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Linear logic (LL) was introduced by J.-Y. Girard in [Theor. Comput. Sci. 50, 1–102 (1987; Zbl 0625.03037)].
It was in [T. Ehrhard and L. Regnier, Theor. Comput. Sci. 309, No. 1–3, 1–41 (2003; Zbl 1070.68020);
ibid. 364, No. 2, 166–195 (2006; Zbl 1113.03054)] that introduced was Differential linear logic (DiLL),
natural models of which are required to find non-linear proofs interpreted by some classes of smooth
maps, paving the way towards new computational interpretations of functional analytic constructions
and a denotational interpretation of continuous or infinite data objects. A consequent categorical analy-
sis was carried out by Blute, Cockett and Seely in [R. F. Blute et al., Theory Appl. Categ. 22, 622–672
(2009; Zbl 1262.18004); Math. Struct. Comput. Sci. 16, No. 6, 1049–1083 (2006; Zbl 1115.03092)], giving
models of intuitionistic DiLL. This paper looks for models of classical DiLL, in which spaces should equal
some double dual.
The paper is divided into two parts. The first part (§2-§5) focuses on building several *-autonomous
categories. Identifying a proper notion of duality is indispensable for an interesting analytic tensor prod-
uct. From an analytical viewpoint, the inductive tensor product is too weak to deal with extensions to
completions, so that the weak dual or the Mackey dual, dealt with in [M. Kerjean, Log. Methods Comput.
Sci. 12, No. 1, Paper No. 3, 23 p. (2016; Zbl 06554179)] is not strong enough. The authors find that the
Arens dual and its strongly related tensor product called the ε-product exploited in [L. Schwartz, Ann.
Inst. Fourier 7, 1–141 (1957; Zbl 0089.09601); Ann. Inst. Fourier 8, 1–209 (1958; Zbl 0089.09801)] are
appropriate, being intimately related with nuclearity and Grothendieck’s approximation property. It is
shown that most of their general properties are nicely deducible from a very general *-autonomous cate-
gory explained at the end of §3. The first model the authors get is seriously lacking in self-duality of the
notion of locally convex space and notices that adjoining a bornology with weak compatibility conditions
enables one to get a framework in which building a *-autonomous category is almost tautological. In order
to obtain a *-autonomous category of locally convex spaces, one is required to impose some completeness
condition for associativity maps of the ε-product and then to make the Arens dual compatible with some
completion process with another duality functor of duals isomorphic to triple duals, which is exploited
in §3 and §4 to obtain two extreme cases. §5 aims complementarily to find a *-autonomous framework
that is well-suited for convenient smoothness, having to combine Mackey completeness with a Schwartz
space property. The authors investigate in more detail the two extreme cases again, correponding to
familiar functional analytic conditions, both invented by Grothendieck, namely Schwartz topologies and
the subclass of nuclear topologies. At the end of the first part, one has a kind of generic methodology in
producing *-autonomous categories of locally convex spaces from a kind of universal one dealt with in §2.
The second part (§6 and §7) develops a theory of variants of conveniently smooth maps being restricted
to allow for continuous and not only bounded differentials. Starting with the conventional smoothness
setting,§6 gives two denotational models of LL on the same *-autonomous category, with the same
cartesian closed category of conveniently smooth maps, but with two distinct comonads. The authors
use dialogue categories, but not via the models of tensor logic in [P.-A. Melliès and N. Tabareau, Ann.
Pure Appl. Logic 161, No. 5, 632–653 (2010; Zbl 1223.03048)], but rather with a variant in order to
retain cartesian closedness of the category equipped with non-linear maps as morphisms. §7 extend the
models in §6 to models of full DiLL. After merging dialogue categories with differential λ-categories of
[A. Bucciarelli et al., Electron. Notes Theor. Comput. Sci. 265, 213–230 (2010; Zbl 1342.68048)], the
authors give three different models of DiLL, one on k-reflexive spaces (§7.13) and two being on the same
of ρ-reflexive spaces with -smooth maps (§7.7), by remarking that the properties of ρ-smooth maps in
order to get a DiLL model are reducible to properties of conveniently smooth maps under the extra
continuity conditions on derivatives in a general categorical way.
The clarification of a natural way to get *-autonomous categories within an analytic setting suggests that
one should reconsider familiar models in [J.-Y. Girard, Theor. Comput. Sci. 227, No. 1–2, 275–297 (1999;
Zbl 0952.03025); Electronic Notes in Theoretical Computer Science 3, 7 p. (1996; Zbl 0909.68115)] from
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a more analytic viewpoint, leading the way to exploit the flourishing operator space theory in logic on
the lines of [J.-Y. Girard, Lond. Math. Soc. Lect. Note Ser. 316, 346–381 (2004; Zbl 1073.03036)]. The
strong interplay between logic, physics and functional analysis is indispensable with due regard to the
more and more extensive use of conventional analysis in the study of quantum gravity from a standpoint
of algebraic quantum field theory [R. Brunetti et al., Commun. Math. Phys. 345, No. 3, 741–779 (2016;
Zbl 1346.83001)]. DiLL wemt only part way in considering smooth maps on linear spaces, rather than
smooth maps on some type of smooth manifold. By providing well-behaved ?-monads, the authors suggest
to try using ?-algebras for k-reflexive or ρ-reflexive spaces as a starting point to capture better infinite
dimensional features than the usual Cahier topos. From a mathematical standpoint, this means merging
recent advances in derived geometry with infinite dimensional analysis. From a physical standpoint, this
suggests comparing recent homotopical approaches [M. Benini et al., Commun. Math. Phys. 359, No. 2,
765–820 (2018; Zbl 1423.14007)] with applications of the Batalin-Vilkovisky formalism [K. Fredenhagen
and K. Rejzner, Commun. Math. Phys. 317, No. 3, 697–725 (2013; Zbl 1263.81245); Commun. Math. Phys.
314, No. 1, 93–127 (2012; Zbl 1418.70034)]. From a logical standpoint, this entails comprehension of the
interplay between intuitionistic dependent type theory and linear logic. Since linear logic nicely captures
infinite dimensional features, this finally proposes a strong interplay between parametrized analysis in
homotopy theory and parametrized versions of linear logic [P.-L. Curien et al., in: Proceedings of the
43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’16,
St. Petersburg, FL, USA, January 20–22, 2016. New York, NY: Association for Computing Machinery
(ACM). 44–56 (2016; Zbl 1347.68078)].
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