an admitting key 𝑎𝑘, and a message𝑀 and outputs a
token 𝑡𝑀 for𝑀.

(iv) GVf: this is the verification algorithm that takes as
inputs a group public key 𝑔𝑝𝑘, a message 𝑀, and a
group signature 𝜎 and outputs ⊤ (that means accept)
or ⊥ (that means reject).

(v) Open: this is the opening algorithm that takes as
inputs a group public key 𝑔𝑝𝑘, an opening key 𝑜𝑘,

a message 𝑀, a group signature 𝜎, and a message-
specific token 𝑡𝑀 and outputs a user index 𝑖 ∈ N or⊥.

For correctness, we require that for all 𝜆, 𝑛, 𝑘 ∈ N, for
all (𝑔𝑝𝑘, 𝑎𝑘, 𝑜𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛])←󳨀GKg(1𝜆, 1𝑛, 1𝑘), for all mes-
sages 𝑀 ∈ {0, 1}∗ and all user 𝑖 ∈ [𝑛], it holds
that GVf(𝑔𝑝𝑘,𝑀, GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖,𝑀)) = ⊤ and Open(𝑔𝑝𝑘,𝑜𝑘,𝑀, GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖,𝑀), Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀)) = 𝑖.

In the above scenario, the signing keys (𝑔𝑠𝑘𝑖)𝑖∈[𝑛], the
opening key 𝑜𝑘, and the admitting key 𝑎𝑘 are generated by
the GKg algorithm in the setup phase. Then, 𝑜𝑘 is given to
the opener and 𝑎𝑘 is given to the admitter. A signer can make
a group signature 𝜎 by using the GSig algorithm, and all
entities can verify the group signature by the GVf algorithm
and public key 𝑔𝑝𝑘.This setting is the same as ordinary group
signatures, except the group manager’s key is divided into 𝑜𝑘
and 𝑎𝑘. In exceptional cases, the admitter issues a message-
specific token 𝑡𝑀 by using the Td algorithm. Moreover, the
opener can identify the signer of a group signature by using
the Open algorithm only when the opener received 𝑡𝑀 from
the admitter.

3.2. Security Requirements. We introduce the security notion
for GS-MDO. In contract to ordinary group signatures, we
need to take care of the MDO property.

Ordinary group signatures are required to ensure two
security notions, anonymity and traceability, whereaswe have
to further ensure two types of anonymity in the case of
GS-MDO that are related to the original motivation for the
introduction of the admitter.The introduction of the admitter
is intended to strengthen signers’ anonymity against the
authorities as much as possible. To capture this intention, we
define the indistinguishability of the originator of a signature
in the strong setting where the opening key is given to
the adversary (opener anonymity). As a counterpart of this,
we also define indistinguishability in the setting where the
admitting key is given to the adversary (admitter anonymity).
Note that we do not consider the situation in which the
adversary obtains both the opening key and the admitting key
because in this situation the adversary can open any signature
by itself.

For traceability, we use the same definition as for the
ordinary group signatures, in which the authorities are
entirely corrupted by the adversary, since even ordinary
group signature schemes ensure this level of traceability
against entirely corrupted openers.

3.2.1. Opener Anonymity. Here we give the formal definition
of anonymity against the opener, which we call opener
anonymity. It is formalized as the indistinguishability of
signatures of two different signers of the adversary’s choice.
Opener anonymity is defined by requiring that no adver-
sary has nonnegligible advantage in distinguishing signa-
tures. We again remark that contrary to ordinary group
signatures, the adversary is allowed to have the opening
key. This is intended for modeling “anonymity against the
opener.”
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Definition 1. A GS-MDO scheme is said to have opener
anonymity if for any probabilistic polynomial-time adversary
A the advantage in the following game is negligible:

(i) Setup: the challenger runs GKg(1𝜆, 1𝑛, 1𝑘) to obtain(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]). The challenger sends (𝑔𝑝𝑘,𝑜𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]) toA.
(ii) Token Query (Phase I): A adaptively issues token

queries𝑀 in an arbitrary order. The challenger runs𝑡𝑀 ←󳨀Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀) and returns 𝑡𝑀 toA.
(iii) Challenge: at some pointA requests a challenge for 𝑖0,𝑖1 ∈ [𝑛], and a message𝑀∗. The challenger chooses a

random bit 𝑏, runs 𝜎∗ ←󳨀 GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖𝑏 ,𝑀∗), and
sends 𝜎∗ toA.A is not allowed to request a challenge
with amessage𝑀∗ whose token is previously queried.

(iv) Token Query (Phase II): after receiving the challenge
A is again allowed to issue token queries. This time
querying a token for𝑀∗ is disallowed.

(v) Guess: finally A outputs a bit 𝑏󸀠. A wins the game if𝑏 = 𝑏󸀠.A wins the game if 𝑏 = 𝑏󸀠.
The advantage of A is defined by |Pr[𝑏 = 𝑏󸀠] − 1/2| and is
denoted by Advopener-anony

A
(𝜆). We also say that a GS-MDO

scheme has opener anonymity with 𝑘-bounded tokens if any
probabilistic polynomial-time adversary A which issues at
most 𝑘 token queries in total has negligible advantage.

3.2.2. Admitter Anonymity. We next give the definition of
anonymity against the admitter, which we call admitter
anonymity. It is formalized in a similar manner to opener
anonymity. That is, admitter anonymity requires signatures
of two different signers to be indistinguishable even when
the adversary is given the admitting key. We emphasize that
our definition of opener anonymity is categorized as so-
called CCA-anonymity. This means that the adversary in the
security game is allowed to access the opening oracle. The
formal definition is as follows:

Definition 2. A GS-MDO scheme is said to have admitter
anonymity if for any probabilistic polynomial-time adversary
A the advantage in the following game is negligible:

(i) Setup: the challenger runs GKg(1𝜆, 1𝑛, 1𝑘) to obtain(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]). The challenger sends (𝑔𝑝𝑘,𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]) toA.
(ii) Open Query (Phase I): A adaptively issues open

queries (𝑀, 𝜎) in an arbitrary order. The challenger
finds a recorded 𝑡𝑀 which is a token for 𝑀, and if
not found, runs 𝑡𝑀 ←󳨀Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀), and stores 𝑡𝑀.
The challenger runs 𝑖 ←󳨀GSig(𝑔𝑝𝑘, 𝑜𝑘,𝑀, 𝜎, 𝑡𝑀) and
returns 𝑖 toA.

(iii) Challenge: at some pointA requests a challenge for 𝑖0,𝑖1 ∈ [𝑛] and a message𝑀∗. The challenger chooses a
random bit 𝑏, runs 𝜎∗ ←󳨀GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖𝑏 ,𝑀∗) and
sends 𝜎∗ toA.

(iv) Open Query (Phase II): after receiving the challenge
A is again allowed to issue open queries. This time
querying an opening of (𝑀∗, 𝜎∗) is disallowed.

(v) Guess: finally A outputs a bit 𝑏󸀠. A wins the game if𝑏 = 𝑏󸀠.
The advantage of A is defined by |Pr[𝑏 = 𝑏󸀠] − 1/2| and is
denoted by Advadmitter-anony

A
(𝜆).

Notice that the number of opening queries the adversary
issues is unbounded (but of course polynomially many).

3.2.3. Traceability. The last notion is traceability, which
requires that even if the opener and the admitter collude and
they further adaptively corrupt some group members, the
corrupted parties can produce neither forged signatures nor
untraceable signatures. We stress that in contrast to the case
of the anonymity notions, this case considers the collusion of
two authorities.

Definition 3. A GS-MDO scheme is said to have traceability
if for any probabilistic polynomial-time adversary A the
advantage in the following game is negligible:

(i) Setup: the challenger runs GKg(1𝜆, 1𝑛, 1𝑘) to
obtain (𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]). The challenger sends(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘) toA.

(ii) Query:A adaptively issues the following two types of
queries:

(1) A issues a key revealing query 𝑖. The challenger
returns 𝑔𝑠𝑘𝑖 toA.

(2) A issues a signing query (𝑖,𝑀). The challenger
runs 𝜎 ←󳨀GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖,𝑀) and returns 𝜎.

(iii) Forge: finally A outputs a forgery (𝑀∗, 𝜎∗). A wins
if GVf(𝑔𝑝𝑘,𝑀∗, 𝜎∗) =⊤ and one of the following two
conditions holds:

(a) Open(𝑔𝑝𝑘, 𝑜𝑘,𝑀∗, 𝜎∗, Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀∗)) = ⊥,
or

(b) all the following conditions hold,∗ Open(𝑔𝑝𝑘, 𝑜𝑘,𝑀∗, 𝜎∗,Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀∗))
= 𝑖∗ ̸=⊥, and∗ neither a key revealing query for the
user 𝑖∗ nor a signing query for (𝑖∗,𝑀∗) is
submitted.

The advantage ofA is defined byPr[A wins] and denoted
by AdvtraceA (𝜆).
4. Difficulty in Designing
Efficient Constructions

In this section we discuss several difficulties in designing
efficientGS-MDOschemes.Wefirst observe the relationships
between GS-MDO and other cryptographic primitives, and
then we discuss the difficulty that lies in designing efficient
constructions.

Regarding the relationshipwith other primitives, we show
that the existence of a GS-MDO scheme implies that of an
IBE scheme. In other words, we will present a black-box
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ISetup(1𝜆):(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘1, 𝑔𝑠𝑘2)) ←󳨀 GKg(1𝜆, 12):𝑝𝑎𝑟 ←󳨀 (𝑔𝑝𝑘, 𝑜𝑘, 𝑔𝑠𝑘1, 𝑔𝑠𝑘2);𝑚𝑘 ←󳨀 𝑎𝑘
Output (𝑝𝑎𝑟,𝑚𝑘).

IEnc(𝑝𝑎𝑟, 𝐼𝐷):
For 𝑖 ∈ [𝜆]:𝐾𝑖 ←󳨀 {0, 1}𝜎𝑖 ←󳨀 GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝐾𝑖+1, 𝐼𝐷)𝐶 ←󳨀 (𝜎1, . . . , 𝜎𝜆)𝐾 ←󳨀 𝐾1‖ ⋅ ⋅ ⋅ ‖𝐾𝜆
Output (𝐶, 𝐾).

IExt𝑚𝑘(𝐼𝐷):𝑑𝑘𝐼𝐷 ←󳨀 Td(𝑔𝑝𝑘,𝑚𝑘, 𝐼𝐷)
Output 𝑑𝑘𝐼𝐷.

IDec(𝑑𝑘𝐼𝐷, 𝐼𝐷, 𝐶):
Parse 𝐶 as (𝜎1, . . . , 𝜎𝜆)
For 𝑖 ∈ [𝜆]:𝑗𝑖 ←󳨀 Open(𝑔𝑝𝑘, 𝑜𝑘, 𝐼𝐷, 𝜎𝑖, 𝑑𝑘𝐼𝐷)𝐾𝑖 ←󳨀 𝑗𝑖 − 1
If 𝑗𝑖 ∉ {1, 2} for some 𝑖
then Output ⊥

Else Output 𝐾1‖ ⋅ ⋅ ⋅ ‖𝐾𝜆.
Box 1: The black-box construction of an identity-based KEM from
GS-MDO.

construction of IBE from any GS-MDO scheme. The same
holds for the 𝑘-resilient versions.

This fact means that constructing a GS-MDO scheme is
harder than IBE. Moreover, IBE is well known as a strong
primitive. For example, there is no black-box construction
of IBE from a trapdoor permutation or chosen-ciphertext
secure PKE [55]. Therefore, GS-MDO is also strong and
difficult to construct.

We note that Box 1 only shows a construction of an
identity-based key encapsulation mechanism rather than
identity-based encryption. However, it suffices since we can
obtain a secure encryption scheme by combining the con-
struction with an appropriate data encapsulation mechanism.

The formal theorems are as follows:

Theorem 4. If the underlying GS-MDO scheme satisfies
opener anonymity, the identity-based KEM in Box 1 is fully
secure.

Theorem 5. If the underlying GS-MDO scheme satisfies
opener anonymity with 𝑘-bounded tokens, the identity-based
KEM in Box 1 is 𝑘-resilient.

The intuition behind the construction in Box 1 is as
follows. In the IEnc algorithm, each 𝜎𝑖 is a group signature
of either 𝑔𝑠𝑘0 or 𝑔𝑠𝑘1. Therefore, by the opener anonymity
of the GS-MDO scheme, the entity who does not have 𝑚𝑘
(corresponding to the admitter’s key) cannot identify which
signing key is used to make 𝜎𝑖. The receiver can get 𝑑𝑘𝐼𝐷
(corresponding to the message-dependent token), and only
the receiver can open the group signature and get𝐾𝑖 by using
the 𝑑𝑘𝐼𝐷. Formal proofs can be given by a straightforward

modification of the proof by Abdalla and Warinschi [56] or
the similar technique to that used by Ohtake, Fujii, Hanaoka,
and Ogawa [57], hence we omit detailed proofs.

FromTheorems 4 and 5, we make the following observa-
tion about the difficulty in constructing GS-MDO.

(i) Inevitability of using IBE: these theorems suggest
that using IBE is essential for constructing a GS-
MDO scheme. Considering the fact that a black-box
construction of IBE from a trapdoor permutation is
impossible [55], we can conclude that it is almost
unavoidable for a GS-MDO scheme to rely on an IBE
scheme or its equivalence, not only on a trapdoor
permutation and an NIZK proof system. Otherwise
one could construct an IBE scheme from surprisingly
weaker primitives.

(ii) Difficulty in constructing efficient GS-MDO in the
standard model: another important aspect of estab-
lishing an efficient GS-MDO scheme in the standard
model is the necessity of realizing a “Groth-Sahai
compatible” IBE scheme. This is because the only
known construction of NIZK proof systems with
reasonable efficiency in the standard model is limited
to the Groth-Sahai proof system. Also note that an
NIZK proof system has been an important building
block for almost all group signature schemes ever.

We show a generic construction of GS-MDO using a
NIZK proof system and IBE in Section 5. However, currently
no known IBE scheme is Groth-Sahai compatible in the sense
that the Groth-Sahai proof system cannot prove a kind of
the well-formedness of an IBE ciphertext in zero-knowledge.
(Libert and Joye [7] proposed an IBE scheme where we
are able to prove the well-formedness of a ciphertext using
the Groth-Sahai proof system. However, at the time of the
publication of the conference version, there were no known
IBE scheme with this property). This is because an IBE
scheme in a bilinear group is typically able to encrypt a target-
group element. In addition, the ciphertext of such a scheme
includes a target-group element. Unfortunately, the Groth-
Sahai proof system is not always able to prove a statement
involving target-group elements in zero-knowledge.

Herewe provide twomethods of overcoming this gap.The
first one is to adopt 𝑘-resilient IBE instead of fully secure IBE.
In particular, we design a 𝑘-resilient IBE scheme from the
DLIN assumption by modifying the Heng-Kurosawa scheme
[8] for this purpose. (We also note that a similar construction
can be obtained from the key-insulated encryption scheme
proposed by Dodis, Katz, Xu, and Yung [58]). The construc-
tion of GS-MDO using 𝑘-resilient IBE is shown in Section 6.

The second method is to apply random oracles. We
construct a GS-MDO scheme based on the BBS group
signature scheme [10], which is one of the most efficient
group signature schemes in the random oracle model. The
opening procedure is implemented by the linear encryption
scheme [10, 13], and a user’s certificate is implemented by
the Boneh-Boyen short signature scheme [27]. The MDO
property is realized by adopting the BF IBE scheme [11]. In
order to combine the short group signature scheme and the
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BF IBE scheme, we replace the linear encryption scheme
with a certain type of 2-out-of-2 multiple encryption. This
construction is shown in Section 7.

5. Generic Construction

In this section, we give a generic construction of a GS-
MDO scheme. The construction is built on an EUF-CMA
secure signature scheme, a strongly unforgeable one-time
signature scheme, a selective-tag weakly chosen-ciphertext
secure tag-based KEM, a 𝑘-resilient identity-based KEM, and
an adaptive NIZK proof system.

At a first glance, there are various building blocks. How-
ever, our generic construction only relies on the existence of
an IBE scheme and that of an NIZK proof system. Indeed,
signature schemes and a chosen-ciphertext secure tag-based
encryption scheme can be constructed froma fully secure IBE
scheme.

5.1. Underlying Ideas. The proposed construction shares an
underlying idea with the generic construction of Bellare,
Micciancio, and Warinschi (the BMW construction) [3]
except that we do not need “simulation-soundness” for the
underlyingNIZK proof system. Instead of this strong security
requirement, we combine (ordinary) NIZK proofs with a
strongly unforgeable one-time signature scheme. We remark
that essentially the same techniques have been used in a
variety of contexts. To name a few, Groth [32] used this
technique for an efficient group signature scheme in a very
similar manner. Camenisch, Chandran, and Shoup [59] used
it to construct simulation-sound NIZK proofs, improving the
result of Groth [29].

5.2. Construction. In this section, we present our generic
construction of GS-MDO. Our construction uses an
identity-based KEM (ISetup, IExt, IEnc, IDec), tag-based
KEM (TKg, TEnc, TDec), an EUF-CMA secure signature
scheme (SigKg, Sign, Verify), a one-time signature scheme
(SigKgOT, SignOT, VerifyOT), and an NIZK proof system(𝐾NIZK, 𝑃NIZK, 𝑉NIZK). In addition, we require that the session
key spacesKPKE andKIBE be the same set, and be associated
with a group operation ⊙.

In our construction, a group member has a key pair(V𝑘𝑖, 𝑠𝑘𝑖) of the signature scheme, in which V𝑘𝑖 is authorized
by another verification key V𝑘issue at the setup time. When
a member generates a group signature, the member simply
signs a message by 𝑠𝑘𝑖. To be anonymous, the member
further encrypts the signature together with the certificate
(of the member), which authorizes the verification key V𝑘𝑖,
and attaches a noninteractive proof that demonstrates that a
signature of an authorized member has been encrypted. To
encrypt a signature, the member uses a multiple encryption
technique to ensure that neither the opener nor the admitter
can reveal the identity as long as the admitter has not issued a
token to the opener.Weneed two requirements on the session
key spaces of the tag-based KEM and the (𝑘-resilient) IBE
scheme. We require that KPKE be equal to KIBE as a set,
and that they form a finite group with group operation ⊙.

These requirements are needed because we use a one-time
pad to encrypt a signature of the group member. This group
operation also needs to fall into the class of relations that can
be represented by the used noninteractive proof system.

Let us explain the noninteractive proof that appears in the
construction. The signature of the proposed scheme is of the
form (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT), and, as mentioned above,
the proof 𝜋 demonstrates that a valid signature of an autho-
rized group member has been encrypted into (𝐶PKE, 𝐶IBE, 𝜒)
in a kind of a “multiple encryption”manner.More specifically,
the proof 𝜋 proves that there exist a randomness 𝑟 (for
tag-based KEM), another randomness 𝜌 (for identity-based
KEM), a user index 𝑖, and the verification key V𝑘𝑖, a certificate𝑐𝑒𝑟𝑡𝑖, and a signature 𝑠 on a message𝑀, such that

(𝐶PKE, 𝐾PKE) = TEnc (𝑝𝑘, V𝑘OT; 𝑟) ,(𝐶IBE, 𝐾IBE) = IEnc (𝑝𝑎𝑟,𝑀; 𝜌) ,𝜒 = ⟨𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠⟩ ⊙ 𝐾PKE ⊙ 𝐾IBE,
Verify (V𝑘issue, ⟨𝑖, V𝑘𝑖⟩ , 𝑐𝑒𝑟𝑡𝑖) = ⊤,
Verify (V𝑘𝑖,𝑀, 𝑠) = ⊤.

(5)

Finally, two encoding functions are needed to complete
the description of the generic construction.Thefirst is used to
encode the user index of a groupmember and his verification
key into the message space of the signature scheme when
generating certificates of group members. The second one
is used to encode (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠) into KPKE, where 𝑖 is the
user index of a group member and V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, and 𝑠 are
his verification key, certificate, and signature, respectively.
It is used when issuing a group signature, especially when
encrypting his signature in order to hide his identity.

The complete description of the scheme is shown in
Box 2 .

As stated in the following theorem, our generic construc-
tionhas desirable security properties when all building blocks
satisfy appropriate security properties.

Theorem 6. The proposed scheme has opener anonymity with𝑘-bounded tokens if the identity-based KEM is 𝑘-resilient and
the noninteractive proof system is adaptively zero-knowledge.
The proposed scheme satisfies opener anonymity if the identity-
based KEM is fully secure and the noninteractive proof system
is adaptively zero-knowledge.

Theorem 7. The proposed scheme has admitter anonymity
when the a tag-based KEM is selective-tag weakly chosen-
ciphertext secure, the noninteractive proof system is adaptively
zero-knowledge, and the one-time signature scheme is strongly
unforgeable.

Theorem 8. The proposed scheme has traceability when the
noninteractive proof system is adaptively sound and the signa-
ture scheme is EUF-CMA secure.

All the proofs of the theorems will appear in Appendix B.
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GKg(1𝜆, 1𝑛, 1𝑘):(V𝑘issue, 𝑠𝑘issue) ←󳨀 SigKg(1𝜆)(𝑝𝑘, 𝑑𝑘) ←󳨀 TKg(1𝜆)(𝑝𝑎𝑟,𝑚𝑘) ←󳨀 ISetup(1𝜆, 1𝑘)Σ ←󳨀 𝐾NIZK(1𝜆)𝑔𝑝𝑘 ←󳨀 (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ)𝑜𝑘 ←󳨀 𝑑𝑘𝑎𝑘 ←󳨀 𝑚𝑘
For all 𝑖 ∈ [𝑛]:(V𝑘𝑖, 𝑠𝑘𝑖) ←󳨀 SigKg(1𝜆)𝑐𝑒𝑟𝑡𝑖 ←󳨀 Sign(𝑠𝑘issue, ⟨𝑖, V𝑘𝑖⟩)𝑔𝑠𝑘𝑖 ←󳨀 (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑘𝑖)
Output (𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖).

GSig(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖,𝑀):
Parse 𝑔𝑝𝑘 as (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ)
Parse 𝑔𝑠𝑘𝑖 as (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑘𝑖)𝑠 ←󳨀 Sign(𝑠𝑘𝑖,𝑀)(V𝑘OT, 𝑠𝑘OT) ←󳨀 SigKgOT(1𝜆)𝑟 ←󳨀 {0, 1}𝑘𝜌 ←󳨀 {0, 1}𝑘(𝐶PKE, 𝐾PKE) ←󳨀 TEnc(𝑝𝑘, V𝑘OT)(𝐶IBE, 𝐾IBE) ←󳨀 IEnc(𝑝𝑎𝑟,𝑀)𝜒 ←󳨀 ⟨𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠⟩ ⊙ 𝐾PKE ⊙ 𝐾IBE𝑠𝑡 ←󳨀 (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PKE, 𝐶IBE, 𝜒)𝑤𝑡 ←󳨀 (𝑟, 𝜌, 𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠)𝜋 ←󳨀 𝑃NIZK(Σ, 𝑠𝑡, 𝑤𝑡)𝜎OT ←󳨀 SignOT(𝑠𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩)𝜎 ←󳨀 (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT)
Output 𝜎.

GVf(𝑔𝑝𝑘,𝑀, 𝜎):
Parse 𝑔𝑝𝑘 as (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ)
Parse 𝜎 as (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT)𝑠𝑡 ←󳨀 (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PKE, 𝐶IBE, 𝜒)
If VerifyOT(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) = ⊤
and 𝑉NIZK(Σ, 𝑠𝑡, 𝜋) = ⊤
then Output ⊤

Else Output ⊥.
Td(𝑔𝑝𝑘, 𝑎𝑘,𝑀):

Parse 𝑔𝑝𝑘 as (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ)𝑡𝑀 ←󳨀 IExt(𝑝𝑎𝑟, 𝑎𝑘,𝑀)
Output 𝑡𝑀.

Open(𝑔𝑝𝑘, 𝑜𝑘,𝑀, 𝜎, 𝑡𝑀):
Parse 𝑔𝑝𝑘 as (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ)
Parse 𝜎 as (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT)𝐾PKE ←󳨀 TDec(𝑜𝑘, V𝑘OT, 𝐶PKE)𝐾IBE ←󳨀 IDec(𝑡𝑀,𝑀,𝐶IBE)
If𝐾PKE =⊥ or 𝐾IBE =⊥

then Output ⊥⟨𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠⟩ ←󳨀 𝜒 ⊙ 𝐾−1IBE ⊙ 𝐾−1PKE𝑠𝑡 ←󳨀 (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PKE, 𝐶IBE, 𝜒)
If VerifyOT(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) = ⊤
and 𝑉NIZK(Σ, 𝑠𝑡, 𝜋) = ⊤ and 𝑖 ∈ [𝑛]

then Output 𝑖
Else Output ⊥.

Box 2: The description of the proposed generic construction. In
the concrete instantiation, ⟨⋅⟩ denotes a tuple consisting of all
group elements that appear in the bracket, and the operator ⊙ is
the component-wise groupmultiplication.The noninteractive proof
system (𝐾NIZK, 𝑃NIZK, 𝑉NIZK) is for demonstrating the existence of a
satisfying assignment of (5).

6. Construction in the Standard Model

In this section, we show an instantiation of GS-MDO in
the standard model. Our scheme in this section satisfies the
requirements of Section 3.2 under the DLIN assumption and
the SFP assumption. Because of the incompatibility between
the Groth-Sahai NIZK proof system and known (pairing-
based) IBE schemes, we use 𝑘-resilient IBE and thus the
MDOproperty is bounded to be 𝑘. Note that the instantiation
is not straightforward even though we have the generic
construction in Section 5, since it is not obvious whether
there exist building blocks which fit the generic construction.
Of course, if we use a general NIZK proof system, we obtain
an instantiation, but it is far from an efficient construction.

6.1. Underlying Ideas. Towards an efficient scheme, we dis-
cuss how to instantiate the building blocks used in our generic
construction in the previous section.

Regarding the noninteractive proof system, an obvious
choice is the Groth-Sahai proof system, since there is no
known practical construction of an NIZK proof system
except the Groth-Sahai proof system. However, upon adopt-
ing the Groth-Sahai proof system, due to the limitation of
the type of theorems that the Groth-Sahai proof system can
prove, other building blocks are subjected to restrictions.
More specifically, other building blocks need to be structure
preserving [60], and in particular, a statement to be proven
should not involve elements of G𝑇, where G𝑇 is the target
group of the underlying bilinear groups. Hence, we have to
choose an IBE scheme which fulfills this requirement as a
building block, but unfortunately, no such scheme is known
(except for the Libert-Joye scheme). This means that it is not
straightforward to construct an efficient instantiation of our
generic construction from the Groth-Sahai proof system.

In this section, we give an efficient instantiation by
constructing a structure-preserving IBE scheme and choosing
other appropriate building blocks. However, we must also
honestly mention that our IBE does not provide full security
but only 𝑘-resilience [8].

Our structure-preserving 𝑘-resilient IBE scheme is
obtained bymeans of modifying the Heng-Kurosawa scheme
[8] which is secure in the sense of 𝑘-resilient security under
the decision Diffie-Hellman (DDH) assumption. Since the
DDH assumption does not hold in (symmetric) bilinear
groups, it is not possible to utilize it as it is, and thus, we
construct a modified version of this scheme which is secure
under the DLIN assumption.

6.2. Construction. As described above, an efficient instantia-
tion is not straightforward even from our generic construc-
tion in Section 5, since it is not obvious whether there exist
schemes which can be plugged into the generic construction.
Therefore, we select concrete building blocks for the instanti-
ation:

(i) Groth-Sahai Proofs [5, 61]. This is an efficient non-
interactive proof system for groups with a bilinear
map. This proof system can demonstrate the valid-
ity of a broad range of algebraic equations in a
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zero-knowledge manner and is useful for avoiding an
expensive blowup from general NIZK techniques. We
choose the DLIN-based instantiation of the Groth-
Sahai proof system, which was proved to be perfectly
sound with adaptive zero-knowledge from the DLIN
assumption.

(ii) Abe-Haralambiev-Ohkubo Signature [6, 60]. This is a
structure-preserving signature scheme, in the sense
that the signing and verification procedures have
no use of nonalgebraic operations. This property is
essential when the scheme is used together with the
Groth-Sahai proof system that has the restriction that
it is unable to treat nonalgebraic relations such as
a verification equation of a signature scheme which
involves hashing. This signature scheme was proven
secure from the SFP assumption.

(iii) DLIN Variant of Cramer-Shoup scheme [13]. The
Groth-Sahai proof system is highly reliant on its use
of pairing operations, and thus we need to choose the
type of pairing on which we base our scheme. Type
III or II may allow an efficient instantiation. However,
in this setting a signature of the Abe-Haralambiev-
Ohkubo scheme is bilateral, namely, it contains ele-
ments of both source groups. To encrypt such a bilat-
eralmessage, we need to set up the encryption scheme
in both source groups, which makes the scheme
inefficient. Hence, we choose all the building blocks
to be instantiated in Type I curves. For this reason, we
choose amodification of Shacham’s DLIN variant [13]
of the Cramer-Shoup encryption scheme as the tag-
based KEM. We modify this scheme to be tag-based
KEM to fit into our generic construction. (A possible
alternative choice here is Kiltz’ tag-based encryption
[52], which could reduce the size of NIZK proofs
owning to its public verifiability. One drawback of
this scheme is that, to the best of our knowledge,
it does not allow the encryption of multiple group
elements with a constant ciphertext overhead. On the
other hand, the Cramer-Shoup scheme (and its DLIN
variant by Shacham) allow such a modification. See
Section C.3 for the details of this modification).

We then show amore concrete description of our generic
constructionwhen being instantiatedwith the above building
blocks. Notice that a signature of our concrete instantiation
based on the above building blocks, is of the following form:𝜎 = (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT) . (6)

As explained above, 𝜒 is represented by 29 group elements,
which we denote by 𝜒 = (𝜒1, . . . , 𝜒29). A more detailed
description of each element is as follows:

V𝑘OT = (𝑔𝑠0 , 𝑔𝑠1 , 𝑔𝑥)𝐶PKE = (𝑢𝑟, V𝑟, ℎ𝑟ℎ𝑟, (𝑋𝑌𝑡)𝑟 (𝑋̃𝑌̃𝑡)𝑟)𝐶IBE = (𝑢𝜌, V𝜌, ℎ𝜌ℎ𝜌)

𝜒1 = 𝑍𝑟1 ⋅ 𝑍̃ 𝑟̃

1 ⋅ ( 𝑘∏
𝑗=0

𝐷𝑀𝑗1,𝑗)𝜌 ⋅ ( 𝑘∏
𝑗=0

𝐷̃𝑀𝑗1,𝑗)𝜌 ⋅ 𝑚1...
𝜒29 = 𝑍𝑟29 ⋅ 𝑍̃ 𝑟̃

29 ⋅ ( 𝑘∏
𝑗=0

𝐷𝑀𝑗29,𝑗)𝜌 ⋅ ( 𝑘∏
𝑗=0

𝐷̃𝑀𝑗29,𝑗)𝜌 ⋅ 𝑚29

𝜎OT = (𝑥 + 𝑒 ⋅ 𝑠0+ (CR (⟨𝐶PKE, 𝐶IBE, 𝜒1, . . . , 𝜒29, 𝜋⟩) + 𝑒) ⋅ 𝑠1)
(7)

where CR is a collision resistant hash function and 𝜋 is a
Groth-Sahai proof.

In (7), (𝑚1, . . . , 𝑚29) is the encoding of (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠),𝑍𝑟𝑖 ⋅ 𝑍̃𝑟𝑖 corresponds to the session key 𝐾𝑃𝐾𝐸 of the tag-
based KEM based on a DLIN variant of the Cramer-Shoup
PKE scheme, and (∏𝑘

𝑗=0𝐷𝑀𝑗𝑖,𝑗 )𝜌 ⋅ (∏𝑘
𝑗=0𝐷̃𝑀𝑗𝑖,𝑗 )𝜌 corresponds

to the session key 𝐾𝐼𝐵𝐸 of the 𝑘-resilient identity-based
KEM based on the Heng-Kurosawa IBE scheme. 𝐶𝑃𝐾𝐸 and𝐶𝐼𝐵𝐸 are ciphertexts of the tag-based KEM and the identity-
based KEM, respectively. 𝜎OT is Wee’s one-time signature on(𝐶PKE, 𝐶IBE, 𝜒1, . . . , 𝜒29, 𝜋).

The signature size of the construction in Section 6 is
described in Table 1. The column “Cost” is the number of
group elements of a statement to be proven, and the number
of group elements of the Groth-Sahai NIZK proof per a
statement. The abbreviations “var(s).”, “lin. eq.”, “mult”, and
“pair. prod.” mean “variable(s)”, “linear equation”, “multipli-
cation” and “pairing product”, respectively. The total number
of group elements is shown in the column “G”. As shown
in Table 1, the standard model scheme achieves reasonably
efficient performance.

FromTheorems 6, 7, and 8, the following theorems hold.

Theorem 9. When instantiating the identity-based KEM and
the NIZK proof system in Box 2 with our DLIN variant of the
Heng-Kurosawa 𝑘-resilient IBE scheme and the Groth-Sahai
proof system, the resulting scheme satisfies opener anonymity
with 𝑘-bounded tokens under the DLIN assumption.

Theorem 10. When instantiating the tag-based KEM, the
NIZKproof systemand the one-time signature scheme in Box 2
with the DLIN variant of the Cramer-Shoup PKE, the Groth-
Sahai proof system and theWee one-time signature scheme, the
resulting scheme satisfies admitter anonymity under the DLIN
assumption.

Theorem 11. When instantiating the signature scheme in
Box 2 with the Abe-Haralambiev-Ohkubo signature scheme,
the resulting scheme satisfies traceability under the SFP
assumption.
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Table 1: The number of group elements of GS-MDO in the standard model.

Cost G Z𝑝

verification key V𝑘sots 3
TB-KEM CT 𝐶PKE 4
IB-KEM CT 𝐶IBE 3
DEM CT 𝜒 29
NIZK proof

commitments for𝑟, 𝑟̃ ∈ Z𝑝 2 vars. × 3|G| per var. 6𝜌, 𝜌̃ ∈ Z𝑝 2 vars. × 3|G| per var. 6𝑔𝑖 ∈ G 1 var. × 3|G| per var. 3
V𝑘𝑖 ∈ G14 14 vars. × 3|G| per var. 42𝑐𝑒𝑟𝑡𝑖 ∈ G7 7 vars. × 3|G| per var. 21𝑠 ∈ G7 7 vars. × 3|G| per var. 21

equations for
well-formedness of 𝐶PKE 4 Z𝑝-var. lin. eqs. × 2|G| per eq. 8
well-formedness of 𝐶IBE 3 Z𝑝-var. lin. eqs. × × 2|G| per eq. 6
well-formedness of 𝜒 29 multi-scalar mult. eqs. × 9|G| per eq. 261
validity of 𝑐𝑒𝑟𝑡𝑖 2 pair. prod. eqs. × 9|G| per eq. 18
validity of 𝑠 2 pair. prod. eqs. × 9|G| per eq. 18

one-time signature 𝜎OT 2
Total 449 2

7. Construction in the Random Oracle Model

The previous section explained a GS-MDO scheme in the
standard model, but it only allows at most 𝑘 tokens to be
issued. In this section, we remove this restriction by using
random oracles, and present a concrete GS-MDO scheme
that allows an unbounded number of tokens. Moreover, its
signature size is 1/20 times smaller than that of the scheme in
Section 6, and it is also secure under the DLIN, DBDH, and𝑞-SDH assumptions. We give the description of the proposed
scheme in Box 3.

7.1. Underlying Ideas. Our standard model instantiation uses
the Groth-Sahai proof system as the NIZK proof system,
and therefore the building block identity-based KEM needs
to be compatible with the Groth-Sahai proof system (see
Section 6.1). Unfortunately, the only IBE scheme with this
property is Libert et al.’s [7], however, this scheme has a
ciphertext containing a linear number of group elements
in the security parameter. We overcome this weakness by
avoiding the use of the Groth-Sahai proof system. More
specifically, we construct an NIZK proof system in the
random oracle model based on the Fiat-Shamir heuristics,
and choose the building block IBE scheme that is fully secure
(i.e., fully collusion resilient).

We start with the Boneh-Boyen-Shacham (BBS) group
signature scheme [10], which is one of the most popular
(standard) group signature schemes, to achieve the above
idea. Each group member in this scheme is provided with
an (ordinary) signature [27] of the Boneh-Boyen signature
scheme, which certifies that the owner is a group member.
A group signature of this scheme consists of two parts.

The first part involves the linear encryption scheme of the
certificate, whereas the second part involves the “signature of
knowledge” [62] of the encrypted certificate. The decryption
key for the linear encryption scheme is held by the opener,
with which he can revoke the anonymity of any group
signature.

We extend the BBS group signature scheme by replacing
the linear encryption scheme with a certain type of 2-out-
of-2 multiple encryption of ordinary PKE and IBE schemes.
The multiple encryption is designed to ensure that one can
decrypt an entire ciphertext only when he is able to decrypt
ciphertexts of both the PKE scheme and the IBE scheme. Such
multiple encryption can be accomplished by simple 2-out-of-2 secret sharing.

This feature enables us to achieve the MDO property
as follows. In our construction, the opener only possesses a
decryption key for the PKE scheme, and the admitter holds
the master secret of the IBE scheme. To anonymously sign a
message 𝑀, a signer encrypts his certificate using 𝑀 as the
identity of the IBE encryption. A decryption key (of the IBE
scheme) under a message𝑀 can serve as a message-specific
token for𝑀.

7.2. Construction. In this subsection, we describe the pro-
posed GS-MDO scheme in the random oracle model in
detail. The complete description of the proposed scheme
is shown in Box 3. As described above, our scheme is
constructed by modifying the BBS group signature scheme
in such a way that the linear encryption scheme in the
BBS group signature scheme is replaced with 2-out-of-2
multiple encryption by PKE and IBE, which are instantiated
with the linear encryption scheme and the BF IBE scheme
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GKg (1𝜆, 1𝑛):(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆)𝑢, V, ℎ ←󳨀 G \ {1}𝜉1, 𝜉2, 𝜉3, 𝜁, 𝛾 ←󳨀 Z𝑝𝑔1 ←󳨀 𝑢𝜉1ℎ𝜉3 ; 𝑔2 ←󳨀 V𝜉2ℎ𝜉3 ; 𝑦 ←󳨀 𝑔𝜁; 𝑤 ←󳨀 𝑔𝛾
For 𝑖 ∈ [𝑛]:𝑥𝑖 ←󳨀 Z𝑝𝐴 𝑖 ←󳨀 𝑔1/(𝛾+𝑥𝑖)𝑔𝑝𝑘 ←󳨀 (𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤,𝐻1, 𝐻2)𝑜𝑘 ←󳨀 (𝜉1, 𝜉2, 𝜉3, (𝑒(𝐴 𝑖, 𝑔))𝑖∈[𝑛])𝑎𝑘 ←󳨀 𝜁
For 𝑖 ∈ [𝑛]:𝑔𝑠𝑘𝑖 ←󳨀 (𝐴 𝑖, 𝑥𝑖)
Output (𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]).

GSig (𝑔𝑝𝑘, 𝑖, 𝑔𝑠𝑘𝑖,𝑀):(𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤,𝐻1, 𝐻2) ←󳨀 𝑔𝑝𝑘(𝐴 𝑖, 𝑥𝑖) ←󳨀 𝑔𝑠𝑘𝑖𝛼, 𝛽, 𝜌, 𝜂 ←󳨀 Z𝑝(𝑇1, 𝑇2, 𝑇3, 𝑇4) ←󳨀 (𝑢𝛼, V𝛽, ℎ𝛼+𝛽, 𝑔𝛼1𝑔𝛽2𝐴 𝑖𝑔𝜂)(𝑇5, 𝑇6) ←󳨀 (𝑔𝜌, 𝑒(𝑦,𝐻1(𝑀))𝜌𝑒(𝑔, 𝑔)−𝜂)𝑟𝛼, 𝑟𝛽, 𝑟𝜌, 𝑟𝜂, 𝑟𝑥, 𝑟𝛼𝑥, 𝑟𝛽𝑥, 𝑟𝜌𝑥, 𝑟𝜂𝑥 ←󳨀 Z𝑝𝑅1 ←󳨀 𝑢𝑟𝛼𝑅2 ←󳨀 V𝑟𝛽𝑅3 ←󳨀 ℎ𝑟𝛼+𝑟𝛽𝑅4 ←󳨀 𝑒(𝑇4, 𝑔)𝑟𝑥𝑒(𝑔1, 𝑤)−𝑟𝛼 𝑒(𝑔1, 𝑔)−𝑟𝛼𝑥⋅𝑒(𝑔2, 𝑤)−𝑟𝛽 𝑒(𝑔2, 𝑔)−𝑟𝛽𝑥⋅𝑒(𝑔, 𝑤)−𝑟𝜂𝑒(𝑔, 𝑔)−𝑟𝜂𝑥𝑅5 ←󳨀 𝑔𝑟𝜌𝑅6 ←󳨀 𝑒(𝑦,𝐻1(𝑀))𝑟𝜌𝑒(𝑔, 𝑔)−𝑟𝜂𝑅7 ←󳨀 𝑇𝑟𝑥1 𝑢−𝑟𝛼𝑥𝑅8 ←󳨀 𝑇𝑟𝑥2 V−𝑟𝛽𝑥𝑅9 ←󳨀 𝑇𝑟𝑥5 𝑔−𝑟𝜌𝑥𝑅10 ←󳨀 𝑇𝑟𝑥6 𝑒(𝑦,𝐻1(𝑀))−𝑟𝜌𝑥𝑒(𝑔, 𝑔)𝑟𝜂𝑥𝑐 ←󳨀 𝐻2(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10)𝑠𝛼 ←󳨀 𝑟𝛼 + 𝑐𝛼; 𝑠𝛽 ←󳨀 𝑟𝛽 + 𝑐𝛽𝑠𝜌 ←󳨀 𝑟𝜌 + 𝑐𝜌; 𝑠𝜂 ←󳨀 𝑟𝜂 + 𝑐𝜂𝑠𝑥 ←󳨀 𝑟𝑥 + 𝑐𝑥𝑖; 𝑠𝛼𝑥 ←󳨀 𝑟𝛼𝑥 + 𝑐𝛼𝑥𝑖𝑠𝛽𝑥 ←󳨀 𝑟𝛽𝑥 + 𝑐𝛽𝑥𝑖; 𝑠𝜌𝑥 ←󳨀 𝑟𝜌𝑥 + 𝑐𝜌𝑥𝑖𝑠𝜂𝑥 ←󳨀 𝑟𝜂𝑥 + 𝑐𝜂𝑥𝑖𝜎 ←󳨀 (𝑇1, . . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥)
Output 𝜎.

GVf (𝑔𝑝𝑘,𝑀, 𝜎):(𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤,𝐻1, 𝐻2) ←󳨀 𝑔𝑝𝑘(𝑇1, . . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥) ←󳨀 𝜎𝑅󸀠1 ←󳨀 𝑢𝑠𝛼𝑇−𝑐1𝑅󸀠2 ←󳨀 V𝑠𝛽𝑇−𝑐2𝑅󸀠3 ←󳨀 ℎ𝑠𝛼+𝑠𝛽𝑇−𝑐3𝑅󸀠4 ←󳨀 𝑒(𝑇4, 𝑔)𝑠𝑥𝑒(𝑔1, 𝑤)−𝑠𝛼𝑒(𝑔1, 𝑔)−𝑠𝛼𝑥⋅𝑒(𝑔2, 𝑤)−𝑠𝛽𝑒(𝑔2, 𝑔)−𝑠𝛽𝑥⋅𝑒(𝑔, 𝑤)−𝑠𝜂𝑒(𝑔, 𝑔)−𝑠𝜂𝑥⋅(𝑒(𝑔, 𝑔)/𝑒(𝑇4, 𝑤))−𝑐𝑅󸀠5 ←󳨀 𝑔𝑠𝜌𝑇−𝑐5𝑅󸀠6 ←󳨀 𝑒(𝑦,𝐻1(𝑀))𝑠𝜌𝑒(𝑔, 𝑔)−𝑠𝜂𝑇−𝑐6𝑅󸀠7 ←󳨀 𝑇𝑠𝑥1 𝑢−𝑠𝛼𝑥𝑅󸀠8 ←󳨀 𝑇𝑠𝑥2 V−𝑠𝛽𝑥𝑅󸀠9 ←󳨀 𝑇𝑠𝑥5 𝑔−𝑠𝜌𝑥𝑅󸀠10 ←󳨀 𝑇𝑠𝑥6 𝑒(𝑦,𝐻1(𝑀))−𝑠𝜌𝑥 𝑒(𝑔, 𝑔)𝑠𝜂𝑥
If 𝑐 = 𝐻2(𝑀,𝑇1, . . . , 𝑇6, 𝑅󸀠1, . . . , 𝑅󸀠10)
Output ⊤

Else output ⊥.
Box 3: Continued.

Td (𝑔𝑝𝑘, 𝑎𝑘,𝑀):(𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤,𝐻1, 𝐻2) ←󳨀 𝑔𝑝𝑘𝜁 ←󳨀 𝑎𝑘
Output 𝑡𝑀 ←󳨀 𝐻1(𝑀)𝜁.

Open (𝑔𝑝𝑘, 𝑜𝑘,𝑀, 𝜎, 𝑡𝑀):(𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤,𝐻1, 𝐻2) ←󳨀 𝑔𝑝𝑘(𝜉1, 𝜉2, 𝜉3, (𝑒(𝐴 𝑖, 𝑔))𝑖∈[𝑛]) ←󳨀 𝑜𝑘(𝑇1, . . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥) ←󳨀 𝜎
If GVf(𝑔𝑝𝑘,𝑀, 𝜎) =⊥
Output ⊥

If ∃𝑖 ∈ [𝑛]: 𝑒(𝑇4/𝑇𝜉11 𝑇𝜉22 𝑇𝜉33 , 𝑔) ⋅ 𝑇6/𝑒(𝑇5, 𝑡𝑀) = 𝑒(𝐴 𝑖, 𝑔)
Output 𝑖;
Else output ⊥.

Box 3: The proposed construction in the random oracle model.
The functions 𝐻1 and 𝐻2 are cryptographic hash functions 𝐻1 :{0, 1}∗ 󳨀→ G and 𝐻2 : {0, 1}∗ 󳨀→ Z𝑝, which are modeled as
random oracles in the security proof.G is the parameter generation
algorithm, which is defined in Section 2.5.

[11], respectively. Specifically, the values (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6)
generated in the signing algorithm are of the following form𝑇1 = 𝑢𝛼,𝑇2 = V𝛽,𝑇3 = ℎ𝛼+𝛽,𝑇4 = 𝑔1𝛼𝑔2𝛽𝐴𝑔𝜂,𝑇5 = 𝑔𝜌,𝑇6 = 𝑒 (𝑦,𝐻1 (𝑀))𝜌 𝑒 (𝑔, 𝑔)−𝜂 ,

(8)

where the first four components constitute (a chosen-
ciphertext secure variant of) the linear encryption of a 2-out-
of-2 secret sharing of𝐴. Here 𝛼 and 𝛽 are the randomness for
the linear encryption scheme and 𝜂 is the randomness for the
2-out-of-2 secret sharing. The other components, 𝑇5 and 𝑇6,
constitute an encryption by the BF IBE scheme of the other
share of the 2-out-of-2 secret sharing.

As mentioned above, our linear encryption scheme is not
identical to that used in the BBS group signature scheme
and is modified to achieve CCA-anonymity. It is obtained by
modifying the linear encryption scheme (in the BBS scheme)
to a linear analogue of the “double encryption” [20, 63, 64]
scheme and proving the “well-formedness” by a Schnorr-type
proof. This can be seen as a variant of (the DLIN variant
[13] of) the Cramer-Shoup encryption scheme [12, 65] in
which the validity-check property is realized by a Schnorr-
type proof.

Note that the BF IBE scheme is also slightly modified in
such a way that the scheme does not use a hash function for
deriving the DEM key that masks a plaintext. Instead of using
a hash function, we employ the slightly stronger assumption
of the DBDH assumption (rather than the computational
variant, on which the original BF scheme is based). This
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is due to the incompatibility of the use of a hash function
of this type and Schnorr-type proofs. We also remark that
our anonymity notion does not require the IBE scheme to
be chosen-ciphertext secure, and hence we use a chosen-
plaintext secure version of the BF scheme.

We further remark that 𝑅1, . . . , 𝑅10, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥,𝑠𝛽𝑥, 𝑠𝜌𝑥, and 𝑠𝜂𝑥 in Box 3 come from a Schnorr-type protocol
that proves the knowledge of 𝛼, 𝛽, 𝜌, 𝜂, and 𝑥 satisfying the
equations 𝑇1 = 𝑢𝛼,𝑇2 = V𝛽,𝑇3 = ℎ𝛼+𝛽,𝑒 (𝑔, 𝑔) = 𝑒 (𝑇4𝑔1−𝛼𝑔2−𝛽𝑔−𝜂, 𝑤𝑔𝑥) ,𝑇5 = 𝑔𝜌,𝑇6 = 𝑒 (𝑦,𝐻1 (𝑀))𝜌 𝑒 (𝑔, 𝑔)−𝜂 .

(9)

The first three equations prove the knowledge of 𝛼 and 𝛽
that are used for the linear encryption part, and furthermore
prove the “well-formedness” of the ciphertext (in other
words, they prove that (𝑇1, 𝑇2, 𝑇3) constitutes a linear tuple).
We note that the latter (proving the “well-formedness”) is
crucial for achieving CCA-anonymity. The last two equations
prove the knowledge of 𝜌 and 𝜂 that are used for the BF IBE
scheme. Here 𝜌 is the randomness for the BF IBE scheme,
and 𝜂 is the randomness for the 2-out-of-2 secret sharing.
The fourth equation proves that the group element encrypted
in 𝑇4 satisfies the verification equation of the Boneh-Boyen
signature scheme. Recall that 𝑇4 = 𝑔𝛼1𝑔𝛽2𝐴 𝑖𝑔𝜂, where 𝐴 𝑖 is
a Boneh-Boyen signature which certifies the membership of
the signer. In other words, this equation proves that when
the randomness that hides 𝐴 𝑖 is removed from 𝑇4, 𝑇4 is
verified as valid by the verification equation of the Boneh-
Boyen signature scheme.

More concretely, introducing four intermediate variables𝛿1, 𝛿2, 𝛿3, and 𝛿4 (which are intended to be 𝛿1 = 𝛼𝑥, 𝛿2 = 𝛽𝑥,𝛿3 = 𝜌𝑥, and 𝛿4 = 𝜂𝑥), the underlying protocol proves the
knowledge of 𝛼, 𝛽, 𝜌, 𝜂, 𝑥, 𝛿1, 𝛿2, 𝛿3, and 𝛿4 satisfying the
equations𝑇1 = 𝑢𝛼, (10a)𝑇2 = V𝛽, (10b)𝑇3 = ℎ𝛼+𝛽, (10c)𝑒 (𝑔, 𝑔)𝑒 (𝑇4, 𝑤) = 𝑒 (𝑇4, 𝑔)𝑥 𝑒 (𝑔1, 𝑤)−𝛼 𝑒 (𝑔1, 𝑔)−𝛿1⋅ 𝑒 (𝑔2, 𝑤)−𝛽 𝑒 (𝑔2, 𝑔)−𝛿2 𝑒 (𝑔, 𝑤)−𝜂 𝑒 (𝑔, 𝑔)−𝛿4 , (10d)

𝑇5 = 𝑔𝜌, (10e)𝑇6 = 𝑒 (𝑦,𝐻1 (𝑀))𝜌 𝑒 (𝑔, 𝑔)−𝜂 , (10f)

1 = 𝑇𝑥1 𝑢−𝛿1 , (10g)1 = 𝑇𝑥2 V−𝛿2 , (10h)1 = 𝑇𝑥5 𝑔−𝛿3 , (10i)1 = 𝑇𝑥6 𝑒 (𝑦,𝐻1 (𝑀))−𝛿3 𝑒 (𝑔, 𝑔)𝛿4 . (10j)

We explain these ten equations one by one. The first three
equations are exactly the same as those of (9). Equation (10d)
comes from expanding the equation𝑒 (𝑔, 𝑔) = 𝑒 (𝑇4𝑔1−𝛼𝑔2−𝛽𝑔−𝜂, 𝑤𝑔𝑥) (11)

to obtain𝑒 (𝑔, 𝑔) = 𝑒 (𝑇4, 𝑤) 𝑒 (𝑇4, 𝑔𝑥) 𝑒 (𝑔1−𝛼, 𝑤) 𝑒 (𝑔1𝛼, 𝑔𝑥)⋅ 𝑒 (𝑔2−𝛽, 𝑤) 𝑒 (𝑔2−𝛽, 𝑔𝑥) 𝑒 (𝑔−𝜂, 𝑤) 𝑒 (𝑔−𝜂, 𝑔𝑥) ,= 𝑒 (𝑇4, 𝑤) 𝑒 (𝑇4, 𝑔)𝑥 𝑒 (𝑔1, 𝑤)−𝛼 𝑒 (𝑔1, 𝑔)−𝛼𝑥⋅ 𝑒 (𝑔2, 𝑤)−𝛽 𝑒 (𝑔2, 𝑔)−𝛽𝑥 𝑒 (𝑔, 𝑤)−𝜂 𝑒 (𝑔, 𝑔)−𝜂𝑥 ,
(12)

replacing 𝛼𝑥 with 𝛿1, 𝛽𝑥 with 𝛿2, and 𝜂𝑥 with 𝛿4 to obtain𝑒 (𝑔, 𝑔) = 𝑒 (𝑇4, 𝑤) 𝑒 (𝑇4, 𝑔)𝑥 𝑒 (𝑔1, 𝑤)−𝛼 𝑒 (𝑔1, 𝑔)−𝛿1⋅ 𝑒 (𝑔2, 𝑤)−𝛽 𝑒 (𝑔2, 𝑔)−𝛿2 𝑒 (𝑔, 𝑤)−𝜂⋅ 𝑒 (𝑔, 𝑔)−𝛿4 , (13)

and rearranging them to obtain𝑒 (𝑔, 𝑔)𝑒 (𝑇4, 𝑤) = 𝑒 (𝑇4, 𝑔)𝑥 𝑒 (𝑔1, 𝑤)−𝛼 𝑒 (𝑔1, 𝑔)−𝛿1⋅ 𝑒 (𝑔2, 𝑤)−𝛽 𝑒 (𝑔2, 𝑔)−𝛿2 𝑒 (𝑔, 𝑤)−𝜂⋅ 𝑒 (𝑔, 𝑔)−𝛿4 ,
(14)

which is identical to (10d). We then need to prove that the
intermediate variables surely have appropriate values, namely,
that 𝛿1 = 𝛼𝑥, 𝛿2 = 𝛽𝑥, and 𝛿4 = 𝜂𝑥. Equations (10g)–(10j)
are for this purpose. To prove 𝛿1 = 𝛼𝑥, we introduce (10g).
This equation, together with (10a), proves that 𝛿1 = 𝛼𝑥.
Specifically, (10a) ensures that𝑇1 is equal to 𝑢𝛼, and then (10g)
in turn ensures that 1 = (𝑢𝛼)𝑥 𝑢−𝛿1 . (15)

Since 𝑢 is a generator, we have that𝛼𝑥 − 𝛿1 = 0, (16)

which is what we want to prove. Similarly, (10h) together with
(10b) proves that 𝛽𝑥 = 𝛿2. To prove 𝜂𝑥 = 𝛿4, we need to
introduce another intermediate variable 𝛿3 which is intended
to be equal to 𝜌𝑥. Towards this end, (10e) and (10i) prove
that 𝜌𝑥 = 𝛿3. Using this, (10f) and (10j) prove that 𝛿4 = 𝜂𝑥.
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Table 2: Performance comparison among pairing-based GS-MDO and GS schemes.

Signature size
# of [G,Z𝑝,G𝑇]-elements bits MDO Assumptions Without RO

Ours (Section 6) [449, 2, 0] 79364 𝑘-bounded DLIN, SFP Yes
Ours (Section 7) [5, 10, 1] 3636 unbounded DLIN, DBDH, 𝑞-SDH No
Libert-Joye [7] [53 log 𝑛 + 33, 2, 0] 9328 log𝑁 + 6148 unbounded DLIN, D3DH Yes
BBS [10] [3, 6, 0] 1548 - DLIN, 𝑞-SDH No
Groth [32] [50, 0, 0] 8800 - DLIN, 𝑞-SDH, 𝑞-U Yes
Signature Size. The signature size in terms of the number of group elements and the bit sizes for 80-bit security. We adopt the estimates of the bit sizes of group
elements used in [9] (the sizes of the elements ofG,Z𝑝, andG𝑇 are 176 bits, 170 bits, and 1056 bits, respectively.) 𝑛 is the number of group members. We assume
that the Wee one-time signature scheme [48] is used for the instantiation of the one-time signature scheme.
MDO. The security level of the message-dependent functionality, where “𝑘-bounded” denotes that one needs, at the setup, to fix the number of tokens that will
be issued, and “unbounded” denotes that one needs not fix the upper bound.
Assumptions. The hardness assumption on which the scheme is based. D3DH stands for the decision 3-party Diffie-Hellman assumption [11]. The 𝑞-U
assumption is defined in [32].
Without RO. Whether or not the scheme requires the random oracle model.

Specifically, (10f) ensures that 𝑇6 = 𝑒(𝑦,𝐻1(𝑀))𝜌𝑒(𝑔, 𝑔)−𝜂,
and then (10j) in turn ensures that1 = (𝑒 (𝑦,𝐻1 (𝑀))𝜌𝑒 (𝑔, 𝑔)−𝜂)𝑥 𝑒 (𝑦,𝐻1 (𝑀))−𝛿3⋅ 𝑒 (𝑔, 𝑔)𝛿4 . (17)

Since (10e) and (10i) ensure that 𝛿3 = 𝜌𝑥, canceling out𝑒(𝑦,𝐻1(𝑀))𝜌𝑥 and 𝑒(𝑦,𝐻1(𝑀))−𝛿3 , (10j) further ensures that1 = 𝑒 (𝑔, 𝑔)−𝜂𝑥 𝑒 (𝑔, 𝑔)𝛿4 , (18)

since 𝑒(𝑔, 𝑔) is a generator, this equation ensures that−𝜂𝑥 + 𝛿4 = 0, (19)

which is what we want to prove.
The security of our proposed scheme is proved as follows.

Theorem 12. If the DBDH assumption holds, the proposed
construction has opener anonymity in the random oracle
model.

Theorem 13. If the DLIN assumption holds, the proposed
construction has admitter anonymity in the random oracle
model.

Theorem 14. If the 𝑞-SDH assumption holds, the proposed
construction has traceability in the random oracle model.

The proofs of Theorems 12, 13, and 14 are given in
Appendix D.

8. Efficiency Comparison with Pairing-Based
Group Signatures

Finally, we give a brief efficiency comparison between the
proposed schemes and existing pairing-based group signa-
ture schemes (with and without the MDO property). Table 2
shows a detailed comparison among such schemes.

The signature size of our standard model scheme is 10
times larger than that of Groth scheme [32]. We believe

that this is a reasonably practical performance and can be
implemented in practice.

Compared with our scheme in the standard model, our
scheme in the random oracle model is improved in two
aspects: the first is the removal of the a priori upper bound on
the number of tokens the admitter can issue, and the second
is the substantial reduction of the signature size. When a 170-
bit prime-order group is used, the signature size of our GS-
MDO scheme in the standard model is 79364 bits, and that
of our GS-MDO scheme in the random oracle model is 3636
bits, while that of the BBS scheme [10] is 1548 bits. (We adopt
the estimates of bit sizes for group elements used in [9]). We
also includemore details of the performance of these schemes
in Table 2. These two improvements are achieved at the cost
of using random oracles, as indicated in the “Without RO”
column in the table.

In the Libert-Joye scheme, a signature contains 𝑂(log𝑁)
group elements, whereas our schemes contain a constant
number of group elements. However, our standard model
scheme does not achieve the unbounded MDO property.
Constructing an unbounded GS-MDO scheme secure in
the standard model with a constant-signature size is an
interesting open problem.

Compared with the BBS scheme, we believe that the
proposed scheme in the random oracle model achieves the
MDO property at a reasonable cost given the increase in the
signature size. As shown in Table 2, the signature size of the
proposed scheme is almost twice that of the BBS scheme.
We also note that our random oracle model scheme achieves
CCA-anonymity, which guarantees amarkedly higher level of
security than CPA-anonymity, which is achieved by the BBS
scheme.

9. Conclusion and Open Problems

In this paper we proposed a new anonymous authentication
primitive called group signatures with message-dependent
opening. This primitive is an extension of ordinary group
signatures, which relaxes the strong assumption that the
opener, who is able to trace the identity of the signer of a
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signature, does not misuse his strong capability of breaking
anonymity. The primitive does this by introducing another
authority called the admitter, who is able to admit the opening
of signatures on some specific messages to the opener.

We formalized this new primitive by providing the syntax
and security requirements of the primitive. Furthermore,
we discussed the difficulties in constructing an efficient
instantiation of the primitive, in particular, showed that IBE
is inevitable for an instantiation. We provided one generic
construction and two specific constructions. The first specific
construction was proven to be secure in the standard model,
while the other was proven to be secure in the random oracle
model. Finally, we compared two specific constructions and
known group signature schemes (with and without the
message-dependent opening property).

We list some open problems. We assumed that the setup
of the scheme is executed honestly and that the entity who
runs the setup does not collude with an adversary. An open
problem is to provide a formal security requirement that does
not require this assumption and an instantiation for it. Our
schemes do not provide security against an adversary which
may maliciously generate the opener’s or the admitter’s keys.
Achieving this security is another open problem.

Appendix

A. Bellare and Neven’s Forking Lemma

Here we recall Bellare and Neven’s forking lemma [66].

LemmaA.1. Fix an integer 𝑞 ≥ 1 and a set𝐻 of size ℎ ≥ 2. Let
I be a randomized algorithm that we call the input generator.
Let A be a randomized algorithm that takes 𝑥 generated by
I and 𝑐1,..., 𝑐𝑞 ∈ 𝐻 as inputs, and returns a pair (𝑗, 𝜎) ∈{0, . . . , 𝑞}×{0, 1}∗.The accepting probability ofA, denoted acc,
is defined as the probability that 𝑗 ≥ 1 in the experiment

𝑥 ←󳨀 I;𝑐1, . . . , 𝑐𝑞 ←󳨀 𝐻;(𝑗, 𝜎) ←󳨀 A (𝑥, 𝑐1, . . . , 𝑐𝑞) . (A.1)

The forking algorithm FA associated toA is the randomized
algorithm that takes input 𝑥 and proceeds as follows:

Algorithm FA (𝑥) :
Pick coins rnd for A at random𝑐∗1 , . . . , 𝑐∗𝑞 ←󳨀 𝐻(𝑗∗, 𝜎∗) ←󳨀 A (𝑥, 𝑐∗1 , . . . , 𝑐∗𝑞 ; rnd)
If 𝑗∗ = 0 then return (0, ⊥, ⊥)𝑐∗∗𝑗∗ , . . . , 𝑐∗∗𝑞 ←󳨀 𝐻(𝑗∗∗, 𝜎∗∗) ←󳨀 A (𝑥, 𝑐∗1 , . . . , 𝑐∗𝑗∗−1, 𝑐∗∗𝑗∗ , . . . , 𝑐∗∗𝑞 ; rnd)

If (𝑗∗ = 𝑗∗∗ and 𝑐∗𝑗∗ ̸= 𝑐∗∗𝑗∗ ) then

return (1, 𝜎∗, 𝜎∗∗)𝐸𝑙𝑠𝑒
return (0, ⊥, ⊥) .

(A.2)

Let

frk= Pr [𝑏 = 1 : 𝑥 ←󳨀 I; (𝑏, 𝜎∗, 𝜎∗∗) ←󳨀 FA (𝑥)] . (A.3)

Then

frk ≥ acc ⋅ (acc𝑞 − 1ℎ) . (A.4)

Alternatively,

acc ≤ 𝑞ℎ + √𝑞 ⋅ frk. (A.5)

B. Security Proofs for the Construction
in Section 5

B.1. Proof of Theorem 6. We prove the theorem for the case
that message-dependent tokens are issued at most 𝑘 times.
The theorem for the case of an unbounded number of tokens
can be proved similarly.

Proof. LetA be an adversary against the opener anonymity of
the proposed scheme. The proof proceeds with a sequence of
games.

(i) Game 0: This is identical to the opener anonymity
game of the proposed scheme.

(ii) Game 1: In this game the common reference string𝜎 in 𝑝𝑎𝑟 is generated by 𝑆1, and the zero-knowledge
proof 𝜋 in the challenge signature 𝜎∗ is generated by𝑆2.

(iii) Game 2: In this game 𝜒 is sampled randomly and
independently.

Let 𝑆𝑖 be the event that A wins in Game 𝑖. From the triangle
inequality, we have that󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆0] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1∑

𝑖=0

󵄨󵄨󵄨󵄨Pr [𝑆𝑖] − Pr [𝑆𝑖+1]󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆2] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (B.1)

We then bound each term in this equation.

Lemma B.1. |Pr[𝑆0] − Pr[𝑆1]| is negligible, provided that the
non-interactive proof system is adaptively zero-knowledge.

Proof (of Lemma B.1). UsingAwe construct an algorithm B

against the zero-knowledge property of the proof system.The
construction is as follows.
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(i) Setup:B receives a common reference string 𝜎. Then
B sets up 𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘, and (𝑔𝑠𝑘𝑖)𝑖∈[𝑛] except that
for the common reference string in 𝑔𝑝𝑘 B uses
the common reference string 𝜎 received from its
challenger. ThenB sends (𝑔𝑝𝑘, 𝑜𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]) toA.

(ii) Token Query (Phase I): WhenA issues a token query𝑀,B responds with 𝑡𝑀 generated with 𝑎𝑘.
(iii) Challenge: When A request a challenge for 𝑖0, 𝑖1,

and 𝑀∗, B chooses a random bit 𝜇. Using 𝑔𝑠𝑘𝑖𝜇 ,
B generate a challenge signature as in the opener
anonymity game with an exception that the proof 𝜋
in the challenge signature is obtained by querying the
statement and the witness toB’s challenger.

(iv) Token Query (Phase II): Token queries from A are
responded as in Phase I.

(v) Guess: WhenA outputs a guess 𝜇󸀠,B outputs 1 if 𝜇 =𝜇󸀠 and outputs 0 otherwise.
Observe that if B receives a proof generated by 𝑃, B

simulatesGame 0 perfectly. IfB receives a proof generated by𝑆2,B simulates Game 1 perfectly. Then we have that |Pr[𝑆0]−
Pr[𝑆1]| = 2AdvzkB(𝜆), which is negligible.

Lemma B.2. |Pr[𝑆1] − Pr[𝑆2]| is negligible, provided that the
identity-based KEM is 𝑘-resilient.
Proof (of Lemma B.2). Using A we construct an algorithm
B against the 𝑘-resilience of the identity-based KEM. The
construction ofB is as follows.

(i) Setup: B receives a public parameter 𝑝𝑎𝑟. Then B

sets up 𝑔𝑝𝑘, 𝑜𝑘, (𝑔𝑠𝑘)𝑖∈[𝑛] following the description
of Game 1 with an exception that for the public
parameter in𝑔𝑝𝑘 Buses𝑝𝑎𝑟 sent from its challenger.
ThenB sends (𝑔𝑝𝑘, 𝑜𝑘, (𝑔𝑠𝑘𝑖∈[𝑛])𝑖) toA.

(ii) Token Query (Phase I): WhenA issues a token query𝑀, B issues an extraction query𝑀 to its challenger
and receives a decryption key 𝑑𝑘𝑀. Then B returns𝑡𝑀 = 𝑑𝑘𝑀 toA.

(iii) Challenge: WhenA requests a challenge for 𝑖0, 𝑖1, and𝑀∗, B chooses a random bit 𝜇. Then B requests a
challenge (𝐶∗, 𝐾∗) to its challenger under the identity𝑀∗. Using these 𝐶∗ and 𝐾∗ as 𝐶IBE and 𝐾IBE, B
generates a challenge signature 𝜎∗ as in Game 1.
Notice that due to the change in Game 1, in order to
generate a proof 𝜋, B no longer needs to know the
randomness behind𝐶IBE.ThenB returns a challenge
signature 𝜎∗ toA.

(iv) Token Query (Phase II): In this phase, token queries
fromA are responded as in Phase I.

(v) Guess: WhenA outputs a guess 𝜇󸀠,B outputs 1 if 𝜇 =𝜇󸀠, and outputs 0 otherwise.
Observe that if B receives a session key 𝐾∗ = 𝐾0

(encapsulated in𝐶∗),B perfectly simulates Game 1. Further-
more, if B receives a session key 𝐾∗ = 𝐾1 (independently
sampled), B perfectly simulates Game 2. This is because 𝐾1

is independent of any other values, hence 𝜒 is distributed
randomly and independently. Furthermore,A issues at most𝑘 token queries and does not issue 𝑀∗ as a token query.
Therefore, we have that |Pr[𝑆1] − Pr[𝑆2]| = 2Advtb−KEMB (𝜆),
which is negligible.

Lemma B.3. |Pr[𝑆2] − 1/2| = 0.
Proof (of Lemma B.3). Consider the process of generating
the challenge signature in Game 2. In this process, the
only variable that directly depends on the challenge bit 𝜇
is 𝑠 ←󳨀 Sign(𝑠𝑘𝑖𝜇 ,𝑀). However this 𝑠 is no longer used
to generate a challenge signature any more, and thus the
challenge signature is independent of the challenge bit 𝜇.
Hence the lemma holds.

Finally, we have that all the three terms in Eq. (B.1) are
negligible, hence the advantage ofA in the opener anonymity
game is negligible.

This complete the proof of Theorem 6. ◻
B.2. Proof of Theorem 7

Proof. LetA be an admitter anonymity adversary against the
proposed scheme. The proof proceeds with a sequence of
games. We define the following four games.

(i) Game 0. The initial game is identical to the game
defined in the definition of admitter anonymity.
For the subsequent games, V𝑘∗OT is generated before
running the adversary A.

(ii) Game 1. In this game, an opening query which
contains a valid one-time signature with V𝑘 = V𝑘∗ is
responded with ⊥.

(iii) Game 2. In this game, we replace the common
reference string with a simulated string generated by𝑆1 and the NIZK proof, included in challenge, with a
simulated proof using 𝑆2 of the NIZK proof system.

(iv) Game 3. In this game, we change 𝜒∗ of the challenge
signature to be a random element.

For 𝑖 = 0, 1, 2, 3, we define the following two events: Let 𝑆𝑖
denote the event that the adversaryA successfully guesses the
challenge bit inGame 𝑖. Let𝐹𝑖 denote the event thatA submits
an open query (V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT) in Game 𝑖 where
V𝑘OT = V𝑘∗OT and VerifyOT(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) =⊤.

The advantage of A is |Pr[𝑆0] − 1/2| from the definition.
From the triangle inequality, the following inequality holds.󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆0] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 2∑

𝑖=0

󵄨󵄨󵄨󵄨Pr [𝑆𝑖] − Pr [𝑆𝑖+1]󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆3] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (B.2)

In what follows, we prove that each term of the above
inequality is negligible.
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Lemma B.4. |Pr[𝑆0] − Pr[𝑆1]| is negligible if the underlying
one-time signature scheme is strongly unforgeable.

Proof (of Lemma B.4). By the difference lemma [67], Game
0 and Game 1 are equivalent if the event 𝐹𝑖 does not occur.
Therefore, 󵄨󵄨󵄨󵄨Pr [𝑆0] − Pr [𝑆1]󵄨󵄨󵄨󵄨 ≤ Pr [𝐹0] = Pr [𝐹1] . (B.3)

We then prove Pr[𝐹0] (= Pr[𝐹1]) is negligible.
To prove Pr[𝐹0] is negligible, we will construct another

adversary F, which attacks strong unforgeability of the one-
time signature scheme, and relate its success probability with
the probability of the event 𝐹0. The construction of F is as
follows:

(i) Setup: The adversary F first receives a verification
key V𝑘∗OT for the one-time signature scheme. The
adversary then runs GKg(1𝜆, 1𝑛, 1𝑘) to obtain a group
public key 𝑔𝑝𝑘 = (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ), the opening
key 𝑜𝑘, the admitting key 𝑎𝑘, and user signing keys𝑔𝑠𝑘𝑖 = (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑘𝑖) for all 𝑖 ∈ [𝑛]. Then B runs
A(𝑔𝑝𝑘, 𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]).

(ii) Open Query (Phase I): Queries are answered with
the opening key 𝑜𝑘 and the admitting key 𝑎𝑘.
In addition, when A queries a group signature(V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT) in which V𝑘OT = V𝑘∗OT
and Verify(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) = ⊤,
F records the pair (⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) and
responds with ⊥.

(iii) Challenge: To respond to the challenge request(𝑖0, 𝑖1,𝑀∗), F chooses a random bit 𝑏 and generates
a group signature (V𝑘∗OT, 𝐶∗PKE, 𝐶∗IBE, 𝜒∗, 𝜋∗, 𝜎∗OT) in
exactly the same way as the construction with one
exception that 𝜎∗OT is obtained by issuing a signing
query ⟨𝐶∗PKE, 𝐶∗IBE, 𝜒∗, 𝜋∗⟩ to the challenger.

(iv) Open Query (Phase II): Further open queries are
answered as in Phase I.

(v) Guess: When A outputs a guess and halts, if there is
a recorded tuple, F outputs this tuple as a forgery.
OtherwiseF outputs (⊥, ⊥).

This adversary F perfectly simulates Game 0 (or Game 1)
until the event 𝐹0 (or 𝐹1) occurs. Furthermore, whenever the
event 𝐹0 happens, this adversary F successfully outputs a
forgery and wins the game (because (𝐶PKE, 𝐶IBE, 𝜒, 𝜋, 𝜎OT)
must be different from (𝐶∗PKE, 𝐶∗IBE, 𝜒∗, 𝜋∗, 𝜎∗OT), and it con-
sists of a legitimate forgery). Then we can conclude Pr[𝐹0]
is negligible, because of the security of the underlying
one-time signature scheme. This completes the proof of
Lemma B.4.

Lemma B.5. |Pr[𝑆1] − Pr[𝑆2]| is negligible if the underlying
non-interactive proof system is adaptively zero-knowledge.

It is straightforward to prove that the difference between
Pr[𝑆1] and Pr[𝑆2] is negligible from the adaptive zero-
knowledge property of theNIZKproof system, hencewe omit
the detailed proof of Lemma B.5.

Lemma B.6. |Pr[𝑆2] − Pr[𝑆3]| is negligible if the underly-
ing tag-based KEM is selective-tag weakly chosen-ciphertext
secure.

Proof (of Lemma B.6). We will construct an adversary B

which attacks the underlying tag-based KEM. The construc-
tion ofB is as follows:

(i) Setup: The adversary B first runs SigKgOT(1𝜆) to
generate a verification/signing key pair (V𝑘∗OT, 𝑠𝑘∗OT),
outputs V𝑘∗OT as the challenge tag, and then receives
the public key 𝑝𝑘 of the tag-based KEM. The adver-
sary B then generates the rest of a group public
key as (V𝑘issue, 𝑠𝑘issue) ←󳨀 SigKg(1𝜆), (𝑝𝑎𝑟,𝑚𝑘) ←󳨀
ISetup(1𝜆), (Σ, 𝜏) ←󳨀 𝑆1(1𝜆), user signing keys(V𝑘𝑖, 𝑠𝑘𝑖) ←󳨀 SigKgOT(1𝜆) for all 𝑖 ∈ [𝑛], and
their certificates 𝑐𝑒𝑟𝑡𝑖 ←󳨀 Sign(𝑠𝑘issue, ⟨𝑖, V𝑘𝑖⟩) for
all 𝑖 ∈ [𝑛]. The adversary B then sets 𝑔𝑝𝑘 ←󳨀(V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, Σ) and 𝑔𝑠𝑘𝑖 ←󳨀 (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑘𝑖)
for all 𝑖 ∈ [𝑛] and runs A with the input (𝑔𝑝𝑘,𝑚𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]).

(ii) Open Query (Phase I): When the adversary A sub-
mits an open query for a signature (V𝑘OT, 𝐶PKE,𝐶IBE, 𝜒, 𝜋, 𝜎OT) and a message 𝑀, the adversary B
responds as follows: (i) when V𝑘OT ̸= V𝑘∗OT,Bmakes
a decapsulation query for the ciphertext 𝐶PKE with
a tag V𝑘OT to obtain a session key 𝐾PKE (note that
this query is legitimate), and then extracts a user
decryption key 𝑑𝑘𝑀 (of the identity-based KEM)
from 𝑚𝑘 by running 𝑑𝑘𝑀 ←󳨀 IExt(𝑝𝑎𝑟,𝑚𝑘,𝑀),
decrypts 𝐶IBE with 𝑑𝑘𝑀 to obtain a session key 𝐾IBE
by running 𝐾IBE ←󳨀 IDec(𝑑𝑘𝑀,𝑀,𝐶IBE), and ver-
ifies whether VerifyOT(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT)
= ⊤ and 𝑉NIZK(Σ, (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PEK, 𝐶IBE), 𝜋) =⊤ hold. If both of them hold, B further computes⟨𝑖, V𝑘, 𝑐𝑒𝑟𝑡, 𝑠⟩ ←󳨀 𝜒 ⊙𝐾−1IBE ⊙𝐾−1PKE and responds with𝑖. Otherwise B responds with ⊥. (ii) When V𝑘OT =
V𝑘∗OT,B responds with ⊥.

(iii) Challenge: At some time A requests a challenge for(𝑖0, 𝑖1,𝑀∗), then B computes a challenge as follows:
B generates a signature 𝑠𝜇 ←󳨀 Sign(𝑠𝑘𝑖𝜇 ,𝑀∗) for
a random bit 𝜇 ←󳨀 {0, 1}, requests a challenge
to obtain (𝐶∗, 𝐾∗), generates a ciphertext and a
session key as (𝐶IBE, 𝐾IBE) ←󳨀 IEnc(𝑝𝑎𝑟,𝑀∗),
computes 𝜒 ←󳨀 ⟨𝑖𝜇, V𝑘𝑖𝜇 , 𝑐𝑒𝑟𝑡𝑖𝜇 , 𝑠𝑖𝜇⟩ ⊙ 𝐾∗ ⊙ 𝐾IBE,
and generates a fake proof 𝜋 by computing 𝜋 ←󳨀𝑆2(Σ, (V𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PKE, 𝐶IBE, 𝜒), 𝜏). Finally
B signs ⟨V𝑘∗OT, 𝐶∗, 𝐶IBE, 𝜒, 𝜋⟩ with the one-time
signing key 𝑠𝑘∗OT to obtain 𝜎∗OT and sends (V𝑘∗OT, 𝐶∗,𝐶IBE, 𝜒, 𝜋, 𝜎∗OT) toA.

(iv) Open Query (Phase II): Again A submits more open
queries andB responds as before.

(v) Guess:WhenA outputs a bit 𝜇󸀠,B outputs 1 if 𝜇󸀠 = 𝜇,
otherwise outputs 0.

Let Advtb−KEMB (𝜆) denote the advantage ofB.
The adversary B perfectly simulates Game 2 and Game 3

when 𝐾∗PKE is the real key and a random value, respectively,
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so thatA’s challenge bit is 𝜇. Therefore,B outputs 1 whenA
successfully guesses the challenge bit in each game.

Hence, we have that |Pr[𝑆2] − Pr[𝑆3]| = 2Advtb−KEMB (𝜆).
When the tag-based KEM is secure, Advtb−KEMB (𝜆) is negligi-
ble and therefore |Pr[𝑆2] − Pr[𝑆3]| is also negligible.
Lemma B.7. |Pr[𝑆3] − 1/2| = 0.
Proof (of Lemma B.7). In Game 3, 𝜒∗ is a random value. That
is, A’s view is completely independent of the challenge bit𝑏 in Game 3, and therefore the challenge signature does not
contain the information of 𝑏.

From the above, the proof ofTheorem 7 is completed. ◻
B.3. Proof of Theorem 8

Proof. LetA be a traceability adversary against the proposed
scheme. Let 𝑆 be the event thatA wins the traceability game.
Let (𝑀∗, 𝜎∗) be the output ofA. Furthermore we denote 𝜎∗
as (V𝑘∗OT, 𝐶∗PKE, 𝐶∗IBE, 𝜒∗, 𝜋∗, 𝜎∗OT).

We define the following events:

(i) 𝑆: The adversary A satisfies the winning condition.
(ii) 𝑃: The statement that 𝜋∗ proves is in the language.

Let ⟨𝑖∗, V𝑘∗, 𝑐𝑒𝑟𝑡∗, 𝑠∗⟩ be 𝜒∗⊙𝐾∗IBE−1⊙𝐾∗PKE−1 where𝐾∗IBE and𝐾∗PKE be the decapsulated session key computed in the Open

algorithm. Let (𝑖, V𝑘𝑖, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑘𝑖) be the user 𝑖’s signing key
generated in the game.We further define the following events:

(i) 𝐶(i): The event 𝑃 occurs and the adversaryAwins the
game satisfying the winning condition (i).

(ii) 𝐶(ii):The event 𝑃 occurs and the adversaryAwins the
game satisfying the winning condition (ii).

(a) 𝐶(ii),1: The event 𝐶(ii) occurs and none of 𝑖 ∈ [𝑛]
satisfies (𝑖∗, V𝑘∗) = (𝑖, V𝑘𝑖).

(b) 𝐶(ii),2: The event 𝐶(ii) occurs and it holds that(𝑖∗, V𝑘∗) = (𝑖, V𝑘𝑖) for some 𝑖 ∈ [𝑛].
Then we have that𝑆 = (𝑆 ∧ ¬𝑃) ∨ 𝐶(i) ∨ 𝐶(ii),1 ∨ 𝐶(ii),2. (B.4)

Since 𝑆 ∧¬𝑃, 𝐶(i), 𝐶(ii),1, and 𝐶(ii),2 are exclusive, we have that
Pr [𝑆] = Pr [𝑆 ∧ ¬𝑃] + Pr [𝐶(𝑖) ∨ 𝐶(ii),1]+ Pr [𝐶(ii),2] . (B.5)

We then bound each term.

Lemma B.8. Pr[𝑆 ∧ ¬𝑃] is negligible provided that the proof
system is adaptively sound.

Proof. Given the adversary A we construct an algorithm
B that attacks the soundness of the proof system. The
construction of B is as follows: B receives as an input a
common reference string; then B sets up a group public

key, an opening key, an admitting key, and signing keys;
B executes the traceability game using these keys; when
A terminates with output (𝑀∗, 𝜎∗) where 𝜎∗ is parsed as(V𝑘OT, 𝐶PKE, 𝐶IBE, 𝜉, 𝜋, 𝜎OT) B outputs 𝜋 together with the
statement.

Whenever the event 𝑆 ∧ ¬𝑃 occurs, B successfully
outputs a statement/proof pair which is verified as valid but
the statement is outside of the language. Hence, since the
assumption that the proof system is sound, Pr[𝑆 ∧ ¬𝑃] is
negligible.

Lemma B.9. Pr[𝐶(i) ∨ 𝐶(ii),1] is negligible provided that the
signature scheme is EUF-CMA secure.

Proof. Given the adversary A we construct an algorithm
B that attacks the unforgeability of the signature scheme.
The construction of B is as follows: B receives as an input
a verification key V𝑘 of the signature scheme; using this
V𝑘 as V𝑘issue, it sets up a group public key, an opening key,
and signing keys; for generating the signing key for the
user 𝑖, B issues a signing query for the message ⟨𝑖, V𝑘𝑖⟩ to
obtain a signature on that message, and uses this signature
as 𝑐𝑒𝑟𝑡𝑖 in the signing key of the user 𝑖; B then runs A

with the input the group public key, opening key, and
admitting key; all the key revealing queries and signing
queries are responded with the signing keys for the users
generated by B; when A outputs a pair (𝑀∗, 𝜎∗), B

parses 𝜎∗ as (V𝑘∗OT, 𝐶∗PKE, 𝐶∗IBE, 𝜒∗, 𝜋∗), decrypts 𝜒 and
parses the plaintext by running ⟨𝑖∗, V𝑘∗, 𝑐𝑒𝑟𝑡∗, 𝑠⟩ ←󳨀𝜒 ⊙ IDec(𝑡𝑀∗ ,𝑀∗, 𝐶∗IBE) ⊙ TDec(𝑜𝑘, V𝑘∗OT, 𝐶∗PKE), and
finally outputs (⟨𝑖∗, V𝑘∗⟩, 𝑐𝑒𝑟𝑡∗) as a forgery; if either
IDec(𝑡𝑀∗ ,𝑀∗, 𝐶∗IBE) or TDec(𝑜𝑘, V𝑘∗OT, 𝐶∗PKE) outputs ⊥, B
outputs (⊥, ⊥).

We then argue that whenever 𝐶(i) ∨ 𝐶(ii),1 occurs, B
successfully outputs a forgery for the signature scheme.

Let us assume 𝐶(i) occurs. There are five possibilities
that Open outputs ⊥:

(i) TDec(𝑜𝑘, V𝑘∗OT, 𝐶PKE) = ⊥,
(ii) IDec(𝑡𝑀∗ ,𝑀∗, V𝑘∗OT, 𝐶IBE) = ⊥,
(iii) VerifyOT(V𝑘OT, ⟨𝐶PKE, 𝐶IBE, 𝜒, 𝜋⟩, 𝜎OT) =⊥,
(iv) 𝑉NIZK(Σ, (𝑝𝑘issue, 𝑝𝑘, 𝑝𝑎𝑟, 𝐶PKE, 𝐶IBE), 𝜋) =⊥, or
(v) 𝑖∗ ∉ [𝑛].

The first two possibilities in fact never occur, since the state-
ment 𝜋 proves is in the language, and then the correctness
condition ensures that these two ciphertexts are correctly
decrypted. The third and fourth possibilities never occur,
since the winning condition requires that 𝜎∗ be verified as
valid by GVf, in which 𝜎∗OT and 𝜋∗ are verified. Therefore
whenever 𝐶(i) occurs, we have that 𝑖∗ ∉ [𝑛]. Since the
condition that 𝑃 occurs ensures that (⟨𝑖∗, V𝑘∗⟩, 𝑐𝑒𝑟𝑡∗) is
verified as valid under V𝑘issue, and B only issues signing
queries of the form ⟨𝑖, V𝑘⟩ for some 𝑖 ∈ [𝑛] and some V𝑘, the
output ofB is a legitimate forgery for V𝑘issue.

Then let us assume 𝐶(ii),1 occurs. In this case the event𝑃 ensures that (⟨𝑖∗, V𝑘∗⟩, 𝑐𝑒𝑟𝑡∗) is a valid message-signature
pair under V𝑘issue. Furthermore, the condition 𝐶(ii),1 ensures
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that 𝑖∗ ∈ [𝑛] but V𝑘∗ ̸= V𝑘𝑖∗ . Thus, the output ofB is again a
legitimate forgery for V𝑘issue.

Therefore, whenever 𝐶(i) ∨ 𝐶(ii),1 occurs, B successfully
outputs a forgery. Hence the unforgeability of the signature
scheme ensures that Pr[𝐶(i) ∨ 𝐶(ii),1] is negligible.
Lemma B.10. Pr[𝐶(ii),2] is negligible provided the signature
scheme is EUF-CMA secure.

Proof. Given the adversary A we construct an algorithm
that attacks the unforgeability of the signature scheme. The
construction of B is as follows: B receives as an input a
verification key V𝑘 of the underlying signature scheme; B
chooses a random index 𝑗 ←󳨀 [𝑛] of a signer and sets
V𝑘𝑗 = V𝑘; B then generates a group public key, an opening
key, an admitting key, and signing keys for 𝑖 ∈ [𝑛] \ {𝑗}.
B runs A with the input the group public key, the opening
key, and the admitting key. Key revealing queries 𝑖 ̸= 𝑗
are responded as in the traceability game, and key revealing
queries 𝑗 are responded with ⊥. Signing queries (𝑖,𝑀) where𝑖 ̸= 𝑗 are responded using the signing keys generated by
B itself. Signing queries (𝑗,𝑀) for any𝑀 are responded by
querying 𝑀 as B’s signing query, receiving 𝑠 as its reply,
using 𝑠 to generate a group signature 𝜎, and responding with
this 𝜎; whenA outputs a forgery (𝑀∗, 𝜎∗),B decrypts 𝜒 by
running ⟨𝑖∗, V𝑘∗, 𝑐𝑒𝑟𝑡∗, 𝑠∗⟩ ←󳨀 𝜒 ⊙ IDec(𝑡𝑀∗ ,𝑀∗, 𝐶∗IBE) ⊙
TDec(𝑜𝑘, V𝑘∗OT, 𝐶PKE), confirms that (𝑖∗, V𝑘∗) = (𝑗, V𝑘𝑗),
where V𝑘𝑗 is the part of the user 𝑗’s signing key. If (𝑖∗, V𝑘∗) =(𝑗, V𝑘𝑗) then B outputs (𝑀∗, 𝑠∗), and otherwise outputs (⊥, ⊥).

We then bound the probability Pr[𝐶(ii)] by the probability
thatB produces a forgery.

Towards this endwe argue thatwhenever the event𝐶(ii),2∧(𝑖∗ = 𝑗) occurs, B successfully outputs a forgery for the
signature scheme. Let us assume 𝐶(ii),2 ∧ (𝑖∗ = 𝑗) occurs. The
event 𝐶(ii),2 ensures that (𝑀∗, 𝑠∗) is a valid message-signature
pair under V𝑘∗. Furthermore, the event 𝐶(ii),2 ensures that
V𝑘∗ = V𝑘𝑖∗ , where V𝑘𝑖∗ is the verification key included in the
user 𝑖∗’s signing key. Moreover, the event 𝑖∗ = 𝑗 ensures that
V𝑘𝑖∗ is in fact V𝑘, which is the verification key that is given
to B. In addition, the winning condition of the traceability
game ensures thatA did not issue the signing query (𝑖∗,𝑀∗),
which in turn ensures thatB did not issue the signing query𝑀∗.Therefore, we can conclude thatwhenever𝐶(ii),2∧(𝑖∗ = 𝑗)
occurs,B successfully outputs a legitimate forgery.

Since 𝑖∗ is information-theoretically hidden from A, we
have

Pr [𝐶(ii),2 ∧ (𝑖∗ = 𝑗)] = 1𝑛Pr [𝐶(ii),2] . (B.6)

Then we have that

Pr [𝐶(ii),2] ≤ 𝑛 Pr [B forges] , (B.7)

which is negligible.

Finally we have that all the three terms in Eq. (B.5) are
negligible, thus Pr[𝑆] is negligible.

This complete the proof of Theorem 8. ◻

C. Building Blocks and Their Security Proofs

C.1. 𝑘-Resilient Identity-Based KEM from the DLIN Assump-
tion. In the following presentation of the identity-based
KEM, 𝑘 denotes the upper bound for the number of the
corrupted users, while 𝑙 denotes the message length (in group
elements) to be encrypted. Our proposed 𝑘-resilient identity-
based KEM based on the Heng-Kurosawa scheme is shown
in Box 4.

Theorem C.1. The construction in Box 4 is a 𝑘-resilient
identity-based KEM if the DLIN assumption holds.

Proof. Given an adversary A which attacks the scheme in
Box 4 , we bound its advantage by constructing the reduction
B below:

(i) Setup. The simulator B receives an instance(𝑢, V, ℎ, 𝑢𝑟, V𝑟, ℎ̃̃𝑟) of the DLIN problem, where ̃̃𝑟 is
either 𝑟 + 𝑟̃ or an independently chosen random
element of Z𝑝 \ {𝑟 + 𝑟̃}. B generates random
polynomials (𝑑𝑖(𝑥) = 𝑑𝑖,0 + ⋅ ⋅ ⋅ + 𝛼𝑖,𝑘𝑥𝑘, 𝑑󸀠𝑖 (𝑥) =𝑑󸀠𝑖,0 + ⋅ ⋅ ⋅ + 𝑑󸀠𝑖,𝑘𝑥𝑘, 𝑑󸀠󸀠𝑖 (𝑥) = 𝑑󸀠󸀠𝑖,0 + ⋅ ⋅ ⋅ + 𝑑󸀠󸀠𝑖,𝑘𝑥𝑘)𝑖∈[𝑙] of
degree 𝑘, sets 𝐷𝑖,𝑗 ←󳨀 𝑢𝑑𝑖,𝑗ℎ𝑑󸀠󸀠𝑖,𝑗 and 𝐷̃𝑖,𝑗 ←󳨀 V𝑑

󸀠
𝑖,𝑗ℎ𝑑󸀠󸀠𝑖,𝑗

for all 𝑖 ∈ [𝑙] and 𝑗 ∈ {0, . . . , 𝑘}, and runs A with an
input 𝑝𝑎𝑟 = (𝑢, V, ℎ, (𝐷𝑖,𝑗, 𝐷̃𝑖,𝑗)𝑖∈[𝑙],𝑗∈{0,...,𝑘}).

(ii) Query (Phase I). When A queries an identity 𝐼𝐷, B
returns 𝑑𝑘𝐼𝐷 = (𝑑𝑖(𝐼𝐷), 𝑑󸀠𝑖 (𝐼𝐷), 𝑑󸀠󸀠𝑖 (𝐼𝐷))𝑖∈[𝑙].

(iii) Challenge. When A requests a challenge
for an identity 𝐼𝐷∗, B chooses a random
bit 𝑏 ←󳨀 {0, 1}. Then B computes 𝐶∗ =(𝑢𝑟, V𝑟, ℎ̃̃𝑟). If 𝑏 = 0, B computes 𝐾∗ =(𝐾∗1 , . . . , 𝐾∗𝑙 ) = ((𝑢𝑟)𝑑1(𝐼𝐷∗)(V𝑟)𝑑󸀠1(𝐼𝐷∗)(ℎ̃̃𝑟)𝑑󸀠󸀠1 (𝐼𝐷∗),. . .,(𝑢𝑟)𝑑𝑙(𝐼𝐷∗)(V𝑟)𝑑󸀠𝑙 (𝐼𝐷∗)(ℎ̃̃𝑟)𝑑󸀠󸀠𝑙 (𝐼𝐷∗)). If 𝑏 = 1,B chooses a
random group elements 𝐾∗ ←󳨀 G𝑙. These 𝐶∗ and𝐾∗
are given toA as a challenge.

(iv) Query (Phase II). Again, Amay request a decryption
key for 𝐼𝐷 andB responds as before.

(v) Guess. Finally A outputs a bit 𝑏󸀠 and B outputs 1 if𝑏 = 𝑏󸀠. OtherwiseB outputs 0.
Let us assume ̃̃𝑟 = 𝑟 + 𝑟̃. Since B generates the master

secret key by itself, and the random exponents 𝑟 and 𝑟̃ in
the instance correspond to the random exponents of the
encapsulation algorithm, the reduction perfectly simulates
the experiment. Otherwise when ̃̃𝑟 ̸= 𝑟 + 𝑟̃ and 𝑏 = 0, we
will show that𝐾∗ is distributed uniformly and independently
from all other values seen by A. To see this, let 𝐼𝐷1, . . .,𝐼𝐷𝑘 be the decapsulation key queries issued byA during the
simulation, and observe that the queries reveal the values𝑑𝑖(𝐼𝐷𝑗), 𝑑󸀠𝑖 (𝐼𝐷𝑗), 𝑑󸀠󸀠𝑖 (𝐼𝐷𝑗) to A, but 𝑑𝑖(𝐼𝐷∗), 𝑑󸀠𝑖 (𝐼𝐷∗), and𝑑󸀠󸀠𝑖 (𝐼𝐷∗) are not revealed. However, 𝑝𝑎𝑟 further reveals the
value 𝑑𝑖(𝐼𝐷∗)+𝛼𝑑󸀠󸀠𝑖 (𝐼𝐷∗) and 𝑑󸀠𝑖 (𝐼𝐷∗)+𝛽𝑑󸀠󸀠𝑖 (𝐼𝐷∗), where 𝑢 =𝑔𝛼 and V = 𝑔𝛽. The equations A can observe are represented
as in (C.1) where this matrix is nonsingular, and hence 𝐾∗
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ISetup (1𝜆, 1𝑘):(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆)𝑢, V, ℎ ←󳨀 G

For 𝑖 ∈ [𝑙], 𝑗 ∈ {0, . . . , 𝑘}:𝑑𝑖,𝑗 𝑑󸀠𝑖,𝑗, 𝑑󸀠󸀠𝑖,𝑗 ←󳨀 Z𝑝

For 𝑖 ∈ [𝑙], 𝑗 ∈ [𝑘]:𝐷𝑖,𝑗 ←󳨀 𝑢𝑑𝑖,𝑗ℎ𝑑󸀠󸀠𝑖,𝑗𝐷̃𝑖,𝑗 ←󳨀 V𝑑
󸀠
𝑖,𝑗ℎ𝑑󸀠󸀠𝑖,𝑗

For 𝑖 ∈ [𝑙]:𝑑𝑖(𝑋) ←󳨀 𝑑𝑖,0 + 𝑑𝑖,1𝑋 + ⋅ ⋅ ⋅ + 𝑑𝑖,𝑘𝑋𝑘𝑑󸀠𝑖 (𝑋) ←󳨀 𝑑󸀠𝑖,0 + 𝑑󸀠𝑖,1𝑋 + ⋅ ⋅ ⋅ + 𝑑󸀠𝑖,𝑘𝑋𝑘𝑑󸀠󸀠𝑖 (𝑋) ←󳨀 𝑑󸀠󸀠𝑖,0 + 𝑑󸀠󸀠𝑖,1𝑋 + ⋅ ⋅ ⋅ + 𝑑󸀠󸀠𝑖,𝑘𝑋𝑘𝑝𝑎𝑟 ←󳨀 (𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, (𝐷𝑖,𝑗, 𝐷̃𝑖,𝑗)𝑖∈[𝑙],𝑗∈{0,...,𝑘})𝑚𝑘 ←󳨀 (𝑑𝑖(𝑋), 𝑑󸀠𝑖 (𝑋), 𝑑󸀠󸀠𝑖 (𝑋))𝑖∈[𝑙]
Output (𝑝𝑎𝑟,𝑚𝑘)

IExt (𝑝𝑎𝑟,𝑚𝑘, 𝐼𝐷):𝑑𝑘𝐼𝐷 ←󳨀 (𝑑𝑖(𝐼𝐷), 𝑑󸀠𝑖 (𝐼𝐷), 𝑑󸀠󸀠𝑖 (𝐼𝐷))𝑖∈[𝑙]
Output 𝑑𝑘𝐼𝐷

IEnc (𝑝𝑎𝑟, 𝐼𝐷):𝜌, 𝜌̃ ←󳨀 Z𝑝𝐶IBE ←󳨀 (𝑢𝜌, V𝜌, ℎ𝜌+𝜌)𝐾IBE ←󳨀 ((∏𝑘
𝑗=0𝐷𝐼𝐷𝑗

𝑖,𝑗 )𝜌(∏𝑘
𝑗=0𝐷̃𝐼𝐷𝑗

𝑖,𝑗 )𝜌)𝑖∈[𝑙]
IDec (𝑑𝑘𝐼𝐷, 𝐼𝐷, 𝐶IBE)(𝑑𝑖(𝐼𝐷), 𝑑󸀠𝑖 (𝐼𝐷), 𝑑󸀠󸀠𝑖 (𝐼𝐷))𝑖∈[𝑙] ←󳨀 𝑑𝑘𝐼𝐷(𝐶1, 𝐶2, 𝐶3) ←󳨀 𝐶IBE

Output (𝐶1𝑑𝑖(𝐼𝐷)𝐶2𝑑󸀠𝑖 (𝐼𝐷)𝐶3𝑑󸀠󸀠𝑖 (𝐼𝐷))𝑖∈[𝑙]
Box 4: Our 𝑘-resilient IBE scheme, in which 𝑙 denotes the message
length (in group elements) of the scheme.

is uniformly distributed. This distribution is identical to the
case of 𝑏 = 1, hence 𝑏 is independent of A’s view. Therefore,
assuming the DLIN assumption, we have that

((((((((
(

(𝑑𝑘𝐼𝐷1)...(𝑑𝑘𝐼𝐷𝑘)
log𝑔 𝑢𝑥𝑖(𝐼𝐷∗)ℎ𝑥󸀠󸀠𝑖 (𝐼𝐷∗)
log𝑔 V

𝑥󸀠𝑖 (𝐼𝐷
∗)ℎ𝑥󸀠󸀠𝑖 (𝐼𝐷∗)

log𝑔𝐾∗𝑖

))))))))
)

=
((((((((((((((((
(

1 1 1
d 1 1 1 𝛼 1𝛽 1𝑟𝛼 𝑟̃𝛽 ̃̃𝑟

))))))))))))))))
)

((((((((((((((((((
(

𝑑𝑖 (𝐼𝐷1)𝑑󸀠𝑖 (𝐼𝐷1)𝑑󸀠󸀠𝑖 (𝐼𝐷1)...𝑑𝑖 (𝐼𝐷𝑘)𝑑󸀠𝑖 (𝐼𝐷𝑘)𝑑󸀠󸀠𝑖 (𝐼𝐷𝑘)𝑑𝑖 (𝐼𝐷∗)𝑑󸀠𝑖 (𝐼𝐷∗)𝑑󸀠󸀠𝑖 (𝐼𝐷∗)

))))))))))))))))))
)

,
(C.1)

󵄨󵄨󵄨󵄨󵄨Pr [𝑏 = 𝑏󸀠 | 𝑟 + 𝑟̃ = ̃̃𝑟] − Pr [𝑏 = 𝑏󸀠 | 𝑟 + 𝑟̃ ̸= ̃̃𝑟]󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑏 = 𝑏󸀠 | 𝑟 + 𝑟̃ = ̃̃𝑟] − 12󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (C.2)

is negligible.This is identical to the advantage ofA, hence the
theorem is proven.

C.2. Abe-Haralambiev-Ohkubo Signature. The Abe-Harala-
mbiev-Ohkubo signature scheme, which is a structure-
preserving signature scheme based on the SFP assumption
[6, 60] is shown in Box 5 In the box, the Rand algorithm is
given a pair of group elements (𝑔, ℎ) and produces the pair
uniformly random under the constraint that the pairing of
the new pair is unchanged from 𝑒(𝑔, ℎ).TheExtend algorithm
is given a pair (𝑔, ℎ) and produces a set of pairs (𝑢, 𝑢󸀠) and(V, V󸀠) which is uniformly distributed under the constraint
that 𝑒(𝑔, ℎ) = 𝑒(𝑢, 𝑢󸀠)𝑒(V, V󸀠).

The security of the scheme is as follows.

TheoremC.2. The construction in Box 5 is EUF-CMA secure
if the SFP assumption holds.

C.3. Shacham’s Variant of Cramer-Shoup Encryption.
Shacham [13] proposed a variant of the Cramer-Shoup
encryption scheme [12, 65] modified to be based on the
DLIN assumption. The scheme below further modifies the
Shacham’s variants in two points: (1) Used as a tag-based
KEM and (2) modified to encapsulate a long session key in a
constant-size ciphertext. We omit the proof that this scheme
is secure under the DLIN assumption, which can be easily
obtained by modifying the original proof by Shacham [13].
This modified Shacham’s variant is shown in Box 6.

Theorem C.3. The construction in Box 6 is a selective-tag
weakly chosen-ciphertext secure if the DLIN assumption holds.

D. Security Proofs for the Construction
in Section 7

D.1. Proof of Theorem 12

Proof.The proof proceeds with a sequence of games. LetA be
an adversary against the opener anonymity. We consider the
following games, which A plays. We denote by 𝑆𝑖 the event
in which A outputs a bit 𝑏󸀠 which is equal to the challenge
bit 𝑏 flipped by the challenger. We assume that before issuing
a token query 𝑀 A issues the 𝐻1 query𝑀. We do not lose
generality, since given any adversaryAwhich not necessarily
meets this restriction, we can easily modify A to one that
meets this restriction.

(i) Game 0. This initial game is identical to the
game defined in the description of the opener
anonymity. We assume the challenger to maintain
two hash lists for 𝐻1 and 𝐻2, which, respectively,
contain tuples of the form (𝑀,𝑤, 𝑑) and the form(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐) to represent 𝐻1(𝑀) =𝑤 and 𝐻2(𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) = 𝑐. The value
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SigKg (1𝜆, 1𝑙):(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆)𝑔󸀠, ℎ󸀠 ←󳨀 G \ {1}
For 𝑖 ∈ [𝑙]:𝛾𝑖, 𝛿𝑖 ←󳨀 Z∗

𝑝𝑔𝑖 ←󳨀 𝑔󸀠𝛾𝑖ℎ𝑖 ←󳨀 𝑔󸀠𝛿𝑖𝛾󸀠󸀠, 𝛿󸀠󸀠 ←󳨀 Z∗
𝑝𝑔󸀠󸀠 ←󳨀 𝑔󸀠𝛾󸀠󸀠ℎ󸀠󸀠 ←󳨀 ℎ󸀠𝛿󸀠󸀠𝛼 ←󳨀 Z∗

𝑝((𝑎0, 𝑎̃0), (𝑎1, 𝑎̃1)) ←󳨀 Extend(𝑔󸀠, 𝑔𝛼)𝛽 ←󳨀 Z∗
𝑝((𝑏0, 𝑏0), (𝑏1, 𝑏̃1)) ←󳨀 Extend(𝑔󸀠, 𝑔𝛽)

V𝑘 ←󳨀 (𝑔󸀠󸀠, ℎ󸀠󸀠, 𝑔󸀠, ℎ󸀠, (𝑔𝑖, ℎ𝑖)𝑖∈[𝑙] , 𝑎0, 𝑎̃0, 𝑏0, 𝑏̃0, 𝑎1, 𝑎̃1, 𝑏1, 𝑏1)𝑠𝑘 ←󳨀 (𝛼, 𝛽, 𝛾󸀠󸀠, 𝛿󸀠󸀠, (𝛾𝑖, 𝛿𝑖)𝑖∈[𝑙])
Output (V𝑘, 𝑠𝑘)

Sign (𝑠𝑘, (𝑚1, . . . , 𝑚𝑙)):𝜁, 𝜌, 𝜏, 𝜙 𝜔 ←󳨀 Z𝑝𝑧 ←󳨀 𝑔𝜁𝑟 ←󳨀 𝑔𝛼−𝜌𝜏−𝛾𝑧𝜁∏𝑙
𝑖=1𝑚𝑖

−𝛾𝑖𝑠 ←󳨀 𝑔󸀠𝜌𝑡 ←󳨀 𝑔𝜏𝑢 ←󳨀 𝑔𝛽−𝜙𝜔−𝛿𝑧𝜁∏𝑙
𝑖=1𝑚𝑖

−𝛿𝑖

V←󳨀 ℎ󸀠𝜙𝑤 ←󳨀 𝑔𝜔
Output (𝑧, 𝑟, 𝑠, 𝑡, 𝑢, V, 𝑤)

Verify (V𝑘, 𝑚, 𝜎):(𝑚1, . . . , 𝑚𝑙) ←󳨀 𝑚(𝑧, 𝑟, 𝑠, 𝑡, 𝑢, V, 𝑤) ←󳨀 𝜎
If 𝑒(𝑎0, 𝑎̃0)𝑒(𝑎1, 𝑎̃1) = 𝑒(𝑔󸀠󸀠, 𝑧)𝑒(𝑔󸀠, 𝑟)𝑒(𝑠, 𝑡)∏𝑘

𝑖=1 𝑒(𝑔𝑖, 𝑚𝑖)
and 𝑒(𝑏0, 𝑏̃0)𝑒(𝑏1, 𝑏1) = 𝑒(ℎ󸀠󸀠, 𝑧)𝑒(ℎ󸀠, 𝑢)𝑒(V, 𝑤)∏𝑙

𝑖=1 𝑒(ℎ𝑖, 𝑚𝑖) then
Output ⊤

Else
Output ⊥

Rand (𝑔, ℎ):
If 𝑔 ̸= 1 and ℎ ̸= 1 then𝑠 ←󳨀 Z∗

𝑝

Output (𝑔𝑠, ℎ1/𝑠)
Else𝑞 ←󳨀 {1, . . . , 2𝑝 − 1}
If 𝑞 = 1 then
Output (1, 1)

Else𝑥 ←󳨀 G \ {1}𝑡 ←󳨀 {0, 1}
If 𝑡 = 0 then

Output (1, 𝑥)
Else

Output (𝑥, 1)
Extend (𝑔, ℎ):𝑥 ←󳨀 G𝑟 ←󳨀 Z𝑝𝑈 ←󳨀 Rand(𝑔𝑥𝑟, ℎ)𝑉 ←󳨀 Rand(𝑥, ℎ−𝑟)

Output (𝑈,𝑉)
Box 5: The Abe-Haralambiev-Ohkubo signature scheme, where 𝑙 denotes the message length (in group elements) of the scheme. The Rand
algorithm randomizes a pair (𝑔, ℎ) under the constraint that the pairing 𝑒(𝑔, ℎ) is unchanged. The Extend algorithm produces a set of pairs𝑈 = (𝑢, 𝑢󸀠) and 𝑉 = (V, V󸀠) which are uniformly random with the constraint that 𝑒(𝑔, ℎ) = 𝑒(𝑢, 𝑢󸀠)𝑒(V, V󸀠).
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TKg (1𝜆):(𝑝,G,G𝑇, 𝑒, 𝑔) ←󳨀 G(1𝜆)𝑢, V, ℎ ←󳨀 G𝑥, 𝑥󸀠, 𝑥󸀠󸀠, 𝑦, 𝑦󸀠, 𝑦󸀠󸀠 ←󳨀 Z𝑝

For 𝑖 ∈ [𝑙]:𝑧𝑖, 𝑧󸀠𝑖 , 𝑧󸀠󸀠𝑖 ←󳨀 Z𝑝𝑋 ←󳨀 𝑢𝑥ℎ𝑥󸀠󸀠 , 𝑋̃ ←󳨀 V𝑥
󸀠ℎ𝑥󸀠󸀠𝑌 ←󳨀 𝑢𝑦ℎ𝑦󸀠󸀠 , 𝑌̃ ←󳨀 V𝑦
󸀠ℎ𝑥󸀠󸀠

For 𝑖 ∈ [𝑙]:𝑍𝑖 ←󳨀 𝑢𝑧𝑖ℎ𝑧󸀠󸀠𝑖 , 𝑍̃𝑖 ←󳨀 ℎ𝑧󸀠󸀠𝑖𝑝𝑘 ←󳨀 (𝑢, V, ℎ, 𝑋, 𝑋̃, 𝑌, 𝑌̃, (𝑍𝑖, 𝑍̃𝑖)𝑖∈[𝑙])𝑑𝑘 ←󳨀 (𝑥, 𝑥󸀠, 𝑥󸀠󸀠, 𝑦, 𝑦󸀠, 𝑦󸀠󸀠, (𝑧𝑖, 𝑧󸀠𝑖 , 𝑧󸀠󸀠𝑖 )𝑖∈[𝑙])
TEnc (𝑝𝑘, 𝑡):𝑟, 𝑟̃ ←󳨀 Z𝑝𝐶PKE ←󳨀 (𝑢𝑟, V𝑟 , ℎ𝑟+𝑟, (𝑋𝑌𝑡)𝑟(𝑋̃𝑌̃𝑡)𝑟)𝐾PKE ←󳨀 (𝑍1𝑟𝑍̃1𝑟, . . . , 𝑍𝑙𝑟𝑍̃𝑙𝑟)

Output (𝐶PKE, 𝐾PKE)
TDec (𝑑𝑘, 𝑡, 𝐶):(𝑐1, 𝑐2, 𝑐3, 𝑐4) ←󳨀 𝐶

If 𝑐1𝑥+𝑡𝑦𝑐2𝑥󸀠+𝑡𝑦󸀠 𝑐3𝑥󸀠󸀠+𝑡𝑦󸀠󸀠 = 𝑐4 then
Output (𝑐1𝑧1𝑐2𝑧󸀠1𝑐3𝑧󸀠󸀠1 , . . . , 𝑐1𝑧𝑙𝑐2𝑧󸀠𝑙 𝑐3𝑧󸀠󸀠𝑙 )

Box 6: Shacham’s variant of the Cramer-Shoup encryption scheme,
where 𝑙 is the message length (in group elements) of the scheme.

𝑑 is used to answer the random oracle query and the
token query in the subsequent games.

(ii) Game 1. In this game we replace the zero-knowledge
proof of the challenge signature with a simulated
proof. More specifically, when the adversary asks
a challenge signature (𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑅∗1 , . . . , 𝑅∗10) by
sending (𝑖0, 𝑖1,𝑀), the challenger computes it as fol-
lows: the challenger flips the bit 𝑏 ∈ {0, 1}, computes(𝑇∗1 , . . . , 𝑇∗6 ) as specified in the construction with the
signing key 𝑔𝑠𝑘𝑖𝑏 , generates random integers 𝑐∗, 𝑠∗𝛼,𝑠∗𝛽, 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥 ←󳨀 Z∗𝑝, and computes

𝑅∗1 ←󳨀 𝑢𝑠∗𝛼𝑇∗1 −𝑐∗ ,𝑅∗2 ←󳨀 V𝑠
∗
𝛽𝑇∗2 −𝑐∗ ,𝑅∗3 ←󳨀 ℎ𝑠∗𝛼+𝑠∗𝛽𝑇∗3 −𝑐∗ ,𝑅∗4 ←󳨀 𝑒 (𝑇∗4 , 𝑔)𝑠∗𝑥 𝑒 (𝑔1, 𝑤)−𝑠∗𝛼 𝑒 (𝑔1, 𝑔)−𝑠∗𝛼𝑥⋅ 𝑒 (𝑔2, 𝑤)−𝑠∗𝛽 𝑒 (𝑔2, 𝑔)−𝑠∗𝛽𝑥 ⋅ 𝑒 (𝑔, 𝑤)−𝑠∗𝜂 𝑒 (𝑔, 𝑔)−𝑠∗𝜂𝑥

⋅ ( 𝑒 (𝑔, 𝑔)𝑒 (𝑇∗4 , 𝑤))−𝑐∗ ,𝑅∗5 ←󳨀 𝑔𝑠∗𝜌𝑇∗5 −𝑐∗ ,𝑅∗6 ←󳨀 𝑒 (𝑦,𝐻1 (𝑀))𝑠∗𝜌 𝑒 (𝑔, 𝑔)−𝑠∗𝜂 𝑇∗6 −𝑐∗ ,

𝑅∗7 ←󳨀 𝑇∗1 𝑠∗𝑥𝑢−𝑠∗𝛼𝑥 ,𝑅∗8 ←󳨀 𝑇∗2 𝑠∗𝑥V−𝑠∗𝛽𝑥 ,𝑅∗9 ←󳨀 𝑇∗5 𝑠∗𝑥𝑔−𝑠∗𝜌𝑥 ,𝑅∗10 ←󳨀 𝑇∗6 𝑠∗𝑥 𝑒 (𝑦,𝐻1 (𝑀))−𝑠∗𝜌𝑥 𝑒 (𝑔, 𝑔)𝑠∗𝜂𝑥 .
(D.1)

The challenger adds the tuple (𝑀, 𝑇∗1 , . . . , 𝑇∗6 ,𝑅∗1 , . . . , 𝑅∗10, 𝑐∗) to the hash list for 𝐻2. At this point
if the list for 𝐻2 already contains a tuple of the
form (𝑀,𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐) for some 𝑐,
the challenger outputs ⊥ and halts. Otherwise the
challenger sends (𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥,𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) to A as the challenge signature. We will
argue that this change introduces only a negligible
difference inA’s advantage.

(iii) Game 2. In this gamewe change the𝑇6-component of
the challenge signature to be a random element inG𝑇.
This change also introduces a difference of a negligible
amount in theA’s advantage.

We then prove that in the last gameA has no information
about the bit 𝑏, and hence the advantage is zero.

Lemma D.1. |Pr[𝑆2] − 1/2| = 0.
Proof (of Lemma D.1). In Game 2 A’s view is completely
independent of the bit 𝑏. The component which is computed
using 𝑏 (and hence has information about 𝑏) is 𝑇∗4 in the
challenge signature. Actually it is distributed independently
of 𝑏 (uniformly over G) due to the random integer 𝜂.

Finally we prove that any of the game-hopping does not
changeA’s advantage nonnegligibly.

The difference between Game 0 and Game 1 is bounded
by a standard argument of the zero-knowledge simulation of
the underlying protocol, which is as follows.

Lemma D.2. |Pr[𝑆0] − Pr[𝑆1]| is negligible.
Proof (of Lemma D.2). We claim that the distribution of the
challenge in Game 1 is identical to that in Game 0 except
for the cases in which the challenger outputs ⊥. This follows
from a standard argument of zero-knowledge simulation.
To see this, we can observe that 𝑠∗𝛼 − 𝑐∗𝛼 in Game 1
corresponds to 𝑟𝛼 in Game 0, and similar correspondences
hold for all the other 𝑠∗’s and 𝑟’s. We can also see that
both 𝑠∗𝛼 − 𝑐∗𝛼 and 𝑟𝛼 are uniformly distributed over Z𝑝. We
will then see that the challenger in Game 1 outputs ⊥ only
with negligible probability. This is because (𝑅∗1 , . . . , 𝑅∗10) are
distributed uniformly over a set with cardinality (at least)𝑝, that is, the queries to 𝐻2 issued before the challenge
phase contain (𝑀,𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐)with probability
(at most) 𝑞𝐻2/𝑝 where 𝑞𝐻2 denotes the number of oracle
queries to𝐻2 issued byA.
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The difference between Game 1 and Game 2 is bounded
by extending the original proof of the BF IBE scheme to that
based on the decision assumption.

Lemma D.3. |Pr[𝑆1] − Pr[𝑆2]| is negligible under the DBDH
assumption.

Proof (of Lemma D.3). We describe a distinguishing algo-
rithm B for the DBDH problem to bound the quantity|Pr[𝑆1] − Pr[𝑆2]|. The construction of the algorithm B is as
follows:

(i) Setup. B receives a problem instance (𝑔𝛿1 , 𝑔𝛿2 ,𝑔𝛿3 , 𝑒(𝑔, 𝑔)𝜏), in which 𝜏 is either 𝛿1𝛿2𝛿3 or a random
integer 𝛿. B lets 𝑦 = 𝑔𝛿1 , and the rest of the
components of the group public key 𝑔𝑝𝑘 and the
signing keys 𝑔𝑠𝑘𝑖 for all 𝑖 ∈ [𝑛] are generated by
following the description of the scheme.B sends𝑔𝑝𝑘,𝑜𝑘, and (𝑔𝑠𝑘𝑖)𝑖∈[𝑛] toA.

(ii) 𝐻1 query.WhenA issues an𝐻2 query𝑀,B retrieves
a record (𝑀,𝑤, 𝑧, ]) for some 𝑤, 𝑧, and ]. If such
a record is found, B replies with 𝑤. Otherwise, to
respond to the query𝑀 to the random oracle𝐻1,B
first flips a biased coin ]𝑀 which is 0 with probability𝜃 and is 1 with probability 1 − 𝜃 (the exact quantity
of 𝜃 is determined later). Then B chooses a random
integer 𝑧𝑀 ←󳨀 Z𝑝, computes 𝑤𝑀 as

𝑤𝑀 = {{{𝑔
𝑧𝑀 (]𝑀 = 0)𝑔𝛿2𝑔𝑧𝑀 (]𝑀 = 1) , (D.2)

stores (𝑀,𝑤𝑀, 𝑧𝑀, ]𝑀) in the hash list for 𝐻1, and
returns 𝑤𝑀 toA.

(iii) 𝐻2 query. When receiving a query (𝑀,𝑇1, . . . ,𝑇6, 𝑅1, . . . , 𝑅10) to the random oracle 𝐻2, if the
response to this query is recorded in the hash list for𝐻2, B responds with the corresponding the record.
Otherwise B chooses a random integer 𝑐 ←󳨀 Z𝑝,
records (𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐) to the hash list,
and returns 𝑐 toA.

(iv) Token query. When A asks the token for a message𝑀,B picks the record (𝑀,𝑤, 𝑧, ]) regarding the same
query𝑀 to the random oracle𝐻1. Such a record will
be found since wemodify (if necessary)A tomeet the
restriction introduced at the beginning of the proof.
If ] = 1 B immediately outputs random 𝑏 ←󳨀 {0, 1}
and halts. Otherwise if ] = 0 then B returns 𝑡𝑀 =(𝑔𝛿1)𝑧 toA.

(v) Challenge. When A asks the challenge signature for(𝑀∗, 𝑖0, 𝑖1), B picks the record (𝑀∗, 𝑤, 𝑧, ]) regard-
ing the query 𝑀∗ to the random oracle 𝐻1. If ] =0 B immediately outputs 0 and halts. Otherwise B
chooses random 𝛼, 𝛽, 𝛾, 𝜂 ←󳨀 Zp, and computes𝑇∗1 = 𝑢𝛼, 𝑇∗2 = V𝛽, 𝑇∗3 = ℎ𝛼+𝛽, T∗4 = 𝑔𝛼1𝑔𝛽2𝐴 𝑖𝑏

𝑔𝜂,𝑇∗5 = 𝑔𝛿3 , 𝑇∗6 = 𝑒(𝑔, 𝑔)𝜏𝑒(𝑔𝛿1 , 𝑔𝛿3)𝑧𝑒(𝑔, 𝑔)−𝜂. Finally
B computes a zero-knowledge proof (𝑐∗, 𝑠∗𝛼 , 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 ,

𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) as in Game 1. If there is a record(𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐) for some 𝑐, B halts
with output 𝑏󸀠 ←󳨀 {0, 1}. Otherwise it sends 𝜎∗ =(𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) toA.

(vi) Guess. Finally A outputs a guess 𝑏󸀠 and halts. B
outputs 1 if 𝑏 = 𝑏󸀠 holds, otherwise outputs 0.

We define two bad events.The event𝐸ch denotes the event
thatB halts in the challenge phase due to the condition ] = 0
for the record of𝑀∗.The event𝐸tk denotes the event inwhich
B halts because of the failure of responding to (one of) the
token queries. Since B outputs 0 if 𝐸ch or 𝐸tk occurs, we have
that

AdvDBDHB (𝜆) = 󵄨󵄨󵄨󵄨󵄨Pr [B (𝑔𝛿1 , 𝑔𝛿2 , 𝑔𝛿3 , 𝑒 (𝑔, 𝑔)𝜏)󳨀→ 1 | 𝜏 = 𝛿1𝛿2𝛿3]− Pr [B (𝑔𝛿1 , 𝑔𝛿2 , 𝑔𝛿3 , 𝑒 (𝑔, 𝑔)𝜏) 󳨀→ 1 | 𝜏 = 𝛿]󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨Pr [𝑏 = 𝑏󸀠 ∧ 𝐸tk ∧ 𝐸ch | 𝜏 = 𝛿1𝛿2𝛿3] − Pr [𝑏= 𝑏󸀠 ∧ 𝐸tk ∧ 𝐸ch | 𝜏 = 𝛿]󵄨󵄨󵄨󵄨󵄨 .
(D.3)

The event 𝐸tk occurs when ]𝑀 = 0 (with probability 𝜃) for
all𝑀 in the token query phase. Let 𝑞Td denote the number of
token queries issued byA. If 𝜏 = 𝛿1𝛿2𝛿3, it holds that

Pr [𝐸tk | 𝜏 = 𝛿1𝛿2𝛿3] = 𝜃𝑞Td (D.4)

and the event𝐸ch occurswhen ]𝑀∗ = 1 (with probability 1−𝜃)
for𝑀∗ in the challenge phase. Hence, if 𝜏 = 𝛿1𝛿2𝛿3, it holds
that

Pr [𝐸ch | 𝜏 = 𝛿1𝛿2𝛿3] = 1 − 𝜃. (D.5)

Note that the events 𝐸tk and 𝐸ch are independent since
each biased coin ]𝑀 is flipped independently. Moreover,
whether ]𝑀 = 0 or ]𝑀 = 1, the distributions of the values that
A receives are identical, and henceA’s view does not change.
It means that the value of ]𝑀 does not affect the behavior
of A. Therefore, the event 𝐸tk and 𝐸ch have no effect on the
probability thatA succeeds in guessing the challenge bit.That
is, the event of 𝑏 = 𝑏󸀠, 𝐸tk, 𝐸ch are mutually independent.

From the above, we have the following equality.

Pr [𝑏 = 𝑏󸀠 ∧ 𝐸tk ∧ 𝐸ch | 𝜏 = 𝛿1𝛿2𝛿3]= Pr [𝑏 = 𝑏󸀠 | 𝜏 = 𝛿1𝛿2𝛿3] ⋅ Pr [𝐸tk | 𝜏 = 𝛿1𝛿2𝛿3]⋅ Pr [𝐸ch | 𝜏 = 𝛿1𝛿2𝛿3]= 𝜃𝑞Td (1 − 𝜃) Pr [𝑏 = 𝑏󸀠 | 𝜏 = 𝛿1𝛿2𝛿3]= 𝜃𝑞Td (1 − 𝜃) Pr [𝑆1] ,
(D.6)

where the last equality follows from the fact that given𝜏 = 𝛿1𝛿2𝛿3 B correctly simulates Game 1 for A. The detail
follows. Firstly, the distribution of B’s responses to the 𝐻1
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queries are identical to those of Game 1.This is because𝑤𝑀 =𝑔𝑧𝑀 and 𝑤𝑀 = 𝑔𝛿2𝑔𝑧𝑀 are both distributed uniformly over
G. Secondly, the responses to𝐻2 queries are also distributed
identically to those of Game 1.Thirdly, the responses to token
queries are also distributed identically. Notice that in Game 1
a token for a message𝑀 is computed as 𝐻1(𝑀)𝜉, while that
in B’s simulation is computed as (𝑔𝛿1)𝑧𝑀 (if the simulation
proceeds without an abort). Then we have that𝐻1 (𝑀)𝜉 = (𝑔log𝑔𝐻1(𝑀))𝜉 = (𝑔𝜉)log𝑔𝐻1(𝑀) = (𝑔𝛿1)𝑧 , (D.7)

where the last equality comes from the two facts that we set𝑦 = 𝑔𝛿1 in B’s simulation, which corresponds to 𝑦 = 𝑔𝜉 in
Game 1, and that we set𝐻1(𝑀) = 𝑔𝑧𝑀 in the response of the𝐻1 query𝑀. Lastly, the response to the challenge query is also
distributed identically to that of Game 1. Notice that in Game
1 𝑇∗5 = 𝑔𝜌 and 𝑇∗6 = 𝑒(𝑦,𝐻1(𝑀))𝜌𝑒(𝑔, 𝑔)−𝜂) for some 𝜌, 𝜂 ←󳨀
Z𝑝. Further, notice that in B’s simulation, 𝑇∗5 = 𝑔𝛿3 and𝑇∗6 = 𝑒(𝑔, 𝑔)𝜏𝑒(𝑔𝛿1 , 𝑔𝛿3)𝑒(𝑔, 𝑔)−𝜂 (if the simulation proceeds
without an abort).Therefore,𝑔𝜌 in Game 1 corresponds to𝑔𝛿3
inB’s simulation. Hence if 𝜏 = 𝛿1𝛿2𝛿3, we have that𝑒 (𝑦,𝐻1 (𝑀))𝜌 = 𝑒 (𝑔𝛿1 , 𝑔𝛿2𝑔𝑧)𝛿3= 𝑒 (𝑔, 𝑔)𝛿1𝛿2𝛿3 𝑒 (𝑔𝛿1 , 𝑔𝛿3)𝑧= 𝑒 (𝑔, 𝑔)𝜏 𝑒 (𝑔𝛿1 , 𝑔𝛿3)𝑧 . (D.8)

Therefore, we can conclude that given 𝜏 = 𝛿1𝛿2𝛿3 B correctly
simulates Game 1.

Similarly, if 𝜏 = 𝛿, namelyB receives a random tuple, we
have that

Pr [𝑏 = 𝑏󸀠 ∧ 𝐸tk ∧ 𝐸ch | 𝜏 = 𝛿]= 𝜃𝑞Td (1 − 𝜃) ⋅ Pr [𝑏 = 𝑏󸀠 | 𝜏 = 𝛿]= 𝜃𝑞Td (1 − 𝜃) ⋅ Pr [𝑆2] , (D.9)

where the last equality comes from the fact that given that𝜏 = 𝛿 B correctly simulates Game 2. The correctness of the
responses to the 𝐻1 queries, 𝐻2 queries, and token queries
follows from a similar argument to that of the case of 𝜏 =𝛿1𝛿2𝛿3.The correctness of the response to the challenge query
also follows from a similar argument to that of the same case
but replacing 𝜏with𝛿 ensures that𝑇∗6 is distributed uniformly
and independently.

Finally we obtain

AdvDBDHB (𝜆) = 𝜃𝑞Td (1 − 𝜃) 󵄨󵄨󵄨󵄨Pr [𝑆1] − Pr [𝑆2]󵄨󵄨󵄨󵄨 , (D.10)

and hence󵄨󵄨󵄨󵄨Pr [𝑆1] − Pr [𝑆2]󵄨󵄨󵄨󵄨 ≤ (𝑞Td + 1) ⋅ (1 + 1𝑞Td)𝑞Td⋅ AdvDBDHB (𝜆) (D.11)

when substituting 𝜃 with 𝑞Td/(𝑞Td + 1), which minimizes1/𝜃𝑞Td(1 − 𝜃). Since (1 + 1/𝑞Td)𝑞Td ≤ exp(1), the lemma
follows.

These three lemmas conclude the entire proof.
This complete the proof of Theorem 12. ◻

D.2. Proof of Theorem 13

Proof.The proof proceeds with a sequence of games. LetA be
an adversary against the admitter anonymity. We define the
following games, which A plays. In the following we denote
by 𝑆𝑖 the event that in Game 𝑖 A successfully guesses the bit
picked by the challenger.

(i) Game 0. The initial game is identical to the game
defined in the definition of admitter anonymity. In
order to respond to hash queries, the challengermain-
tains a hash list, which contains tuples of the form(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐) for the hash function𝐻2 and similarly for𝐻1.

(ii) Game 1. In Game 1, we replace the zero-knowledge
proof, included in the challenge, with a simulated
proof. More concretely, when the adversary asks
a challenge by sending (𝑖0, 𝑖1,𝑀∗), the challenger
proceeds as follows. The challenger first flips a bit 𝑏
and encrypts 𝐴 𝑖𝑏

(a part of 𝑔𝑠𝑘𝑖𝑏) to obtain a cipher-
text (𝑇∗1 , . . . , 𝑇∗6 ) as in Game 0. Then the challenger
generates random integers 𝑐∗ , 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥,𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥 ←󳨀 Z∗𝑝, computes

𝑅∗1 ←󳨀 𝑢𝑠∗𝛼 (𝑇∗1 )−𝑐∗ ,𝑅∗2 ←󳨀 V𝑠
∗
𝛽 (𝑇∗2 )−𝑐∗ ,𝑅∗3 ←󳨀 ℎ𝑠∗𝛼+𝑠∗𝛽 (𝑇∗3 )−𝑐∗ ,𝑅∗4 ←󳨀 𝑒 (𝑇∗4 , 𝑔)𝑠∗𝑥 𝑒 (𝑔1, 𝑤)−𝑠∗𝛼 𝑒 (𝑔1, 𝑔)−𝑠∗𝛼𝑥⋅ 𝑒 (𝑔2, 𝑤)−𝑠∗𝛽 𝑒 (𝑔2, 𝑔)−𝑠∗𝛽𝑥 ⋅ 𝑒 (𝑔, 𝑤)−𝑠∗𝜂 𝑒 (𝑔, 𝑔)−𝑠∗𝜂𝑥

⋅ ( 𝑒 (𝑔, 𝑔)𝑒 (𝑇∗4 , 𝑤))−𝑐∗ ,𝑅∗5 ←󳨀 𝑔𝑠∗𝜌 (𝑇∗5 )−𝑐∗ ,𝑅∗6 ←󳨀 𝑒 (𝑦,𝐻1 (𝑀))𝑠∗𝜌 𝑒 (𝑔, 𝑔)−𝑠∗𝜂 (𝑇∗6 )−𝑐∗ ,𝑅∗7 ←󳨀 (𝑇∗1 )𝑠∗𝑥 𝑢−𝑠∗𝛼𝑥 ,𝑅∗8 ←󳨀 (𝑇∗2 )𝑠∗𝑥 V−𝑠∗𝛽𝑥 ,𝑅∗9 ←󳨀 (𝑇∗5 )𝑠∗𝑥 𝑔−𝑠∗𝜌𝑥 ,𝑅∗10 ←󳨀 (𝑇∗6 )𝑠∗𝑥 𝑒 (𝑦,𝐻1 (𝑀))−𝑠∗𝜌𝑥 𝑒 (𝑔, 𝑔)𝑠∗𝜂𝑥 ,

(D.12)

and adds the tuple (𝑀∗ , 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐∗) to
the list for𝐻1. If the hash list for𝐻2 contains a tuple of
the form (𝑀, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐)with arbitrary
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𝑐, the challenger outputs ⊥ and halts. If this is not the
case, the challenge(𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) (D.13)

is returned to the adversary. This change only causes
a negligible difference to the advantage of A. See
Lemma D.4 for the details.

(iii) Game 2. In this gamewemodify the linear encryption
in the challenge to be “invalid.” More precisely, to
compute the challenge signature (𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼,𝑠∗𝛽, 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥), the challenger selects
random integers 𝛼, 𝛽 ←󳨀 Z𝑝 and 𝜏 ←󳨀 Z𝑝 \ {𝛼 + 𝛽},
and computes𝑇∗1 = 𝑢𝛼,𝑇∗2 = V𝛽,𝑇∗3 = ℎ𝜏,𝑇∗4 = (𝑇∗1 )𝜉1 (𝑇∗2 )𝜉2 (𝑇∗3 )𝜉3 𝐴 𝑖𝑏

𝑔𝜂,
(D.14)

where 𝑢, V, and ℎ are the part of the group public key𝑔𝑝𝑘, 𝑏 is the bit flipped for the challenge, 𝐴 𝑖𝑏
is the

part of the group signing key of the member 𝑖𝑏, and 𝜂
is the random integer which is also used to compute𝑇∗6 . Notice that the challenger uses the opening key 𝑜𝑘
(actually its components 𝜉1, 𝜉2, and 𝜉3) to compute the
challenge. All the other components of the challenge
are generated as in Game 1. This modification also
does not change A’s winning probability nonnegli-
gibly, provided that the DLIN assumption holds. See
Lemma D.5 for the details.

(iv) Game 3. In this game we modify the responses to
opening queries in such a way that the challenger
responds with ⊥ if a queried signature (𝑇1, . . . , 𝑇6,𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥) satisfies the following
two conditions:(𝑀∗, 𝑇1, . . . , 𝑇6) = (𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 ) , (D.15)

that is, the components 𝑇1, . . ., 𝑇6 in the query are
reused from the challenge signature, and(𝑅󸀠1, . . . , 𝑅󸀠10) = (𝑅∗1 , . . . , 𝑅∗10) (D.16)

where (𝑅󸀠1, . . . , 𝑅󸀠10) is the group elements reproduced
in the verification process.This change does not affect
A’ advantage nonnegligibly. See Lemma D.6 for the
details.

(v) Game 4. We further introduce another rejection
rule in the responses to opening queries. This game
rejects a signature that contains a ciphertext whose
linear encryption components (𝑇1, 𝑇2, 𝑇3) does not
constitute a linear tuple. Specifically when 𝑇1, 𝑇2, and𝑇3 satisfy 𝑇1 = 𝑢𝛼, 𝑇2 = V𝛽, 𝑇3 = ℎ𝜐, the challenger

immediately rejects queries if 𝛼 + 𝛽 ̸= 𝜐, and all other
queries are treated as before. This modification does
not affect the behavior ofA, as the adversary can issue
such an invalid query with a valid proof (that passes
the verification) only with a negligible probability. See
Lemma D.7 for details.

The advantage ofA is |Pr[𝑆0]−1/2|, and from the triangle
inequality we can bound the advantage as the following:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆0] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 3∑
𝑖=0

󵄨󵄨󵄨󵄨Pr [𝑆𝑖] − Pr [𝑆𝑖+1]󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr [𝑆4] − 12 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (D.17)

To complete the proof it remains to prove the following
lemmas.

The difference between Game 0 and Game 1 is bounded
by a quite similar argument to that of Lemma D.2, hence we
omit a detailed proof.

Lemma D.4. |Pr[𝑆0] − Pr[𝑆1]| is negligible.
We then bound the differences inA’s success probability

of the remaining game-hops and prove that A’s advantage is
zero in the last game.

Lemma D.5. |Pr[𝑆1] − Pr[𝑆2]| is negligible, provided that the
DLIN assumption holds.

Proof (of Lemma D.5). We will describe an algorithm B

of the DLIN problem to bound the absolute difference|Pr[𝑆1] − Pr[𝑆2]|. B receives a tuple (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝜏), in
which 𝜏 is either 𝛼 + 𝛽 or not, together with the description(𝑝,G,G𝑇, 𝑒, 𝑔) of the bilinear groups. B sets up the scheme
by choosing 𝜉1, 𝜉2, 𝜉3, 𝜁, 𝛾, 𝑥𝑖 ←󳨀 Z𝑝 (𝑖 ∈ [𝑛]), setting𝑔1 = 𝑢𝜉1ℎ𝜉3 , 𝑔2 = V𝜉2ℎ𝜉3 , 𝑦 = 𝑔𝜁, 𝑤 = 𝑔𝛾, and 𝐴 𝑖 =𝑔1/(𝛾+𝑥𝑖) (𝑖 ∈ [𝑛]), and letting 𝑔𝑝𝑘 = (𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ,𝑔1, 𝑔2, 𝑦, 𝑤), 𝑎𝑘 = 𝜁, 𝑜𝑘 = (𝜉1, 𝜉2, 𝜉3, (𝑥𝑖)𝑖∈[𝑛]), and(𝑔𝑠𝑘𝑖)𝑖∈[𝑛] = (𝐴 𝑖, 𝑥𝑖)𝑖∈[𝑛]. ThenB runsAwith an input (𝑔𝑝𝑘,𝑎𝑘, (𝑔𝑠𝑘𝑖)𝑖∈[𝑛]). Queries from A to the random oracles 𝐻1

and 𝐻2 are responded in the ordinary manner, that is, all
fresh queries are responded with a random hash value and
are recorded together with the hash value, while previously
issued queries are responded in the same way as in the
previous query. Opening queries from A are responded
as specified in the scheme, that is, B first verifies the
NIZK proof. If the proof passes the verification, B decrypts
the “linear encryption” part (𝑇1, 𝑇2, 𝑇3, 𝑇4) using 𝜉1, 𝜉2,
and 𝜉3. If the signature does not pass the verification,
B returns ⊥. When A requests a challenge regarding(𝑖0, 𝑖1,𝑀), B proceeds as follows: To compute the challenge
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(𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼 , 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥),B flips a bit𝑏, chooses random integers 𝜌, 𝜂 ←󳨀 Z𝑝, and sets𝑇∗1 = 𝑢𝛼,𝑇∗2 = V𝛽,𝑇∗3 = ℎ𝜏,𝑇∗4 = (𝑇∗1 )𝜉1 (𝑇∗2 )𝜉2 (𝑇∗3 )𝜉3 𝐴 𝑖𝑏
𝑔𝜂,𝑇∗5 = 𝑔𝜌,𝑇∗6 = 𝑒 (𝑦,𝐻1 (𝑀))𝜌 𝑒 (𝑔, 𝑔)−𝜂 .

(D.18)

The zero-knowledge proof (𝑐∗, 𝑠∗𝛼 , 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥,𝑠∗𝜂𝑥) is computed as in Game 1. Then B sends the challenge
signature computed as above to A. After receiving the
challenge, A further makes queries to the random oracles
and opening queries, which are responded as before by B.
FinallyA outputs the guess 𝑏󸀠.B outputs 1 if 𝑏󸀠 = 𝑏, outputs0 otherwise.

Observe that when B receives a tuple satisfying 𝜏 ̸=𝛼 + 𝛽, the adversary’s view is equivalent to that of Game
2. In contrast, when B receives a linear tuple, we can

see that A’s view is identical to that of Game 1, as the
equation (𝑇∗1 )𝜉1(𝑇∗2 )𝜉2(𝑇∗3 )𝜉3 = (𝑢𝛼)𝜉1(V𝛽)𝜉2(ℎ𝛼+𝛽)𝜉3 =(𝑢𝜉1ℎ𝜉3)𝛼(V𝜉2ℎ𝜉3)𝛽 = 𝑔𝛼1𝑔𝛽2 holds. Finally, it holds that󵄨󵄨󵄨󵄨Pr [𝑆1] − Pr [𝑆2]󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨Pr [B (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝛼+𝛽)]− Pr [B (𝑢, V, ℎ, 𝑢𝛼, V𝛽, ℎ𝜏)]󵄨󵄨󵄨󵄨󵄨 = AdvDLINB (𝜆) . (D.19)

When the DLIN assumption holds AdvDLINB (𝜆) is negligible,
therefore |Pr[𝑆1] − Pr[𝑆2]| is negligible.
Lemma D.6. |Pr[𝑆2] − Pr[𝑆3]| ≤ 𝑛/𝑝.
Proof (of Lemma D.6). Since Game 3 differs from Game
2 only when a queried signature, when verified, produces
the same (𝑅1, . . . , 𝑅10) as the (𝑅∗1 , . . . , 𝑅∗10) used in the
challenge phase, we examine the mapping 𝜓 : (𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂,𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥, 𝑐) 󳨃󳨀→ (𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6, 𝑅7, 𝑅8, 𝑅9,𝑅10), implicitly defined by the verification algorithm (notice
that the mapping 𝜓 implicitly depends on the group public
key and the signature to be verified), and argue that it is
injective with overwhelming probability. Since A can issue
queries satisfying (D.15) and (D.16) only when the mapping𝜓 is not injective. Then, to complete the proof we bound the
probability that 𝜓 is not injective.

(((((((((((((((((
(

log𝑔 𝑢 −log𝑔 𝑇1
log𝑔 V −log𝑔 𝑇2

log𝑔 ℎ log𝑔 ℎ −log𝑔 𝑇3−𝛾 log𝑔 𝑔1 −𝛾 log𝑔 𝑔2 −𝛾 log𝑔 𝑇4 −log𝑔 𝑔1 −log𝑔 𝑔2 1 − (1 − 𝛾 log𝑔 𝑇4)1 −log𝑔 𝑇5𝜁 log𝑔𝐻1 (𝑀) −1 −log𝑒(𝑔,𝑔) 𝑇6
log𝑔 𝑇1 −log𝑔 𝑢
log𝑔 𝑇2 −log𝑔 V
log𝑔 𝑇5 −1

log𝑒(𝑔,𝑔) 𝑇6 −𝜁 log𝑔𝐻1 (𝑀) 1

)))))))))))))))))
)

(D.20)

Since the mapping 𝜓 is a linear function, by calculating
the determinant of a matrix of (D.20), we can see that 𝜓 is
not injective if and only if

− (log𝑔 ℎ) ⋅ (log𝑔 𝑢)2 ⋅ (log𝑔 V)2 ⋅ (𝛼 + 𝛽 − 𝜏)⋅ ( 1𝑥𝑖𝑏 + 𝛾 − (𝛼 + 𝛽 − 𝜏) ⋅ 𝜉3 ⋅ log𝑔 ℎ) = 0. (D.21)

Since A can issue queries satisfying (D.15) and (D.16)
only when the mapping 𝜓 is not injective, the difference|Pr[𝑆2] − Pr[𝑆3]| is bounded by the probability that the above
equation holds. Actually, (D.21) holds with probability at

most 𝑛/𝑝. This is because if (D.21) holds, there is 𝑖 ∈ [𝑛]
satisfying

− (log𝑔 ℎ) ⋅ (log𝑔 𝑢)2 ⋅ (log𝑔 V)2 ⋅ (𝛼 + 𝛽 − 𝜏)⋅ ( 1𝑥𝑖 + 𝛾 − (𝛼 + 𝛽 − 𝜏) ⋅ 𝜉3 ⋅ log𝑔 ℎ) = 0. (D.22)

For a fixed 𝑖 the probability that (D.22) holds is 1/𝑝, which can
be seen by fixing all the variables except 𝜉3 and seeing that 𝜉𝑖 is
still distributed uniformly. Hence from the union bound the
probability that (D.21) holds is at most 𝑛/𝑝.
Lemma D.7. |Pr[𝑆3] − Pr[𝑆4]| is negligible.
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Proof (of Lemma D.7). Game 4 differs from Game 3 when
A issues an opening query which is not rejected in Game
3 but is rejected in Game 4. We thus bound the prob-
ability that A issues such a query. More precisely, the
event we consider is that A issues a signature (𝑇1, . . . ,𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥) as an opening query
such that

(i) it is verified as valid by GVf,

[ii] (𝑀,𝑇1, . . . , 𝑇6, 𝑅󸀠1, . . . , 𝑅󸀠10) ̸= (𝑀∗, 𝑇∗1 , . . . , 𝑇∗3 , 𝑅∗1 ,. . . , 𝑅∗10), in which (𝑅󸀠1, . . . , 𝑅󸀠10) is the group elements
computed in GVf as in Box 3 and (𝑅∗1 , . . . , 𝑅∗10) are
the group elements used for generating the challenge
signature as in (D.12), and

[iii] (𝑇1, 𝑇2, 𝑇3) does not constitute a linear tuple.
If A issues such a query, there should be a query (𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) in𝐻2 (issued byA explicitly or issued
during the verification process of an opening query) such
that (𝑇1, 𝑇2, 𝑇3) does not constitute a linear tuple, and the
hash value 𝐻2(𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) coincides with the
unique challenge 𝑐 that is determined from the public
information (𝑇1, . . . , 𝑇6) and the commitment (𝑅1, . . . , 𝑅10).
Hence for concluding the proof it is sufficient to bound the
probability of this event. Notice that in this case any query(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) to𝐻2 in question is different from(𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10), for which the hash value is set
in the challenge phase. Hence in this case, the output of 𝐻2

is chosen from Z𝑝 uniformly. Thus the hash value coincides
with the unique value with probability 1/𝑝. Therefore, by
the union bound, the probability that there is an opening
query which satisfies the above three conditions is at most(𝑞𝐻2 +𝑞open)/𝑝, where 𝑞𝐻2 is the number of𝐻2 queries issued
by A, and 𝑞open is the number of opening queries issued by
A.

Lemma D.8. |Pr[𝑆4] − 1/2| = 0.
Proof (of Lemma D.8). Here we prove that in Game 4 the
value (𝑇∗1 )𝜉1(𝑇∗2 )𝜉2(𝑇∗3 )𝜉3 is uniformly random even when
conditioned on A’s view. To this end we examine the
distribution of A’s view related to the randomness 𝜉1, 𝜉2,
and 𝜉3 under the condition where all the other randomness
involved in the game are fixed.A obtains information related
to 𝜉1, 𝜉2, and 𝜉3 from the part of the group public key 𝑔1
and 𝑔2 and the responses to the opening queries. As for
the responses to the opening queries, any query whose 𝑇1,𝑇2, and 𝑇3 components do not constitute the linear tuple
will be rejected, thus A gains no information on 𝜉1, 𝜉2,
and 𝜉3 from such responses. A query with a linear tuple
also gives no information to A. When A issues a signature(𝑇1, . . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥), the game com-
putes a group element 𝑇1𝜉1𝑇2𝜉2𝑇3𝜉3 (D.23)

(the rest of the calculation is done without referring to 𝜉1, 𝜉2,
and 𝜉3), which is whatA learns from this query. It in fact does

not increase the information A knows, because the above
equation can be rewritten as𝑇1𝜉1𝑇2𝜉2𝑇3𝜉3 = (𝑢𝛼)𝜉1 (V𝛽)𝜉2 (ℎ𝛼+𝛽)𝜉3= (𝑢𝜉1ℎ𝜉3)𝛼 (V𝜉2ℎ𝜉3)𝛽 = (𝑔1)𝛼 (𝑔2)𝛽 , (D.24)

when we write 𝑇1 = 𝑢𝛼, 𝑇2 = V𝛽, and 𝑇3 = ℎ𝛼+𝛽. The last
formula of the equation shows that responses of this type give
no information to A, since all the values that appear in the
formula are already known toA.

The above discussion shows that the responses to the
opening queries do not leak any information of 𝜉1, 𝜉2, and𝜉3 beyond the equations of

log𝑔 𝑔1 = 𝜉1log𝑔 𝑢 + 𝜉3log𝑔 ℎ (D.25)

and

log𝑔 𝑔2 = 𝜉2log𝑔 V + 𝜉3log𝑔 ℎ (D.26)

to A. Finally we show that the value (𝑇∗1 )𝜉1(𝑇∗2 )𝜉2(𝑇∗3 )𝜉3 is
uniformly distributed conditioned on the elements 𝑔1 and 𝑔2.
This can be seen by considering the following equation

( log𝑔 𝑔1
log𝑔 𝑔2

log𝑔 (𝑇∗1 )𝜉1 (𝑇∗2 )𝜉2 (𝑇∗3 )𝜉3)
=( log𝑔 𝑢 log𝑔 ℎ

log𝑔 V log𝑔 ℎ𝛼 log𝑔 𝑢 𝛽 log𝑔 V 𝜏 log𝑔 ℎ)(𝜉1𝜉2𝜉3).
(D.27)

Since the matrix in the right-hand side has the determinant(log𝑔 𝑢) ⋅ (log𝑔 V) ⋅ (log𝑔 ℎ) ⋅ (𝜏 − 𝛼 − 𝛽) ̸= 0, (D.28)

the value (𝑇∗1 )𝜉1(𝑇∗2 )𝜉2(𝑇∗3 )𝜉3 is distributed uniformly and
independently of 𝑔1 and 𝑔2. This shows that the challenge
signature is independent of 𝐴 𝑖𝑏

and hence of the challenge
bit 𝑏. This completes the proof of Lemma D.8.

From the above, the proof ofTheorem 13 is completed. ◻
D.3. Proof of Theorem 14

Proof. Suppose A is an adversary that attacks the trace-
ability of the GS-MDO scheme. We assume that if the
adversary A outputs a message-signature pair (𝑀, (𝑇1, . . . ,𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥)),A issued the𝐻2 query(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) in which 𝑅1, . . ., 𝑅10 are the
reproduced 𝑅-values in the verification of the output sig-
nature. We also assume that before issuing 𝐻2 query(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) A issues the 𝐻1 query 𝑀. We
do not lose generality by these restrictions, since given an
adversaryAwhich not necessarily meets this restrictions, we
can modifyA to one that meets the restrictions. In addition,
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we assume that A issues 𝑞𝐻1 𝐻1 queries, 𝑞𝐻2 𝐻2 queries,
and 𝑞sign signing queries. Let 𝑛 be the number of the group
members.

We consider the following sequence of games.

(i) Game 0. The initial game is identical to the traceabil-
ity game.

Let 𝑆𝑖 be the event that in Game 𝑖 A satisfies the winning
condition. We have that

Pr [𝑆0] = Pr [𝑆0] − Pr [𝑆1] + Pr [𝑆1] − Pr [𝑆2]+ Pr [𝑆2]≤ 󵄨󵄨󵄨󵄨Pr [𝑆0] − Pr [𝑆1]󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨Pr [𝑆1] − Pr [𝑆2]󵄨󵄨󵄨󵄨+ Pr [𝑆2] .
(D.29)

We then bound each term.
Thedifference betweenGame0 andGame 1 is bounded by

a similar argument to Lemma D.2. Hence we omit the proof.

Lemma D.9. |Pr[𝑆0] − Pr[𝑆1]| is negligible.
We then bound the difference between Game 1 and Game

2.

Lemma D.10. |Pr[𝑆1] − Pr[𝑆2]| is negligible if the 𝑛-SDH
assumption holds.

Proof. Let 𝐹 be the event that A outputs a valid forgery
which satisfies the clause (i) in the traceability game. By the
difference lemma [67] we have that |Pr[𝑆1] − Pr[𝑆2]| ≤ Pr[𝐹].
We bound this Pr[𝐹] by constructing an 𝑛-SDH adversaryB.

The construction proceeds with the forking lemma [66].
We first construct an instance generator: It first generates
a description of bilinear group (𝑝,G,G𝑇, 𝑒, 𝑔󸀠) ←󳨀 G(1𝜆);
then chooses a random integer 𝛾 ←󳨀 Z𝑝 and outputs(𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛). Given the adversary A, we construct
another algorithm A󸀠, which takes as an input an 𝑛-SDH
instance (𝑔󸀠, 𝑔󸀠𝛾, 𝑔󸀠𝛾2 . . . , 𝑔󸀠𝛾𝑛) and a sequence of random
exponents (𝑐1, . . . , 𝑐𝑞𝐻2 ) and outputs a tuple (𝑗, 𝜎) where 𝑗 ∈{0, . . . , 𝑞𝐻2}. Here we assume that if A outputs a forgery(𝑀∗, 𝜎∗) then A issues a 𝐻2 query (𝑀,𝑇1, . . . , 𝑇6, 𝑅󸀠1, . . . ,𝑅󸀠10) that will be issued during the verification of the forged
signature 𝜎∗. The construction ofA󸀠 is as follows.

(i) Setup. A󸀠 takes as inputs an 𝑛-SDH instance (𝑔󸀠, 𝑔󸀠𝛾,𝑔󸀠𝛾2 . . . , 𝑔󸀠𝛾𝑛) and a sequence of random exponents(𝑐1, . . . , 𝑐𝑞𝐻2 ), and sets up 𝑛 SDH pairs (𝑥𝑖, 𝐴 𝑖) where𝑥𝑖 ←󳨀 Z𝑝 and 𝐴 𝑖 = 𝑔1/(𝑥𝑖+𝛾) together with group
elements𝑔 and𝑤 = 𝑔𝛾 (in the sameway as done in the
proof of Lemma 9 of [27]).A󸀠 chooses random group
elements 𝑢, V, ℎ ←󳨀 G \ {1} and random exponents𝜉1, 𝜉2, 𝜉3, 𝜁 ←󳨀 Z𝑝, and sets 𝑔1 ←󳨀 𝑢𝜉1ℎ𝜉3 , 𝑔2 ←󳨀
V𝜉2ℎ𝜉3 , and 𝑦 ←󳨀 𝑔𝜁. It then sets a counter 𝐽 ←󳨀 0.
It generates a random tape rnd for A. It finally sets𝑔𝑝𝑘 ←󳨀 (𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤), 𝑎𝑘 ←󳨀 𝜁,

and 𝑜𝑘 ←󳨀 (𝜉1, 𝜉2, 𝜉3, (𝑒(𝐴 𝑖, 𝑔))𝑖∈[𝑛]), and runs the
adversary A(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘; rnd).

(ii) 𝐻1 query. When the adversary A issues an 𝐻1 query𝑀, A󸀠 searches for a recorded tuple (𝑀, 𝑧) and
returns 𝑧 if one is found. If not,A󸀠 generates a random𝑧 ←󳨀 G, records (𝑀, 𝑧), and returns 𝑧 toA.

(iii) 𝐻2 query. When the adversary A issues an 𝐻2

query (𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) A󸀠 searches for a
recorded tuple (𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, 𝑗) for
some 𝑐 and 𝑗, and returns 𝑐 if such a tuple is found.
If not,A󸀠 increments the counter 𝐽 ←󳨀 𝐽 + 1, records(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐𝐽, 𝐽), and returns 𝑐𝐽 toA󸀠

(iv) Key Revealing Query. When the adversary A issues a
key revealing query for the user 𝑖,A󸀠 returns (𝐴 𝑖, 𝑥𝑖)
toA.

(v) Signing Query. When the adversary A issues a
signing query (𝑖,𝑀), A󸀠 generates a signature 𝜎 =(𝑇1, . . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥)
as in (14), and confirms whether (𝑀,𝑇1, . . . ,𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, 𝑗) for some 𝑐 and some 𝑗 is
recorded. If recorded, A󸀠 outputs (0, ⊥) and halts. If
not, A󸀠 records (𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, ⊥), and
returns 𝜎 toA.

(vi) Output. When the adversary A outputs a forgery(𝑀∗, 𝜎∗), let 𝜎∗ be (𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 ,𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) and 𝑅∗1 , . . ., 𝑅∗10 be the values repro-
duced in the verification of 𝜎∗. Then A󸀠 decrypts(𝑇∗1 , . . . , 𝑇∗6 ) with 𝜉1, 𝜉2, 𝜉3, and 𝜁 by computing

𝑈 ←󳨀 𝑒( 𝑇∗4𝑇∗1 𝜉1𝑇∗2 𝜉2𝑇∗3 𝜉3 , 𝑔) ⋅ 𝑇∗6𝑒 (𝐻1 (𝑀∗)𝜁, 𝑇∗5 ) (D.30)

and searches for 𝑗 ∈ [𝑞𝐻2] such that (𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 ,. . . , 𝑅∗10, 𝑐, 𝑗) is recorded. Finally, if
(a) GVf(𝑔𝑝𝑘,𝑀∗, 𝜎∗) = 1,
(b) 𝑈 ∉ {𝑒(𝑔, 𝐴1), . . . , 𝑒(𝑔, 𝐴𝑛)}, and
(c) such 𝑗 ∈ [𝑞𝐻2] is found,

A󸀠 outputs (𝑗, (𝐻1(𝑀∗), 𝜎∗)). Otherwise it outputs(0, ⊥).The first condition (a) is well-defined, since we
assume that the 𝐻2 query will be issued during the
verification of 𝜎∗, and then to verify the condition (a)
we do not need any extra𝐻2 query.

Nowwe argue thatwhenever𝐹 happens,A󸀠 outputs (𝑗, (𝑧, 𝜎))
for some 𝑗 ̸= 0.We can see thatA󸀠 perfectly simulatesGame 2
forA (and Game 3). Let us assume 𝐹 happens in this simula-
tion.Then in the simulation byA󸀠 , the first two conditions (a)
and (b) are satisfied. To claim that the condition (c) is satisfied,
we argue that the tuple (𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐, ⊥) is
not recorded when responding to the signing queries. It
follows from the fact that (𝑇∗1 , . . . , 𝑇∗6 ) encrypts none of𝑒(𝐴 𝑖, 𝑔)’s, while any (𝑇1, . . . , 𝑇6) which is recorded when
responding to the signing queries encrypts one of 𝑒(𝐴 𝑖, 𝑔)’s.
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Hence whenever 𝐹 happens,A󸀠 outputs (𝑗, (𝑧, 𝜎)) with some𝑗 ̸= 0.
We then apply the forking lemma [66] (See Appendix A

for the statement) to A󸀠 and obtain the forking algorithm
FA󸀠 . Here, the number 𝑞𝐻2 of 𝐻2 queries is assigned to 𝑞
in the lemma, while Z𝑝 is assigned to the set 𝐻. All the
randomness but that for determining the responses to 𝐻2

queries is assigned to rnd. The forking algorithm outputs(1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)) with probability frk such that Pr[𝐹] ≤(𝑞𝐻2/𝑝) + √𝑞𝐻2 ⋅ frk. Notice that Pr[𝐹] is equal to acc in the
forking lemma.

We then construct an algorithm B which
solves the 𝑛-SDH problem whenever FA󸀠 outputs(1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)). The construction of B is as
follows. Given 𝑛-SDH instance (𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛), B

runs the forking algorithm FA󸀠 (𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛). If FA󸀠

outputs a tuple (0, ⊥, ⊥), B outputs ⊥ and halts. If FA󸀠

outputs a tuple (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), where 𝜎∗ = (𝑇∗1 ,. . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼 , 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) and 𝜎∗∗ = (𝑇∗∗1 ,. . . , 𝑇∗∗6 , 𝑐∗∗, 𝑠∗∗𝛼 , 𝑠∗∗𝛽 , 𝑠∗∗𝜌 , 𝑠∗∗𝜂 , 𝑠∗∗𝑥 𝑠∗∗𝛼𝑥 , 𝑠∗∗𝛽𝑥 , 𝑠∗∗𝜌𝑥 , 𝑠∗∗𝜂𝑥 ) it com-
putes 𝛼∗ = (𝑠∗∗𝛼 − 𝑠∗𝛼)/(𝑐∗∗ − 𝑐∗), and computes 𝛽∗, 𝜌∗, 𝜂∗,𝑥∗, 𝛿∗1 , 𝛿∗2 , 𝛿∗3 , and 𝛿∗4 in a similar way, where 𝛿∗1 , 𝛿∗2 , 𝛿∗3 ,
and 𝛿∗4 are supposedly equal to 𝛼∗𝑥∗, 𝛽∗𝑥∗, 𝜌∗𝑥∗, and 𝜂∗𝑥∗,
respectively. ThenB computes

𝐴∗ ←󳨀 𝑇∗4𝑔1𝛼∗𝑔2𝛽∗𝑔𝜂∗ (D.31)

and obtains an SDH pair (𝑥∗, 𝐴∗). Finally, B obtains a
solution for the SDH instance from the SDH pair (𝑥∗, 𝐴∗)
(again, in the same way as done in the proof of Lemma 9 of
[27]) and outputs this solution.

We show that whenever F𝐴󸀠 outputs (1, 𝜎∗, 𝜎∗∗), B
obtains a new SDH pair and thus solves the SDH problem.

Firstly, we argue that 𝑐∗ ̸= 𝑐∗∗. This is due to the
construction ofA󸀠 andFA󸀠 . Since we are assuming thatFA󸀠

outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), the first run of A󸀠 outputs(𝑗∗, (𝑧∗, 𝜎∗)) where 𝑗∗ ∈ [𝑞𝐻2], and the second run of A󸀠

outputs (𝑗∗∗, (𝑧∗∗, 𝜎∗∗)) where 𝑗∗∗ ∈ [𝑞𝐻2]. Therefore, 𝑐∗ is
the 𝑗∗-th 𝐻2 query in the first run, while 𝑐∗∗ is the 𝑗∗∗-th𝐻2 query in the second run. Furthermore, sinceFA󸀠 outputs(1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), we have that 𝑗∗ = 𝑗∗∗ and 𝑐∗ ̸= 𝑐∗∗.

Secondly, to establish that B successfully computes𝛼∗ 𝛽∗, 𝜌∗, 𝜂∗, 𝑥∗, 𝛿∗1 , 𝛿∗2 , 𝛿∗3 , and 𝛿∗4 , we show that if
the forking algorithm outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), the
equation(𝑧∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10)= (𝑧∗∗, 𝑇∗∗1 , . . . , 𝑇∗∗6 , 𝑅∗∗1 , . . . , 𝑅∗∗10 ) , (D.32)

holds, where 𝑅∗1 , . . ., 𝑅∗10, and 𝑅∗∗1 , . . . 𝑅∗∗10 are the reproduced
values in the verification of 𝜎∗ and 𝜎∗∗, respectively. The
equation holds because the random tapes of both runs are
equal, the first 𝑗∗ − 1 (and 𝑗∗∗ − 1, respectively) responses
of the 𝐻2 queries are equal, 𝐻1-queries 𝑀∗ are issued
before 𝑗∗-th (and 𝑗∗∗-th) 𝐻2-queries are issued, where 𝑗∗
and 𝑗∗∗ are the outputs of the first and second runs of A󸀠

in the forking algorithm FA. Then (D.32) holds because(𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10) is the 𝑗∗-th 𝐻2 query in the first
run, (𝑇∗∗1 , . . . , 𝑇∗∗6 , 𝑅∗∗1 , . . . , 𝑅∗10) is the 𝑗∗∗-th𝐻2 query in the
second run, and𝐻1 query𝑀∗ (and𝑀∗∗) is issued before the𝑗∗-th (and 𝑗∗∗-th)𝐻2 query.

Thirdly, we show that the extracted pair (𝑥∗, 𝐴∗) (in
(D.31)) constitutes a new SDH pair. To show this, we claim
that 𝑒 ( 𝑇∗4𝑔1𝛼∗𝑔2𝛽∗𝑔𝜂∗ , 𝑔) = 𝑒( 𝑇∗4𝑇∗1 𝜉1𝑇∗2 𝜉2𝑇∗3 𝜉3 , 𝑔)⋅ 𝑇∗6𝑒 ((𝑧∗)𝜁 , 𝑇∗5 ) ,

(D.33)

in which the 𝛼, 𝛽, and 𝜂 in the left-hand side are what B
extracts, and the right-hand side is what A󸀠 computes when
confirming the winning condition ofA.This equation can be
verified from the fact that there is the witness that satisfies
(10a), (10b), (10c), (10d), (10e), (10f), (10g), (10h), (10i), and
(10j). Nowwe are considering the event thatFA󸀠 is successful
in forking, and thus A is successful in satisfying the clause
(i) in the traceability game. Therefore, the right-hand side is
not equal to any of 𝑒(𝐴 𝑖, 𝑔) (𝑖 ∈ [𝑛]). This assures that the
extracted SDH pair (𝑥∗, 𝐴∗) is a new pair.

Finally we have that wheneverB is successful in forking,
we can successfully obtain a solution to the SDH instance.
This implies that frk is negligible, and thus |Pr[𝑆1] −Pr[𝑆2]| ≤
Pr[𝐹] ≤ (𝑞𝐻2/𝑝) + √𝑞𝐻2 ⋅ frk is negligible.
LemmaD.11. Pr[𝑆2] is negligible if the (𝑛−1)-SDHassumption
holds.

Proof. Using the adversary A, we construct an algorithm B

that solves the 𝑛-SDH problem. The proof again proceeds
with the forking lemma [66] (Also see Appendix A).

Given the adversary A we construct another algorithm
A󸀠 which takes as an input an 𝑛-SDH instance (𝑔󸀠, 𝑔󸀠𝛾,. . . , 𝑔󸀠𝛾𝑛−1) and a sequence of random exponents (𝑐1, . . . , 𝑐𝑞𝐻2 )
and outputs a tuple (𝑗, 𝜎) such that 𝑗 ∈ {0, . . . , 𝑞𝐻2}. The
construction ofA󸀠 is as follows.

(i) Setup. A󸀠 takes as an input an 𝑛-SDH instance(𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛−1) and a sequence of random expo-
nents (𝑐1 , . . . , 𝑐𝑞𝐻2 ).ThenA󸀠 chooses a random integer𝑖∗ ←󳨀 [𝑛] and sets up 𝑛 − 1 SDH pairs (𝑥𝑖, 𝐴 𝑖) where𝑖 ∈ [𝑛] \ {𝑖∗} together with group elements 𝑔, 𝑤 = 𝑔𝛾,
as in the proof of Lemma D.10. The algorithm then
chooses a random group element 𝐴 𝑖∗ ←󳨀 G. It then
chooses 𝑢, V, ℎ ←󳨀 G\{1}, chooses 𝜉1, 𝜉2, 𝜉3, 𝜁 ←󳨀 Z𝑝

and sets 𝑔1 ←󳨀 𝑢𝜉1ℎ𝜉3 , 𝑔2 ←󳨀 V𝜉2ℎ𝜉3 , and 𝑦 ←󳨀 𝑔𝜁.
The algorithm sets up a counter 𝐽 ←󳨀 0. It finally
sets 𝑔𝑝𝑘 = (𝑝,G,G𝑇, 𝑒, 𝑔, 𝑢, V, ℎ, 𝑔1, 𝑔2, 𝑦, 𝑤), 𝑜𝑘 ←󳨀(𝜉1, 𝜉2, 𝜉3, (𝑒(𝐴 𝑖, 𝑔))𝑖∈[𝑛]), 𝑎𝑘 ←󳨀 𝜁, and 𝑔𝑠𝑘𝑖 ←󳨀(𝑥𝑖, 𝐴 𝑖) for all 𝑖 ∈ [𝑛] \ {𝑖∗}, chooses a random tape
rnd forA, and runsA(𝑔𝑝𝑘, 𝑜𝑘, 𝑎𝑘; rnd).

(ii) 𝐻1 query. When the adversary A issues an 𝐻1 query𝑀, A󸀠 searches for a recorded tuple (𝑀, 𝑧) and
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returns 𝑧 if one is found. Otherwise, A󸀠 generates a
random 𝑧 ←󳨀 G, records (𝑀, 𝑧), and returns 𝑧 toA.

(iii) 𝐻2 query. When the adversary A issues an 𝐻2

query (𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10) A󸀠 searches for a
recorded tuple (𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, 𝑗) for
some 𝑐 and 𝑗 and returns 𝑐 if one is found. If not,
A󸀠 increments the counter 𝐽 ←󳨀 𝐽 + 1, records(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐𝐽, 𝐽), and returns 𝑐𝐽.

(iv) Key Revealing Query. When the adversary A issues a
key revealing query for the user 𝑖, if 𝑖 ̸= 𝑖∗,A󸀠 returns(𝐴 𝑖, 𝑥𝑖) toA. If 𝑖 = 𝑖∗,A󸀠 outputs ⊥ and halts.

(v) SigningQuery.When the adversaryA issues a signing
query (𝑖,𝑀), A󸀠 generates a signature 𝜎 = (𝑇1,. . . , 𝑇6, 𝑐, 𝑠𝛼, 𝑠𝛽, 𝑠𝜌, 𝑠𝜂, 𝑠𝑥, 𝑠𝛼𝑥, 𝑠𝛽𝑥, 𝑠𝜌𝑥, 𝑠𝜂𝑥) as in (14),
and confirmswhether (𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, 𝑗)
for some 𝑐 and 𝑗 is recorded. If recorded, A󸀠

outputs (0, ⊥) and halts. Otherwise, A󸀠 records(𝑀,𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, ⊥), and returns 𝜎 toA.
(vi) Output. When the adversary A outputs a

forgery (𝑀∗, 𝜎∗), let 𝜎∗ be (𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼 , 𝑠∗𝛽,𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) and 𝑅∗1 , . . ., 𝑅∗10 be the𝑅-values reproduced in the verification of 𝜎∗. Then
A󸀠 decrypts (𝑇∗1 , . . . , 𝑇∗6 ) with 𝜉1, 𝜉2, 𝜉3, and 𝜁 by
computing

𝑈 ←󳨀 𝑒( 𝑇∗4𝑇∗1 𝜉1𝑇∗2 𝜉2𝑇∗3 𝜉3 , 𝑔) ⋅ 𝑇∗6𝑒 (𝐻1 (𝑀∗)𝜁, 𝑇∗5 ) , (D.34)

and searches for 𝑗 ∈ [𝑞𝐻2] such that(𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐, 𝑗) is recorded. Finally,
if

(a) the clause (ii) of the winning condition is satis-
fied,

(b) 𝑈 = 𝑒(𝐴 𝑖∗ , 𝑔), and
(c) such 𝑗 ∈ [𝑞𝐻2] is found,

A󸀠 outputs (𝑗, (𝐻1(𝑀∗), 𝜎∗)). Otherwise it outputs(0, ⊥).
Now we argue that with probability Pr[𝑆2]/𝑛, A󸀠 outputs(𝑗, 𝜎) for some 𝑗 ∈ [𝑞𝐻2] and 𝜎. Let (𝑗, 𝜎) denote the output
ofA󸀠. We want to show that

Pr [𝑗 ̸= 0] = Pr [𝑆2 ∧ the forgery is opened to 𝑖∗]
= Pr [𝑆2]𝑛 , (D.35)

where the last equality follows from the fact that 𝑖∗ is
independent of A’s view. The simulation by A󸀠 is perfect
except for the abort in the simulation of the responses to key
revealing queries. Therefore, to show the first equality, it is
sufficient to show that if the conditions (a) and (b) hold, the
condition (c) also holds. Let us assume the conditions (a) and
(b) hold. Then we can assume (𝑖∗,𝑀∗) is not queried as a
signing query. Hencewhen responding to the signing queries,

only tuples of the form (𝑀, 𝑇1, . . . , 𝑇6, 𝑅1, . . . , 𝑅10, 𝑐, ⊥) such
that 𝑀 ̸= 𝑀∗ or (𝑇1, . . . , 𝑇6) does not encrypt 𝑒(𝐴 𝑖∗ , 𝑔)
are recorded. Therefore, when the 𝐻2 query of the form(𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10) where 𝑇∗1 , . . ., 𝑇∗6 are taken
from the forgery 𝜎∗, and 𝑅∗1 , . . ., 𝑅∗10 are the reproduced
values in the verification of 𝜎∗, the tuple of the form(𝑀∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10, 𝑐, 𝑗) is not recorded for none of𝑐 and 𝑗. Thus when responding to such an 𝐻2 query a new
tuple of such form is recorded. This shows that when the
conditions (a) and (b) hold the condition (c) also holds.

We then apply the forking lemma toA󸀠 . Here, the number𝑞𝐻2 of 𝐻2 queries is assigned to 𝑞, the set Z𝑝 is assigned to𝐻, and all the randomness used by A󸀠 except for that used
to determine the responses to 𝐻2 queries is set to rnd. We
can obtain the forking algorithm FA󸀠 which outputs some(1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)) with probability frk such that Pr[𝑗 ̸=0] ≤ (𝑞𝐻2/𝑝) + √𝑞 ⋅ frk. Notice that Pr[𝐹] is equal to acc in
the forking lemma.

We then construct an algorithm B which solves the𝑛-SDH problem using FA󸀠 . The construction of B is
as follows. Given an 𝑛-SDH instance (𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛),
B runs the forking algorithm FA󸀠(𝑔󸀠, 𝑔󸀠𝛾, . . . , 𝑔󸀠𝛾𝑛). If
FA󸀠 outputs a tuple (0, ⊥, ⊥), B outputs ⊥ and halts.
If FA󸀠 outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), where 𝜎∗ =(𝑇∗1 , . . . , 𝑇∗6 , 𝑐∗, 𝑠∗𝛼, 𝑠∗𝛽 , 𝑠∗𝜌 , 𝑠∗𝜂 , 𝑠∗𝑥 , 𝑠∗𝛼𝑥, 𝑠∗𝛽𝑥, 𝑠∗𝜌𝑥, 𝑠∗𝜂𝑥) and 𝜎∗∗ =(𝑇∗∗1 , . . . , 𝑇∗∗6 , 𝑐∗∗, 𝑠∗∗𝛼 , 𝑠∗∗𝛽 , 𝑠∗∗𝜌 , 𝑠∗∗𝜂 , 𝑠∗∗𝑥 , 𝑠∗∗𝛼𝑥 , 𝑠∗∗𝛽𝑥 , 𝑠∗∗𝜌𝑥 , 𝑠∗∗𝜂𝑥 ), it
computes 𝛼∗ = (𝑠∗∗𝛼 − 𝑠∗𝛼)/(𝑐∗∗ − 𝑐∗) and computes 𝛽∗, 𝜌∗,𝜂∗, 𝑥∗, 𝛿∗1 , 𝛿∗2 , 𝛿∗3 , and 𝛿∗4 in a similar manner, where 𝛿∗1 , 𝛿∗2 ,𝛿∗3 , and 𝛿∗4 are supposedly equal to 𝛼∗𝑥∗, 𝛽∗𝑥∗, 𝜌∗𝑥∗, and𝜂∗𝑥∗, respectively. ThenB computes

𝐴∗ ←󳨀 𝑇∗4𝑔1𝛼∗𝑔2𝛽∗𝑔𝜂∗ (D.36)

and obtains a new SDH pair (𝑥∗, 𝐴∗). Finally B obtains a
solution to the SDH instance from the new SDH pair and
outputs this solution, as in the proof of Lemma D.10.

Firstly we argue that when the forking algorithm FA󸀠

outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), it holds that 𝑐∗ ̸= 𝑐∗∗. This
is due to the constructions of A󸀠 and FA󸀠 . Since FA󸀠

outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗∗)), the first run of A󸀠 outputs(𝑗∗, (𝑧∗, 𝜎∗) for some 𝑗∗ ∈ [𝑞𝐻2], and the second run of A󸀠

outputs (𝑗∗∗, (𝑧∗∗, 𝜎∗∗)) for some 𝑗∗∗ ∈ [𝑞𝐻2].Therefore, due
to the construction of A󸀠, 𝑐∗ is the 𝑗∗-th 𝐻2 query in the
first run, and 𝑐∗∗ is the 𝑗∗∗-th 𝐻2 query in the second run.
Furthermore, due to the construction of FA󸀠 , we have that𝑗∗ = 𝑗∗∗ and 𝑐∗ ̸= 𝑐∗∗.

Secondly we claim that when the forking algorithm
outputs (1, (𝑧∗, 𝜎∗), (𝑧∗∗, 𝜎∗)), the equation(𝑧∗, 𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10)= (𝑧∗∗, 𝑇∗∗1 , . . . , 𝑇∗∗6 , 𝑅∗∗1 , . . . , 𝑅∗∗10 ) (D.37)

holds, where 𝑅∗1 , . . ., 𝑅∗10 and 𝑅∗∗1 , . . ., 𝑅∗∗10 are the reproduced
values in the verification of 𝜎∗ and 𝜎∗∗, respectively. This
equation holds because the random tapes of both runs are
equal, the responses to the first 𝑗∗−1 (and 𝑗∗∗−1)𝐻2 queries
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are equal, and the 𝐻1 queries 𝑀∗ (of both runs) are issued
before the 𝑗∗-th (and 𝑗∗∗-th) 𝐻2 queries. Then (D.37) holds
because (𝑇∗1 , . . . , 𝑇∗6 , 𝑅∗1 , . . . , 𝑅∗10) is the 𝑗∗-th 𝐻2 query, and(𝑧∗∗, 𝑇∗∗1 , . . . , 𝑇∗∗6 , 𝑅∗∗1 , . . . , 𝑅∗∗10 ) is the 𝑗∗∗-th𝐻2 query.

Thirdly we claim that the pair B obtained (as in
(D.36)) constitutes a new SDH pair. To show this we claim
that

𝑒 ( 𝑇∗4𝑔1𝛼∗𝑔2𝛽∗𝑔𝜂∗ , 𝑔) = 𝑒( 𝑇∗4𝑇∗1 𝜉1𝑇∗2 𝜉2𝑇∗3 𝜉3 , 𝑔) ⋅ 𝑇∗6𝑒 (𝑧∗𝜁, 𝑇∗5 ) , (D.38)

where the left-hand side is what B extracts in (D.36), while
the right-hand side is what A󸀠 computes for verifying the
winning condition ofA. This equation is verified by a simple
calculation as in the proof of Lemma D.10. This equation
ensures that extracted 𝐴∗ is equal to 𝐴 𝑖∗ , because the right-
hand side is equal to 𝑒(𝐴 𝑖∗ , 𝑔), due to the constructions of
A. Note that the corresponding exponent of 𝐴 𝑖∗ is unknown
to B, hence the extracted SDH pair (𝑥∗, 𝐴∗) is a new SDH
pair.

Eventually, we have that whenever the forking is success-
ful,B successfully obtains a new SDH pair. This implies that
frk is negligible, and thus Pr[𝑆2] = 𝑛 ⋅Pr[𝑗 ̸= 0] ≤ (𝑛 ⋅𝑞𝐻2/𝑝)+𝑛√𝑞𝐻2 ⋅ frk is negligible.

From the above lemmas, the proof ofTheorem 14 is com-
pleted. ◻
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