
Received June 3, 2019, accepted July 19, 2019, date of publication August 27, 2019, date of current version September 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937792

Robust Indoor Localization in a Reverberant
Environment Using Microphone Pairs and
Asynchronous Acoustic Beacons
SATOKI OGISO 1,2, (Member, IEEE), KOICHI MIZUTANI2,3, NAOTO WAKATSUKI2,3,
AND TADASHI EBIHARA 2,3, (Member, IEEE)
1Department of Electronic Control Systems, National Institute of Technology, Gifu College, Motosu 501-0495, Japan
2Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-8573, Japan
3Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan

Corresponding author: Satoki Ogiso (ogiso@gifu-nct.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP19K20305, and in
part by the OGAWA Science and Technology Foundation.

ABSTRACT In this paper, a robust indoor localization method using microphone pairs and asynchronous
acoustic beacons was proposed. The proposed method is applicable even with a two-channel microphone
pair, which is the minimal configuration of a microphone array. The proposed method estimates location by
using the cross-correlation functions of the measured signals as location likelihoods. Three experiments were
conducted to evaluate the proposed method. Four beacons were located at the corners of a localizing area
of 4 m by 4 m and emitted signals with a bandwidth of 2 kHz. The localization results were compared to the
previous method with deterministic direction-of-arrival estimation. The 90th percentiles of the localization
error were 0.23 m for the proposed method with two microphones, 0.19 m for the proposed method with four
microphones, and 0.30 m for the previous method under conditions without significant reverberation. Under
a condition with reflective walls, the 90th percentile of the localization error of the previousmethod increased
to 0.49 m, while that of the proposed method was only increased to 0.23 m for two microphones and 0.19 m
for four microphones. The proposed method contributes to a robust localization in indoor environments and
relieves the constraints of receiver configuration.

INDEX TERMS Acoustic beacons, cross correlation, indoor localization, microphone pairs, particle filter.

I. INTRODUCTION
Location estimation is one of the key technologies in the
design of a more accessible and convenient infrastructure.
The localization problem can be divided into the outdoor
and indoor localizations. The outdoor localization problem
is usually solved by using a Global Navigation Satellite Sys-
tem (GNSS) such as the Global Positioning System (GPS)
or Quasi-Zenith Satellite System (QZSS) [1]. These methods
provide up to centimeter-grade accuracy for outdoor localiza-
tion. On the other hand, achieving centimeter-grade accuracy
for indoor localization is a challenging problem. The main
difficulty with the indoor localization is the signal fluctu-
ation caused by the structure of the building. The signals
from the beacons follow complex paths through the building
and sometimes cannot be received due to their non-line-of-
sight (NLOS) propagation [2]–[4].

The associate editor coordinating the review of this article and approving
it for publication was Lin Wang.

To solve this problem, the indoor localization is usually
achieved using two types of methods: beacon-free meth-
ods and beacon-based methods. Typical examples of the
beacon-free localization are the Light Detection And Rang-
ing (LIDAR)-based or camera-based methods [5], [6]. These
localization methods provide high accuracy, but the sensor
is still expensive. Also, these methods cannot recognize dif-
ferent rooms with the same shape, and often cannot track
locations if the angle of view is occupied by a wall or
floor. The beacon-based methods use beacons, which emit
known signals from known locations. One of the simplest and
most inexpensive version uses Bluetooth Low Energy (BLE)
beacons or WiFi routers and measures the amplitude of the
radio wave signal [7]. In this approach, the amplitude map
is measured in advance [8]. The amplitude map is called
a ‘‘fingerprint’’ and the localization is achieved by pattern
matching with measured amplitudes and the fingerprint [9].
However, the fingerprint tends to suffer variation due to
the interference and the changes in the environment, even
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with human movements. As a result of such disturbance,
the localization accuracy of the fingerprinting methods has
been determined as only about 2 m or higher [7]. Although
attempts have been made to resolve these difficulties, sub-
meter order accuracy has still not been achieved [10]–[12].
Accurate indoor localization is usually achieved by using the
phase or time information rather than the amplitude [13].
For the radio wave, a pulse-like wave called the Ultra Wide
Band (UWB) is used to accuratelymeasure the accurate range
between the beacon and the receiver [14]–[16]. Although
the UWB achieves centimeter-grade accuracy, the hardware
for UWB localization consists of specialty transceivers that
are not readily available in consumer devices, and thus this
method is not widely used.

With this background, the localizationmethod using acous-
tical signals has attracted attention [17]. The methods use
backgrounding with acoustical communications [18], [19],
and are applied to the communication with beacons [20].
The phase or time difference is easily measured, beacause the
speed of sound (approx. 3×102 m/s) is much slower than the
speed of light (approx. 3×108 m/s) [21]. To exploit this differ-
ence in speed, the acoustic beacon emits encoded sound from
beacons located on known locations. The localization meth-
ods using time information can be divided into three types:
Time-Of-Arrival (TOA)-based methods, Time-Difference-
Of-Arrival (TDOA)-based method, and Direction-Of-Arrival
(DOA)-based method. TOA-based methods are the most
accurate methods among them. The TOA, or Time-Of-
Flight (TOF) in some reports, is measured by using time-
synchronized beacons and receivers [2], [22]. Then the
location of the receiver is estimated by trilateration. While
this approach achieves high accuracy, the synchronization of
the beacons and receivers requires additional hardware such
as radio wave transceivers [23]. Several attempts have been
made to measure TOA without time synchronization, such
as by using transponders [24]. However, these methods have
restrictions e.g, the localization can only be achieved one
receiver at a time. The TDOA-based methods were developed
to solve the synchronization problem between beacons and
receivers [25]–[27]. The TDOA-based methods only measure
time differences between the signals of the synchronized
beacons at the receivers. The location can then be estimated
as the intersection point of the hyperbola lines which cor-
respond to the TDOA and known beacon locations. These
methods only require the synchronization of the beacons:
the receivers can be synchronization-free. However, the syn-
chronization of all beacons is still a problem if the beacons
are in a large facility. For a completely synchronization-free
method, the DOA-based approach was proposed [28], [29].
The DOA-based methods measure DOA, sometimes referred
as Angle-Of-Arrival (AOA), of the beacon signals with some
sensors on a receiver. Then the location is estimated as the
intersection point of the lines corresponding to the mea-
sured DOA and known beacon locations. The DOAmeasure-
ment requires the synchronization of the microphones on the
receiver, which is easily achieved.

However, the problem of DOA-based acoustic localiza-
tion is its limited robustness against signal fluctuations and
the complexity of the receiver. The DOA estimation is
achieved by the cross-correlation functions of themicrophone
array signals; these functions measure the differences in the
time of arrival of the beacon signal between the micro-
phones [29]. The peak time of the cross-correlation corre-
sponds to the DOA. If there are severe reverberations in the
environment, the peak time sometimes does not correspond
to the DOA [30], [31]. The error of DOA is magnified by
the distance from the beacon to the receiver and causes
large location error than the TOA or TDOA errors [32]. If a
robust localization with DOA is achieved, synchronization-
free indoor localization may be very useful, especially in
a large environment. Also, the DOA measurement itself
requires a relatively complex receiver with multiple micro-
phones. For example, a mobile robot measures DOA with
a 32-channel spherical microphone array [33], 32-channel
planar microphone array [34], or 4-channel planar micro-
phone array [29]. If the number of the microphone in the
array is as low as 2, the DOA has cone-shaped ambiguity and
cannot be uniquely determined. The previous methods are
not applicable for this situation. If the localization could be
accomplished even with a 2-channel microphone pair, which
is the minimal configuration of a microphone array, it would
be ideal for implementation on smartphones or small objects.

We consider all of the above problems arise from the fact
that the multimodal ambiguity of the DOA is not considered
in the localization method. The previous methods regard the
DOA as a uniquely determined value, and only consider
unimodal distributions such as Gaussian distributions around
the unique DOA.We propose a method of estimating location
using a location likelihood defined by the cross-correlation
function of the microphone pairs. The proposed method does
not require the deterministic DOA estimation, but rather
evaluates location candidates by location likelihood. The
proposed method was previously suggested to be robust in
a reverberant environment [35], but the location likelihood
itself was not discussed and the robustness has not been
verified with experimental results such as NLOS or strong
reflective waves. In this paper, the proposedmethod was eval-
uated using three experiments and the results were discussed
with the location likelihood maps for each experiment. The
proposed method was applied to 2-channel and 4-channel
microphone arrays and compared with a previously proposed
method [29]. The computational times for the localization
were measured in order to discuss feasibility.

II. PROPOSED METHOD OF ESTIMATING LOCATION
A. DEFINITION OF A LOCATION LIKELIHOOD BY THE
CROSS-CORRELATION FUNCTION
The definition of a location likelihood using the cross-
correlation function of the microphone pair signals is pro-
posed in this section. This is the core contribution of this
study. The location of a localizing target in two-dimensional
space is represented as a vector x(t) = [x(t), y(t), θ(t)]T ,
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FIGURE 1. Coordinate system used in the proposed method.

where x(t), y(t) are the locations in two-dimensional space,
and θ (t) is the orientation of the localizing target. Figure 1
shows the coordinate system used in the proposed method.
The purpose of the localization is to estimate an x(t) which
is close to the ground truth. For evaluating and minimizing
the difference between an estimated location and the ground
truth, a location likelihood metrics is required.

The proposed method uses beacon signals received by
microphone pairs on the localizing target. The proposed
method assumes that M beacons are deployed in the field
with known locations xk = [xk , yk ]T (k ∈ M ), and N pairs
of microphones are placed at the localizing target. If the
localizing target is at a location of x(t), the direction-of-
arrival (DOA) of the kth beacon signal θk (t) is uniquely
determined by the following equation.

θk (t) = atan 2 (y(t)− yk , x(t)− xk)− θi(t)

≡ h (x(t), xk), (1)

where atan2(y, x) returns the angle θ of the location vector
(x, y) in the range of −π ≤ θ ≤ π . The microphones on the
localizing target receive the signal from the DOA of θk (t).
Assume that the jth microphone pair is set on the localizing
target with an angle of φj and the dj is the distance between
the microphones. The signal fromDOA of θk (t) causes a time
difference of τ kj (t) to the microphone pair expressed by the
following equation;

τ kj (t) = dj cos
(
θk (t)− φj

)
/c, (2)

where c is the speed of sound. Let us denote the recorded
signals of the microphone pair by mkj,1(t) and mkj,2(t). The
cross-correlation function of these microphone signals Rkj (τ )
is defined by the following equation;

Rkj (τ ) =
∫ T

T−w
mkj,1(t)m

k
j,2(τ − t)dt. (3)

This function takes the maximum value at the time delay
of τ kj (t), which corresponds to the DOA θk (t). Conventional
localization methods detect the maximum value of Rkj (τ ) and
use the corresponding time delay as a unique DOA measure-
ment. However, detection of the exact DOA from noisy Rkj (τ )
is difficult under reverberation or other disturbances. Once
the misdetection of DOA occurs, it causes huge localization
error. This detection of unique DOAmakes previous methods
vulnerable to the reverberation and other disturbances.

We propose a location likelihood using the above relations
as shown in Fig. 2. Assume that we are evaluating the loca-
tion likelihood of a location candidate xi(t). The time delay
between the microphone pair is a function of location xi(t)
and xk as shown in the following equation.

τ kj (t) = dj cos
(
h (xi(t), xk)− φj

)
/c ≡ τ kj (xi(t)) . (4)

Each location xi(t) corresponds to a unique time delay
τ̄ kj (xi(t)) of the cross-correlation function Rkj (τ ). The likeli-
hood of this time delay τ̄ kj (xi(t)) can be evaluated by looking
up the measured cross-correlation function Rkj (τ ), as R

k
j (τ )

takes a higher value when the sounds of the microphone pair
are highly correlated. With this function, the likelihood of
the location candidate xi(t) with measurement of kth sound
source by jth microphone pair is defined as

p
(
Rkj (τ )|xi(t)

)
= Lkj (xi(t)) ≡ C

(
Rkj
(
τ kj (xi(t))

))
, (5)

where the function C is an arbitrary function which maps
cross-correlation to the likelihood. The C is assumed to be
an envelope detector in this paper. The function in Eq. 5
projects the cross-correlation function, which represents the
DOA likelihood, to the localizing state space xi(t) as the
location likelihood. The location likelihood of the location
candidate xi(t) with all sound sources and all microphone
pairs is then calculated as the product of the likelihoods.

p (R|xi(t)) ∝
N∏
j

M∏
k

p
(
Rkj (τ )|xi(t)

)
=

N∏
j

M∏
k

Lkj (xi(t)) .

(6)

Here,R = [R11, . . . ,R
M
1 ,R

1
2, . . . ,R

k
j , . . . ,R

M
N ]. The proposed

method estimates the location based on the above likeli-
hood. The proposed method achieves localization without
detection of single DOA so that it is anticipated to be more
robust against the disturbances. The gray-scale image in the
Fig. 2 shows an example of the proposed location likelihood
p (R|xi(t)) for every location in the area.
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FIGURE 2. Definition of the proposed location likelihood.

FIGURE 3. Overview of the proposed method using location likelihood.

B. LOCALIZATION BY PARTICLE FILTER WITH THE
PROPOSED LOCATION LIKELIHOOD
The proposed method is based on the particle filter algo-
rithm with the cross-correlation functions of microphones
as location likelihoods. The particle filter is an algorithm
which approximates the probability density function of the
location with the Monte-Carlo method. These location can-
didates are called ‘‘particles’’. The particle filter can simu-
late arbitrary likelihood for estimation unlike Kalman filters
which assumes the likelihood as Gaussian. It is suitable for
the proposed method which uses arbitrary shape of the cross-
correlation function as likelihood function. The overview of
the proposedmethod is shown in Fig. 3. The proposedmethod
consists of mainly two parts. Before starting the localiza-
tion, all locations are initialized. First, the proposed method
predicts the location of each particle from the wheel rotation

information of the mobile robot. Second, the location likeli-
hoods of each particle are evaluated with the proposed loca-
tion likelihood with cross-correlation function. The micro-
phone signals are used in this step. Then the particles are
resampled to balance the weights of the particles.

In the first step, the wheel rotation information provides
the velocity and angular velocity of the mobile robot. Let
us denote the velocity as v and the observed angular veloc-
ity as ω. The ith location candidate xi(t) at the time t is
predicted as

xi(t) = f (xi(t −1t), v, ω)

=

 xi(t −1t)yi(t −1t)

θ (t −1t)

+
 v cos(θ(t −1t))v sin(θ(t −1t))

ω

1t, (7)
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TABLE 1. Condition of experiments.

where 1t denotes the time step of the estimation. In realistic
situations, the velocity and angular velocity contain mea-
surement noises. In this paper, these values are assumed
to be samples from Gaussian distributions nv ∼ N (v, σ 2

v )
and nω ∼ N (ω, σ 2

ω), where σ
2
v and σ 2

ω are the variations
caused by sensor noises. The Monte-Carlo method is per-
formed to sample from these probability density functions.
Locations of each location candidate are predicted by Eq. 7
with a sample of velocity and angular velocity from above
Gaussian.

The second step consists of updating the particles by
the location likelihood. The microphone signals are mea-
sured in this step and the cross-correlation functions R =
[R11, . . . ,R

M
1 ,R

1
2, . . . ,R

k
j , . . . ,R

M
N ] are calculated for all

microphone pairs and all sound sources. Then, the location
likelihood is calculated for each location candidate xi(t) by
Eq. 6. Each location candidate has corresponding probabil-
ity p(xi(t)), which represents the probability that the candi-
date xi(t) is the true location. This probability is updated by
measurement R with the following Bayes’ theorem.

p (xi(t)|R) =
1

p(R)
p (xi(t −1t)) p (R|xi(t))

=
1

p(R)
p (xi(t −1t))

N∏
j

M∏
k

Lkj (xi(t)), (8)

where p(R) represents the normalizing factor of the probabil-
ity. The localization result x(t) is calculated as the expected
value of the probability p(xi(t)|R),

x̂(t) = 6ip (xi(t)|R) xi(t). (9)

The localization is achieved by doing the above steps recur-
sively by replacing p(xi(t − 1t)) with the new probability
p(xi(t)|R). The particles are resampled if the number of the
effective particles is below a threshold. The number of the
effective particles is calculated by following equation.

Neffec = N (6N
i=1p (xi(t)|R)

2)−1. (10)

The pseudo-code of the proposed method is shown in
Algorithm 1.

III. EXPERIMENTAL CONDITIONS
The proposed method was evaluated by a localization exper-
iment in a room. Figure 4(a) shows the experimental setup
of the localizing target. The localizing target consists of two

Algorithm 1 Localization With the Proposed Likelihood
1: Define a vector array of location candidates x
2: Define an array of corresponding location probabilities p
3: Define and initialize localization result x̂
4:

5: for each particle i do
6: Initialize vector of location xi
7: Initialize corresponding location probability pi
8: end for
9:

10: repeat
11: m← data from microphone pairs
12: for each sound source k do
13: mk

← SeparateSoundSources(m, k)
14: for each microphone pair j do
15: Rkj ← Correlation(mkj,1,m

k
j,2) (Eq. 3)

16: end for
17: end for
18:

19: u← data from wheel rotation
20: for each particle i do
21: xpred,i← PredictLocation(xi, u) (Eq. 7)
22: lpred,i← pi·Likelihood(xpred,i, R) (Eq. 8)
23: end for
24: for each particle i do
25: pi← lpred,i/6ilpred,i
26: end for
27: x̂← 6ipixpred,i (Eq. 9)
28:

29: if Neffec (Eq. (10)) < threshold then
30: x← Resample(xpred , p)
31: else
32: x← xpred
33: end if
34: until localization ends

microphone pairs and a mobile robot platform. The distances
of themicrophoneswere d1 = d2 = 0.25m. The angles of the
microphone pairs were φ1 = 0 rad and φ2 = π /2 rad. MEMS
microphones (SPU0414HR5H-SB; Knowles) were used face
upward as omnidirectional microphones in the horizontal
plane. The microphone signals were recorded with an AD
converter (NI USB-6212; National Instruments) at a sampling
frequency of 100 kHz. The wheel rotation of the mobile robot
was measured at a frequency of 5 Hz. The proposed method
estimated the location every time when the wheel rotation
was measured. In every estimation step, the cross-correlation
functions were calculated with the most recent microphone
signals with a window length of w = 0.1 s.
The experiments were carried out under three sets of

conditions. The common condition for these experiments is
shown in Fig. 4(b). The mobile robot is assumed to be in
a room with four beacons at the corners. The mobile robot
runs a path shown in the figure. The path was designed
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FIGURE 4. Experimental setup for evaluating localization methods.
(a) Beacon setup and evaluated path. (b) Localizing target and
microphone pair configuration.

to include straight lined, curved lined and turning in the
area. The mobile robot runs on the straight line at a speed
of 0.25 m/s. The four beacons emit up-chirp signals at the dif-
ferent frequency ranges shown in Table 1. The beacons emit
signals continuously without interval. The received signals
at the microphones were separated by band-pass filters with
corresponding pass bands for each beacon. The band-pass
filters were implemented as 100-tap finite impulse response
filters. While the tap number is decreased from the previous
research to reduce calculation cost [29], it is enough for
separating the beacons. The bands of the filters were set at
(0.99fstart, 1.01fstop) for each beacon with frequency bands of
fstart–fstop (Hz). The cross-correlation function was calculated
for each microphone pair shown in Fig. 4. Experiment 1
was carried out without any obstacle or any reflective walls
close to the beacon. The robot traveled the path 10 times in
experiment 1. A cardboard box was placed in front of the
Beacon #1 in experiment 2 in order to evaluate the robustness
of the localization against NLOS. The robot traveled the path
for 10 times in the experiment 2. In experiment 3, reflective
walls were placed behind beacon #1 as shown in Fig. 4 in
order to evaluate the robustness of the localization against
strong reflective waves. The robot traveled the path 8 times

in experiment 3. For each condition, the proposed method
was applied to estimate the location of the mobile robot.
The proposed method estimated the location using two pairs
of microphones (4 microphones in total), or one pair of
microphones (2 microphones in total). The parameters of the
proposed method were set by a preliminary experiment. The
variations of the wheel rotation were set as σv = 0.3 m/s
and σω = 0.1 rad/s. The number of location candidates
were set as 1000. The proposed method was compared to a
previously proposed localization method using DOA and an
extended Kalman filter [29]. This previous method uses four
microphones to estimate a unique DOA. The true location
was measured with an optical tracking system. The system
consists of 18 cameras (OptiTrack Prime 41; OptiTrack) and
analysis software (Motive Body; OptiTrack). The frame rate
of the true location was 120 Hz. The estimation result at 5 Hz
was compared with the true location sampled at the closest
time.

The number of particles in the proposed method affects
the localization accuracy and computational cost. To examine
the effect of the number of particles, the computational time
and localization accuracy for different numbers of particles
were examined. The localization evaluation and computa-
tional time measurement were performed on a personal com-
puter (CPU: Intel Core i5-4670 (3.4 GHz); memory: 16 GB;
Operating System: Microsoft Windows 10).

For quantitatively examine the reverberation and reflection
of the environment, impulse responses and reverberation time
60 (RT60) were measured. The measurement was performed
with a microphone (Type 4939-A-011; B&K) and an ampli-
fier (Type 2690-0S2; B&K) located at the start point in Fig. 4.
A loudspeaker was located at the location of the sound
source #1. A log-swept-sine signal with a sweep time of 5 sec-
ond from 0 Hz to 50 kHz was used for the measurement of the
impulse response. The signal was generated from an AD/DA
converter (NI USB-6221 BNC; National Instruments) at a
sampling frequency of 100 kHz. Then the signal was supplied
to the loudspeaker through a first-order low pass filter with a
cutoff frequency of 50 kHz and an audio amplifier (AP05;
Fostex). The signal was measured with the microphone and
the AD/DA converter at a sampling frequency of 100 kHz.
The measured signal was processed on a personal computer
to obtain impulse response. For a better signal-to-noise ratio,
the measurement was performed for 100 times and the mea-
sured signals were synchronously added. The energy decay
curve was measured as a Schroeder’s integration of the mea-
sured impulse response. The RT60 was measured as 3 times
−20 dB decay time from −10 dB to −30 dB of the energy
decay curve. The above procedure was performed with and
without the reflective walls shown in Fig. 4.

The measured energy decay curves and impulse responses
with and without the walls are shown in Fig. 5. The
RT60 without the wall was 1.62 s and that with the wall
was 1.51 s. While these two were slightly different, the rever-
beration can be regarded almost equal for both conditions.
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FIGURE 5. Experimental condition of reverberation and reflection.
(a) Energy decay curve without the wall, (b) energy decay curve with the
wall, (c) close-up of the impulse response without the wall, (d) close-up
of the impulse response with the wall.

On the other hand, the reflective waves were different as
confirmed in Fig. 5(c)(d). The impulse response without the
wall in Fig. 5(c) showed two significant peaks. These peaks
correspond to the direct wave and a reflective wave from the
nearest wall of the building. On the other hand, The impulse
response with the wall in Fig. 5(d) showed more significant
peaks than that without the wall. These peaks were made
with the wall andmay cause problemwith direction-of-arrival
estimation.

IV. RESULTS AND DISCUSSION
A. EXPERIMENT 1: WITHOUT AN NLOS BEACON
OR STRONG REFLECTIVE WAVES
An example of the localization result is shown in Fig. 6, and
the localization results for each method are shown in Fig. 7.
In Fig. 6(a), it is confirmed that all methods estimate the
location without diverging. The boxplot in Fig. 7(a) shows
that all methods estimate the location approximately within
the accuracy of 1 m. The localization error is relatively large
for the previous method with deterministic DOA estimation.
The outliers of the error are especially large for the previous
method. The 90th percentile errors shown in Fig. 7(b) were
0.21 m for the proposed method with two microphones,
0.19 m for the proposed method with four microphones, and
0.23 m for the previous method. As shown in the Fig. 6(a),
the previous method sometimes jumps from the location. The
cause of this error is misdetection of the DOA and local-
ization with an incorrect assumption of the location. On the
other hand, the proposed method does not have such outliers
and the localization result is smoother than in the previous
method. This reduction of outliers is possible using the fea-
tures of the proposed method. The proposed method does
not assume deterministic DOA, and it is possible to estimate
the true location even if the peak of the cross-correlation
function does not correspond to the true DOA. Compar-
ing the two results from the proposed methods, the results
with four microphones achieve lower localization error. It is
considered that the location likelihood is less ambiguous
when four microphones are used, as extra information is
obtained. Note that the previously proposed methods cannot
estimate the location using only two microphones. Although
the proposed method with two microphones has larger error
than that with four microphones, it still has less error than

FIGURE 6. An example of the localization result of each method in experiment 1. (a) Localization results for each method. (b) An example of the location
likelihood p(xi (t)|R) at the point s. Panel (c) shows the location likelihood at the point s only with the beacon #1 p(xi (t)|R1

1 )p(xi (t)|R1
2 ), (d) shows that

with the beacon #2 p(xi (t)|R2
1 )p(xi (t)|R2

2 ), (e) shows that with the beacon #3 p(xi (t)|R3
1 )p(xi (t)|R3

2 ), and (f) shows that with the beacon #4
p(xi (t)|R4

1 )p(xi (t)|R4
2 ).
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FIGURE 7. Localization error of experiment 1. (a) Box plot of the
localization error. (b) Cumulative distribution functions of the localization
error.

the previous method with deterministic DOA detection. The
location likelihood map calculated from the signals recorded
at the start point s is shown in Figs. 6(c)-(f). The limitation of
the proposed method is determined by the bandwidth of the
beacon signal. The envelope of the cross-correlation function
of a chirp signal with bandwidth of fb Hz has a main lobe
with a width of 1/fb Hz [36]. In this study, the bandwidths
were 2 kHz for each beacon. The corresponding width of the
main lobe of the cross-correlation function is 0.5 ms. On the
other hand, the maximum time lag of microphone pair signals
was dj/c = 0.76 ms and this time lag corresponds to±90 deg
of DOA. Although the ratio is not linear, the expected width
of the location likelihood is approximately 0.5 ms/0.76 ms=
66% of the maximum time lag. This expected width corre-
sponds to approximately ±59 deg of the location likelihood.
The likelihood maps in Figs. 6(c)-(f) have approximately this
width and are reasonable when compared to the expected
width of the high likelihood location. The wider spread of
the location likelihood from the theoretical angle can be
understood as effects of a reflective wave and reverberation

in the room as shown in Fig. 5. Although further experi-
ments are expected on this topic to improve the accuracy,
we focus on the robustness of the proposed method in this
paper.

B. EXPERIMENT 2: WITH AN NLOS BEACON
A representative localization result is shown in Fig. 8, and
the localization results for each method are shown in Fig. 9.
The localization errors of each method were slightly
increased from experiment 1 by the no-line-of-sight condition
caused by the cardboard box. In Fig. 9(a), the localization
error of the outliers of the previous method were increased
from approximately 1.1 m to 1.4 m. The proposed methods
also increased the localization error, but the error showed
resilience, since it was still below the error in the previous
method. The 90th percentile errors shown in Fig. 9(b) were
0.23 m for the proposed method with two microphones,
0.19 m for the proposed method with four microphones,
and 0.31 m for the previous method. From these results,
both methods achieve localization without catastrophic error.
Under the NLOS condition, it is not possible to correctly
estimate the DOA by means of a deterministic approach.
The previous method calculates inconsistencies of the two
microphone pairs and reflects them to the localization by
adjusting the location feedback constants [29]. The proposed
method achieves this robust localization without any spe-
cial calculations or fine-tuning of the method. In particu-
lar, the previously proposed NLOS mitigation technique is
not applicable for two microphones. The estimation results
were considered robust because the DOA was not measured
deterministically, which allowed the estimator to examine
possible locations. An example of the localization results is
shown in Fig. 8(a). The estimated path of the previous method

FIGURE 8. An example of the localization result for each method in experiment 2, in which a beacon is NLOS. (a) Localization results of each method.
(b) An example of the location likelihood p(xi (t)|R) at the point s. Panel (c) shows the location likelihood at the point s only with the beacon #1
p(xi (t)|R1

1 )p(xi (t)|R1
2 ), (d) shows that with the beacon #2 p(xi (t)|R2

1 )p(xi (t)|R2
2 ), (e) shows that with the beacon #3 p(xi (t)|R3

1 )p(xi (t)|R3
2 ), and (f) shows

that with the beacon #4 p(xi (t)|R4
1 )p(xi (t)|R4

2 ).

VOLUME 7, 2019 123123



S. Ogiso et al.: Robust Indoor Localization in Reverberant Environment

FIGURE 9. Localization error of experiment 2. (a) Box plot of the
localization error. (b) Cumulative distribution functions of the localization
error.

has some jumps in the localization similar to experiment 1.
Also, the location likelihood map calculated from the signals
recorded at the start point s is shown in Figs. 8(b)-(f). The
proposed method also has slight location error in the middle
of the path.

C. EXPERIMENT 3: WITH STRONG REFLECTIVE WAVES
The experimental results are shown in Fig. 11. The reflective
walls were placed behind beacon #1 under this condition.
The results in Fig. 11(a) confirm that there was a drastic
increase of the localization error is confirmed compared to
Fig. 7(a). This was caused by the significant reflective waves
generated by the reflective walls. In particular, the outliers of
the localization error of the previous method increased from
1.1 m to approximately 2 m. Also, the 90th percentile error of
the previous method increased from 0.31 m to 0.49 m. As for
the proposed method, although the maximum value of out-
liers increased from 0.7 m to 1.3 m for two microphones and
0.5 m to 1.2 m for four microphones, the 90th percentile error
only changed from 0.21m to 0.23 m for twomicrophones and

from 0.19 m to 0.23 m for four microphones. Figure 10(a)
shows a representative localization result. While the previous
method diverged from the true path, the proposed method
was relatively unaffected. The location likelihood map calcu-
lated from the signals recorded at the start point s is shown
in Figs. 10(b). Compared to those in the two experiments
above, the likelihood map shows a wide distribution of high
likelihood. The cause of this spread is the reflective waves
from the reflective walls behind beacon #1. The reflective
walls caused strong reflective waves and the waves were
recorded at the microphones as the correlated sounds from
different directions. As the reflective waves have high cor-
relations with the direct wave, the cross-correlation function
becomes a mixture of these signals and the peak spreads.
The previous approach does not consider this effect and
is not resilient against the multimodal correlation function
caused by the reflective waves. The proposed method uses
the entire cross-correlation function as location likelihood.
As shown in Fig. 10(c), the superposed likelihood of all
sounds shows the true location with a larger spread than
in Fig. 6(c). The location likelihoods of the inconsistent areas
were decreased, which rendered the proposed method robust
against reverberation.

D. RELATION OF LOCALIZATION ERROR AND
COMPUTATIONAL COST
The localization result of the proposed method is affected
by the number of particles. The localization accuracy and
robustness may increase if a large number of particles were
used. Instead, we found that a large number of particles
required a long computational time. Figures 12(a)-(c) and
Figs. 13(a)-(c) show the relationship between the number
of particles and the localization error for each experiment.
All the results show a trend in which the localization error

FIGURE 10. An example of the localization result of each method in experiment 3, in which a reflective wall was places just behind the beacons.
(a) Localization results of each method. (b) An example of the location likelihood p(xi (t)|R) at the point s. Panel (c) shows the location likelihood at the
point s only with the beacon #1 p(xi (t)|R1

1 )p(xi (t)|R1
2 ), (d) shows that with the beacon #2 p(xi (t)|R2

1 )p(xi (t)|R2
2 ), (e) shows that with the beacon #3

p(xi (t)|R3
1 )p(xi (t)|R3

2 ), (f) shows that with the beacon #4 p(xi (t)|R4
1 )p(xi (t)|R4

2 ).
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FIGURE 11. Localization error of experiment 3. (a) Box plot of the
localization error. (b) Cumulative distribution functions of the localization
error.

decreases as the number of particles increases. The number of
particles represents a resolution of the likelihoodmap approx-
imation. If the number of particles is low, the particles may
not exist around the location with maximum likelihood. For
this example, the localization errors converged if the number
of particles was larger than approximately 100. Although
the likelihood map depends on the layout of beacons and
microphone pairs, the robustness of the proposed method can
be discussed with the converged results in this experiment.
The converged localization errors may indicate the limitation
of the proposed method. Because we used 1000 particles in
the previous sections, the results were valid in term of con-
vergence of the localization error. Figure 12(d) and Fig. 13(d)
show the relationship between the number of particles and

the computational time. The computational time increases as
the number of particles increases. The lower bound of the
computational time is approximately 0.05 s with two micro-
phones and 0.08 s with four microphones in this case. Apart
from the specifications of the computer, the lower bound
of the computational time may be affected by the calcula-
tion of cross-correlation functions for each microphone pair.
The localization with two microphones requires the cross-
correlation function of one pair of microphone, which leads to
lower computational time compared to the four microphones.
The outliers of the computational time are considered the
effect of background processes of the computer. The compu-
tational cost of the particle filter algorithm is proportional to
the number of particles. If we expect the proposed method to
work in real time, the localization should be completed within
the sampling frequency of the location. As the sampling
frequency of the location is 5 Hz in this case, the proposed
method can be used with at least 1000 particles in real time.
Also, compared to the computational time of the previous
method, the time by the proposedmethod is the same or lower
than the previous method. This is especially true when two
microphones were used. In that case, the proposed method
requires the computation of cross-correlation function for
the single pair of the microphones, which leads to lower
computational time without compromising the localization
error. Since the localization error converges at this number
of particles, the results show the feasibility of the proposed
method.

FIGURE 12. Calculation time and localization error for different numbers of particles with two microphones. (a) Relationship between calculation time
and number of particles. Panels (b), (c) and (d) depict the relationship between the localization error and number of particles in experiment 1, 2 and 3,
respectively.

FIGURE 13. Calculation time and localization error for different numbers of particles with four microphones. (a) Relationship between calculation time
and number of particles. Panels (b), (c) and (d) depict the relationship between the localization error and number of particles in experiment 1, 2 and 3,
respectively.
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V. CONCLUSION
An indoor localization method with microphone pairs and
asynchronous acoustic beacons was proposed and evaluated
with experiments. The proposed method is based on the
location likelihood defined by the cross-correlation functions
of the microphone array pairs. There are two main contribu-
tions of the proposed method: the proposed method achieves
robust localization than deterministic DOA measurement;
the proposed method is applicable even with a two-channel
microphone pair, which is the minimal configuration of a
microphone array. The localization was implemented as a
particle filter algorithm. The proposed method was evalu-
ated with three experiments, which examined the localization
error without disturbance, the localization error with the dis-
turbance of non-line-of-sight and the localization error with
the disturbance of reflective walls. Four beacons were located
at the corner of a square area and emitted signals with a
bandwidth of 2 kHz continuously. A mobile robot with two
microphone pairs traveled in the area and its location was
estimated with the proposed method and a previous method
with deterministic DOA estimation. The result without dis-
turbances showed that the proposed method achieves the 90th
percentile of the localization error of 0.19 m and the previous
method achieves that of 0.39 m. Under the non-line-of-sight
condition, the 90th percentiles of the localization errors were
not changed, while the outliers were increased. With the
reflective walls, the previous method was greatly affected and
the 90th percentile of the localization error was 0.49 m. This
condition did not affect the proposed method as much as it
did the previous method, and the proposed method achieved
a 90th percentile localization error of 0.23 m. The reason for
the localization error degradation was the spread of the cross-
correlation function, which was fatal for the previous method
with a deterministic approach. These results thus showed that
the proposed method achieves robust localization by using
the location likelihood. Also, the localization error of the
proposed method was lower than that of the method using
DOA detection even with a pair of microphones. Further
studies on localization accuracy and the bandwidth of the
beacons are warranted.
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