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1 Statement of main results

Let Ω be a bounded domain of Euclidean space Rn, n ≥ 2, with smooth
boundary ∂Ω; its closure Ω = Ω ∪ ∂Ω is an n-dimensional, compact smooth
manifold with boundary.

First, we consider a second-order, uniformly elliptic integro-differential op-
erator W with real coefficients such that

Wu(x) = Au(x) + Su(x) for x ∈ Ω, (1.1)

where A is a second-order, differential operator given by the formula

Au(x) =

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) (1.2)

and S is a second-order, integro-differential operator given by the formula

Su(x) =

∫
Rn\{0}

(
u(x+ z)− u(x)−

n∑
k=1

zk
∂u

∂xk
(x)

)
K(x, z)µ(dz). (1.3)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ n, and there
exists a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0 |ξ|2 for all (x, ξ) ∈ Ω ×Rn.

(2) bi ∈ C∞(Ω) for all 1 ≤ i ≤ n.
(3) c ∈ C∞(Ω), and c(x) ≤ 0 in Ω, but c(x) ̸≡ 0 in Ω.
(4) K ∈ L∞(Rn ×Rn) with K(x, y) ≥ 0 almost everywhere in Rn ×Rn, and

satisfies the growth condition

H(θ0) := sup
x,z∈Rn

∫
Rn

|K(x+ h, z)−K(x, z)|2 dh

|h|n+2θ0
<∞ (1.4)

for some 0 < θ0 < 1

and the support condition

K(x, z) = 0 if x ∈ Ω and x+ z ̸∈ Ω. (1.5)

The support condition (1.5) implies that all jumps from Ω are within Ω.
The function K(x, z) is called the jump density (see [12, Chapter 2]).

(5) µ(dz) is a Radon measure on Rn \ {0} which has a density with respect to
the Lebesgue measure dz on Rn, and satisfies the moment condition ([19])∫

{0<|z|≤1}
|z|2 µ(dz) +

∫
{|z|>1}

|z| µ(dz) <∞. (1.6)
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The moment condition (1.6) implies that the measure µ(·) admits a singu-
larity of order 2 at the origin, and this singularity at the origin is produced
by the accumulation of small jumps of Markovian particles, while the mea-
sure µ(·) admits a singularity of order 1 at infinity, and this singularity
at infinity is produced by the accumulation of large jumps of Markovian
particles. The Radon measure K(x, z)µ(dz) is called the Lévy kernel.

Example 1.1 A typical example of the Radon measure µ(dz) which satisfies
the moment condition (1.6) is given by the formula

µ(dz) =


1

|z|n+2−ε
dz for 0 < |z| ≤ 1,

1

|z|n+1+ε
dz for |z| > 1,

where ε > 0.

Note that condition (1.5) guarantees that the operator S can be interpreted
as a mapping acting on functions u which are defined in Ω. In this sense, the
condition H(θ0) <∞ should be considered as a condition with respect to the
closure Ω.

The operator W is called a second-order, Waldenfels integro-differential
operator (cf. [40], [7]). The operator A is called a diffusion operator which
describes analytically a strong Markov process with continuous paths (diffu-
sion process) in the interior Ω ([32]). In fact, we remark that the differential
operator A is local, that is, the value Au(x0) at an interior point x0 ∈ Ω is
determined by the values of u in an arbitrary small neighborhood of x0. More-
over, it is known from Peetre’s theorem ([21]) that a linear operator is local
if and only if it is a differential operator. The operator S is called a second-
order, Lévy integro-differential operator which is supposed to correspond to the
jump phenomenon in the interior Ω; a Markovian particle moves by jumps to
a random point, chosen with kernel K(x, z), in the interior Ω ([18], [29], [25],
[17]). Therefore, the Waldenfels integro-differential operator W is supposed to
correspond to such a diffusion phenomenon that a Markovian particle moves
both by jumps and continuously in the state space Ω.

Secondly, we consider a first-order, boundary operator L with real coeffi-
cients such that

Lu(x′) = Λu(x′) + γ0(Tu)(x
′) for x′ ∈ ∂Ω, (1.7)

where Λu is a first-order boundary condition given by the formula

Λu(x′) = µ(x′)
∂u

∂n
(x′) + γ(x′)u(x′),

and γ0(Tu) is a first-order, integral operator defined by the formula

γ0(Tu)(x
′) = Tu(x′) =

∫
Rn\{0}

(u(x′ + z)− u(x′)) J(x′, z) ν(dz). (1.8)

Here:
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(1) µ ∈ C∞(∂Ω) and µ(x′) ≥ 0 on ∂Ω.
(2) γ ∈ C∞(∂Ω) and γ(x′) ≤ 0 on ∂Ω.
(3) n = (n1, n2, . . . , nn) is the unit inward normal to the boundary ∂Ω.
(4) J ∈ L∞(Rn ×Rn) with J(x, y) ≥ 0 almost everywhere in Rn ×Rn, and

satisfies the support condition

J(x, z) = 0 if x ∈ Ω and x+ z ̸∈ Ω. (1.9)

In view of formula (1.8), the support condition (1.9) implies that all jumps
from ∂Ω are within Ω. Moreover, the function J(x, z) satisfies the Lipschitz
condition with respect to the variable x for some C1 > 0

|J(x+ h, z)− J(x, z)| ≤ C1 |h| (1.10)

for all x, h ∈ Rn and almost all z ∈ Rn,

and its weak partial derivatives ∂J/∂xi ∈ L∞(Rn×Rn), 1 ≤ i ≤ n, satisfy
the growth condition

G(θ1) := sup
x,z∈Rn

∫
Rn

|∇xJ(x+ h, z)−∇xJ(x, z)|2
dh

|h|n+2θ1
<∞ (1.11)

for some 0 < θ1 < 1.

(5) ν(dz) is a Radon measure on Rn \ {0} which has a density with respect to
the Lebesgue measure dz on Rn, and satisfies the moment condition∫

{0<|z|≤1}
|z| ν(dz) +

∫
{|z|>1}

ν(dz) <∞. (1.12)

The moment condition (1.12) implies that the measure ν(·) admits a singular-
ity of order 1 at the origin, and this singularity at the origin is produced by
the accumulation of small jumps of Markovian particles.

Example 1.2 A typical example of the Radon measure ν(dz) which satisfies
the moment condition (1.12) is given by the formula

ν(dz) =


1

|z|n+1−ε
dz for 0 < |z| ≤ 1,

1

|z|n+ε
dz for |z| > 1,

where ε > 0.

Remark 1.1 It follows from Rademacher’s theorem (see [20, Chapter 1, Corol-
lary 1.73], [44, Theorem 2.2.1]) that any Lipschitz continuous function on Rn

admits L∞ first partial derivatives almost everywhere in Rn. Hence we may
assume that

C1 = ∥∇xJ∥∞
in condition (1.10).
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The boundary operator Λ is called a first-order, Vǐsik–Ventcel’ boundary
condition ([39], [41]) and the boundary operator γ0T is called a first-order,
Lévy–Ventcel’ boundary condition ([7]). The boundary operator L = Λ+ γ0T
is called a first-order, Ventcel’ boundary condition (see [41], [7]). The three
terms of L

µ(x′)
∂u

∂n
, γ(x′)u, Tu(x′)

are supposed to correspond to the reflection and absorption phenomena at the
boundary and the inward jump phenomenon from the boundary, respectively
([32]).

In this paper we impose the following hypothesis on the boundary condition
Λ:

µ(x′)− γ(x′) = µ(x′) + |γ(x′)| > 0 on ∂Ω. (1.13)

The intuitive meaning of the hypothesis (1.13) is that either the reflection phe-
nomenon or the absorption phenomenon occurs at every point of the boundary
∂Ω.

It should be emphasized that the boundary condition Λ is degenerate from
the viewpoint of elliptic boundary value problems. This is due to the fact that
the so-called Lopatinski–Shapiro ellipticity condition is violated at each point
x′ of the set ∂Ω0 = {x′ ∈ ∂Ω : µ(x′) = 0} (see [42, Section 11], [33, Section
6.6]). More precisely, the boundary condition Λ is non-degenerate (or coercive)
if and only if either µ(x′) > 0 on ∂Ω (the regular Robin case) or µ(x′) ≡ 0
and γ(x′) < 0 on ∂Ω (the Dirichlet case).

We give a simple example of the functions µ(x′) and γ(x′) in condition
(1.13) in Euclidean plane R2:

Example 1.3 Let

Ω =
{
(x1, x2) ∈ R2 : x21 + x22 < 1

}
be the unit disk with the boundary

∂Ω =
{
(x1, x2) ∈ R2 : x21 + x22 = 1

}
.

For a local coordinate system x1 = cos θ, x2 = sin θ with θ ∈ [0, 2π] on the
unit circle ∂Ω, we define two functions µ(x1, x2) and γ(x1, x2) as follows:

µ(x1, x2) = µ (cos θ, sin θ) =



e
2
π− 1

θ

(
1− e

2
π+ 1

θ−π
2

)
for θ ∈

[
0, π2

]
,

1 for θ ∈
[
π
2 , π

]
,

e
2
π+ 1

θ− 3π
2

(
1− e

2
π− 1

θ−π

)
for θ ∈

[
π, 3π2

]
,

0 for θ ∈
[
3π
2 , 2π

]
,

and

γ(x1, x2) := µ(x1, x2)− 1 on ∂Ω.
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1.1 The case where T ≡ 0

The first purpose of this paper is to prove an existence and uniqueness theorem
for the non-homogeneous boundary value problem{

Wu = (A+ S)u = f in Ω,

Λu = µ(x′) ∂u∂n + γ(x′)u = φ on ∂Ω
(1.14)

under condition (1.13) in the framework of Sobolev spaces H2+θ
p (Ω) and Besov

spaces B
1+θ−1/p
p,p (∂Ω) which will be introduced in Section 2.

The crucial point is how to define a version of Besov spaces in which prob-
lem (1.14) is uniquely solvable. In this subsection, following [30] and [33] we
introduce a suitable subspace of the classical Besov space B1+θ

p,p (∂Ω) which
corresponds to our boundary condition Λ under condition (1.13).

If condition (1.13) is satisfied, then we can define a modified Besov space
corresponding to Λ by the formula ([30], [33])

B
1+θ−1/p
p,p,⋆ (∂Ω) := µ(x′)B1+θ−1/p

p,p (∂Ω) + |γ(x′)|B2+θ−1/p
p,p (∂Ω)

=
{
φ = µ(x′)φ1 − γ(x′)φ2 : φ1 ∈ B1+θ−1/p

p,p (∂Ω), φ2 ∈ B2+θ−1/p
p,p (∂Ω)

}
.

The space B
1+θ−1/p
p,p,⋆ (∂Ω) is a Banach space with respect to the norm

∥φ∥
B

1+θ−1/p
p,p,⋆ (∂Ω)

= inf
{
∥φ1∥B1+θ−1/p

p,p (∂Ω)
+ ∥φ2∥B2+θ−1/p

p,p (∂Ω)
: φ = µ(x′)φ1 − γ(x′)φ2

}
.

The boundary space B
1+θ−1/p
p,p,⋆ (∂Ω) can be understood as an “interpolation

space” between the usual Besov spaces B
2+θ−1/p
p,p (∂Ω) and B

1+θ−1/p
p,p (∂Ω).

More precisely, we have the inclusions

B2+θ−1/p
p,p (∂Ω) ⊂ B

1+θ−1/p
p,p,⋆ (∂Ω) ⊂ B1+θ−1/p

p,p (∂Ω)

and the relations

B
1+θ−1/p
p,p,⋆ (∂Ω) = µ(x′)B1+θ−1/p

p,p (∂Ω) + |γ(x′)|B2+θ−1/p
p,p (∂Ω)

=

{
B

2+θ−1/p
p,p (∂Ω) if µ(x′) = 0 on ∂Ω (the Dirichlet case),

B
1+θ−1/p
p,p (∂Ω) if µ(x′) > 0 on ∂Ω (the regular Robin case)

under condition (1.13).
Now we are in position to state our existence and uniqueness result for the

boundary value problem (1.14):

Theorem 1.1 Let n < p < ∞. Assume that conditions (1.4) through (1.6)
and condition (1.13) are satisfied. Then the mapping

(W,Λ) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B
1+θ−1/p
p,p,⋆ (∂Ω) (1.15)
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is an algebraic and topological isomorphism for all 0 ≤ θ < θ0. In particular,
there exists a unique solution u ∈ H2+θ

p (Ω) of the non-homogeneous problem

(1.14) for any f ∈ Hθ
p (Ω) and any φ ∈ B

1+θ−1/p
p,p,⋆ (∂Ω).

The proof of Theorem 1.1 will be carried out in several steps. First, in
Section 3 we prove some mapping properties of Lévy integro-differential oper-
ators defined on Rn (Theorem 3.1) and on Ω (Theorem 3.2), respectively. In
the second part of Theorem 3.2, we derive a compactness result for the Lévy
operator S. More precisely, we prove that the integral operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is compact for all 0 ≤ θ < θ0, if n < p <∞. Consequently, the mapping

(W,Λ) = (A+ S,Λ) = (A,Λ) + (S, 0)

is a compact perturbation of the operator (A,Λ). Thus we are reduced to the
study of the case where S ≡ 0. However, by virtue of [30, Theorem 1] and [33,
Theorem 1.1] we can prove that the mapping

(A,Λ) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B
1+θ−1/p
p,p,⋆ (∂Ω)

is an algebraic and topological isomorphism for all 0 ≤ θ < θ0 (Theorem 4.1)
in Section 4. Hence, by using a fundamental result of the index theory we
obtain that

ind (W,Λ) = ind (A,Λ) = 0.

Indeed, it is known (see [15, Theorem 2.6], [26, Theorem 5.10]) that the in-
dex is stable under compact perturbations. By using the maximum principles
(Theorem 6.2 and Lemma 6.1) proved in the last Section 6, we find that (W,Λ)
is injective (Theorem 4.2). In this way, we can prove that the mapping (W,Λ)
is bijective. Finally, the continuity of the inverse of the mapping (W,Λ) follows
immediately from an application of Banach’s closed graph theorem ([26, The-
orem 3.10], [43, Chapter II, Section 6, Theorem 1]), since the mapping (W,Λ)
is continuous.

Remark 1.2 Some remarks are in order.

1◦ Problem (1.14) with non-degenerate boundary conditions was studied ex-
tensively by Bony–Courrège–Priouret ([7, Théorème XVII]) in the frame-
work of Hölder spaces C2+θ(Ω), 0 < θ < θ0. In this case, instead of our
hypothesis H(θ0) <∞, they consider the following Hölder continuity con-
dition:

A(θ0) = sup
h,x,z∈Rn

(
|K(x+ h, z)−K(x, z)|

|h|θ0

)
<∞. (1.16)

These results were extended by Bony [5] to the usual Sobolev spaces
W 2,p(Ω) for n < p <∞.
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2◦ In the previous works of Taira [30], [31] and [33], we studied problem (1.14)
with degenerate boundary conditions under the condition A(θ0) < ∞. It
should be emphasized that A(θ0) <∞ impliesH(θ) <∞ for all 0 ≤ θ < θ0,
while H(θ0) <∞ implies A(θ0) <∞ (Lemma 2.5) in Section 2.

3◦ Theorem 1.1 is proved by Runst–Youssfi [24, Theorem 1.1], assuming the
Hopf boundary point lemma for second-order, elliptic Waldenfels integro-
differential operators with discontinuous coefficients. The present paper is
the first time to prove precisely the existence and uniqueness theorem for
the boundary value problem (1.14).

1.2 The general case

The second purpose of this paper is to prove an existence and uniqueness
theorem for the non-homogeneous Ventcel’ boundary value problem{

Wu = (A+ S)u = f in Ω,

Lu = (Λ+ γ0T )u = φ on ∂Ω
(1.17)

in the framework of Sobolev spaces H2+θ
p (Ω) and Besov spaces B

1+θ−1/p
p,p (∂Ω).

Here γ0T is a first-order, Lévy–Ventcel’ boundary operator defined by formula
(1.8). We study the Ventcel’ boundary value problem (1.17) under a strong
condition (compared with condition (1.13))

µ(x′) > 0 on ∂Ω. (1.18)

It should be emphasized that

B
1+θ−1/p
p,p,⋆ (∂Ω) = B1+θ−1/p

p,p (∂Ω) if µ(x′) > 0 on ∂Ω.

Now we can state our existence and uniqueness result for the Ventcel’
boundary value problem (1.17):

Theorem 1.2 Let 0 < θ0 < 1 and n < p < ∞. Assume that conditions (1.4)
through (1.6), conditions (1.9) through (1.12) and condition (1.18) are satisfied.
Then the mapping

(W,L) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B1+θ−1/p
p,p (∂Ω) (1.19)

is an algebraic and topological isomorphism for all 0 ≤ θ < min{θ0, θ1}. In
particular, there exists a unique solution u ∈ H2+θ

p (Ω) of the Ventcel’ boundary

value problem (1.17) for any f ∈ Hθ
p (Ω) and any φ ∈ B

1+θ−1/p
p,p (∂Ω).

The proof of Theorem 1.2 goes through just as in Section 4. In fact, in
Section 5 we prove that the Lévy–Ventcel’ boundary operator

γ0T : H2+θ
p (Ω) −→ B1+θ−1/p

p,p (∂Ω)
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is compact for all 0 ≤ θ < min{θ0, θ1} if n < p < ∞ (Theorem 5.2). Namely,
we find that the mapping

(W,L) = (W,Λ) + (0, γ0T ) : H
2+θ
p (Ω) −→ Hθ

p (Ω)⊕B1+θ−1/p
p,p (∂Ω)

is a compact perturbation of the operator (W,Λ) under condition (1.18).
Therefore, we have the index formula

ind (W,L) = ind (W,Λ) = 0,

since the index is stable under compact perturbations. In this way, we are
reduced to the study of the mapping (W,Λ) (Theorem 1.1). By using the Hopf
boundary point lemma (Lemma 6.1). we prove that the mapping (W,L) is
injective and hence bijective (Theorem 5.3).

Remark 1.3 Some remarks are in order.

1◦ It should be noticed that Theorem 1.2 is a generalization of Bony–Cou-
rrège–Priouret [7, Théorème XVII], Taira [30, Theorem 1] and Runst–
Youssfi [24, Theorem 1.1] to a class of first-order Ventcel’ boundary value
problems for elliptic Waldenfels operators.

2◦ The Vǐsik–Ventcel’ boundary value problem (1.17) was studied by Ander-
son [2], [3], Cattiaux [9] and Takanobu–Watanabe [35] from the viewpoint
of stochastic analysis (see also Ikeda–Watanabe [16, Chapter IV, Section
7]).

Finally, we give an overview of existence and uniqueness theorems for the
problem (1.17) proved by Bony–Courrège–Priouret [7] and by Taira [30] in the
framework of Hölder spaces and by Runst–Youssfi [24] in the framework of
Sobolev and Besov spaces of Lp type (see Table 1.1).

2 Functions spaces

In this section, all functions and distributions are defined on Euclidean space
Rn. As usual, S(Rn) denotes the Schwartz space of rapidly decreasing func-
tions and its dual space S ′(Rn) is the space of tempered distributions on Rn.

For a distribution f ∈ S ′(Rn), f̂ denotes the Fourier transform of f .

In Subsection 2.1 we characterize Lp functions by their Littlewood–Paley
series (formula (2.3)). In Subsection 2.2 we give Peetre’s equivalent definition
of Besov spaces and generalized Sobolev spaces (Theorem 2.1). In Subsection
2.3 we characterize generalized Sobolev spaces Hs

p in terms of Strichartz’s
norms (Lemma 2.3). Moreover, we prove important relationships between the
conditions H(θ0) and A(θ0) (Lemma 2.5).
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W = A+ S L = Λ+ T studied by

K ∈ C(Ω ×Rn) µ > 0 on ∂Ω Bony–Courrège–Priouret [7]
A(θ0) < ∞ T is of order 1 (Théorème XVII)

K ∈ C(Ω ×Rn) µ− γ > 0 on ∂Ω Taira [30]
A(θ0) < ∞ T ≡ 0 (Theorem 1)

K ∈ L∞(Rn ×Rn) µ− γ > 0 on ∂Ω the present paper
H(θ0) < ∞ T ≡ 0 (Theorem 1.1)

K ∈ L∞(Rn ×Rn) µ > 0 on ∂Ω the present paper
H(θ0) < ∞ T is of order 1 (Theorem 1.2)

J ∈ L∞(Rn ×Rn)
G(θ1) < ∞

Table 1.1 An overview of existence and uniqueness theorems for problem (1.17)

2.1 The Littlewood–Paley series of tempered distributions

In this subsection we characterize Lp functions by their Littlewood–Paley se-
ries. We begin with the following elementary lemma (cf. [4, Lemma 6.1.7]):

Lemma 2.1 For a given constant a > 1, there exists a function φ(ξ) ∈
C∞

0 (Rn) such that

supp φ =

{
ξ ∈ Rn :

1

a
≤ |ξ| ≤ a

}
, (2.1a)∑

j∈Z

φ(a−j ξ) = 1 for all ξ ̸= 0. (2.1b)

Furthermore, if we define a function ψ0(ξ) by the formula

ψ0(ξ) =

0∑
j=−∞

φ(a−j ξ), ξ ∈ Rn,

then it follows from properties (2.1a) and (2.1b) that

ψ0 ∈ C∞
0 (Rn), (2.2a)

supp ψ0 = {ξ ∈ Rn : |ξ| ≤ a} , (2.2b)

ψ0(ξ) = 1−
∞∑
j=1

φ(a−j ξ) for all ξ ̸= 0. (2.2c)
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Now, by using the Fourier transform we can introduce a family of linear
convolution operators

∆0 : S ′(Rn) −→ S ′(Rn),

∆j : S ′(Rn) −→ S ′(Rn), j = 1, 2, . . . ,

by the formulas

∆̂0f(ξ) = ψ0(ξ)f̂(ξ),

∆̂jf(ξ) = φ(a−j ξ)f̂(ξ), j = 1, 2, . . . .

Then, by properties (2.1) and (2.2) it is easy to see that

f =

∞∑
j=0

∆jf for f ∈ S ′(Rn). (2.3)

Indeed, it suffices to note that, for all ξ ̸= 0,

∞∑
j=0

∆̂jf(ξ) = ∆̂0f(ξ) +

∞∑
j=1

∆̂jf(ξ) =

(∑
j∈Z

φ(a−j ξ)

)
f̂(ξ) = f̂(ξ).

The series (2.3) is called the Littlewood–Paley series of f .

2.2 Peetre’s definition of Besov and generalized Sobolev spaces

In this subsection, following Bergh–Löfström [4] we give Peetre’s equivalent
definition of Besov spaces and generalized Sobolev spaces.

To do this, we choose a = 2 in Lemma 2.1. Namely, φ(ξ) is a function in
C∞

0 (Rn) which satisfies the conditions

supp φ =

{
ξ ∈ Rn :

1

2
≤ |ξ| ≤ 2

}
, (2.4a)∑

k∈Z

φ(2−k ξ) = 1 for all ξ ̸= 0. (2.4b)

Then we can define functions φk(x), ψ(x) ∈ S(Rn) by the formulas

φ̂k(ξ) = φ(2−k ξ), k ∈ Z,

ψ̂(ξ) = ψ0(ξ) = 1−
∞∑
j=1

φ(2−j ξ).

It should be noticed that

supp φ̂k =
{
ξ ∈ Rn : 2k−1 ≤ |ξ| ≤ 2k+1

}
, k ∈ Z,

supp ψ̂ = {ξ ∈ Rn : |ξ| ≤ 2} .
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If s ∈ R, we define the Bessel potential Js by the formula (see [28])

Js = (I −∆)
s/2

: S ′(Rn) −→ S ′(Rn).

More precisely, we let

Jsf = F∗
((

1 + |ξ|2
)s/2

f̂(ξ)
)

for f ∈ S ′(Rn).

Then we have the following basic properties of the objects just defined (see
[4, Lemma 6.2.1]):

Lemma 2.2 (i) Assume that a distribution f ∈ S ′(Rn) satisfies the condition

φk ∗ f ∈ Lp(Rn), k ∈ Z,

with 1 ≤ p ≤ ∞. Then we have, for all s ∈ R,

∥Js(φk ∗ f)∥Lp(Rn) ≤ C 2sk ∥φk ∗ f∥Lp(Rn), k = 1, 2, . . . ,

with a constant C > 0 independent of p and k.
(ii) If a distribution f ∈ S ′(Rn) satisfies the condition

ψ ∗ f ∈ Lp(Rn),

with 1 ≤ p ≤ ∞, then we have, for all s ∈ R,

∥Js(ψ ∗ f)∥Lp(Rn) ≤ C ′ ∥ψ ∗ f∥Lp(Rn),

with a constant C ′ > 0 independent of p and k.

Now, by virtue of Lemma 2.2 we can make the following definition 2.1 of
the Besov and generalized Sobolev spaces (see [4, Definition 6.2.2]):

Definition 2.1 Let s ∈ R, and 1 ≤ p, q ≤ ∞. If f ∈ S ′(Rn), we let

∥f∥Bs
p,q(R

n)

=

{
∥ψ ∗ f∥Lp(Rn) +

(∑∞
k=1

(
2sk ∥φk ∗ f∥Lp(Rn)

)q)1/q
if 1 ≤ q <∞,

∥ψ ∗ f∥Lp(Rn) + supk≥1

(
2sk ∥φk ∗ f∥Lp(Rn)

)
if q = ∞,

and

∥f∥Hs
p(R

n) = ∥Jsf∥Lp(Rn).

Then the Besov space Bs
p,q(R

n) and the generalized Sobolev space Hs
p(R

n) are
defined respectively as follows:

Bs
p,q(R

n) =
{
f ∈ S ′(Rn) : ∥f∥Bs

p,q(R
n) <∞

}
,

Hs
p(R

n) =
{
f ∈ S ′(Rn) : ∥f∥Hs

p(R
n) <∞

}
.
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Remark 2.1 It is known (see Bergh–Löfström [4], Triebel [36, Chapter 2]) that
the Sobolev space Hs,p(Rn) and the usual Besov space Bs,p(Rn−1) are re-
spectively equivalent to the following:

Hs,p(Rn) = Hs
p(R

n) for all s ∈ R and 1 < p <∞,

Bs,p(Rn−1) = Bs
p,p(R

n−1) for all s ∈ R and 1 ≤ p ≤ ∞.

It should be noticed that

H0
p (R

n) = Lp(Rn) for all 1 ≤ p ≤ ∞.

Furthermore, it is easy to verify the following two assertions (I) and (II) ([36,
Chapter 2]):

(I) The function spaces Bs
p,q(R

n) and Hs
p(R

n) are Banach spaces with the
norms ∥ · ∥Bs

p,q(R
n) and ∥ · ∥Hs

p(R
n), respectively.

(II) The Bessel potential Jσ maps Bs
p,q(R

n) isomorphically onto Bs−σ
p,q (Rn) for

each σ ∈ R, and it maps Hs
p(R

n) isomorphically onto Hs−σ
p (Rn) for each

σ ∈ R, respectively.

The next theorem characterizes the spaces Bs
p,q(R

n) and Hs
p(R

n) in terms
of the Littlewood–Paley series (see [4, Theorem 6.4.3]):

Theorem 2.1 We have the following characterizations of the spaces Bs
p,q(R

n)
and Hs

p(R
n):

(i) Let s ∈ R and 1 < p <∞. Then we have, for any f ∈ S ′(Rn),

f ∈ Hs
p(R

n) ⇐⇒
( ∞∑

j=0

22sj |∆jf |2
)1/2

∈ Lp(Rn).

(ii) Let s ∈ R and 1 ≤ p, q ≤ ∞. Then we have, for any f ∈ S ′(Rn),

f ∈ Bs
p,q(R

n) ⇐⇒
∞∑
j=0

2sqj ∥∆jf∥Bs
p,q(R

n) <∞.

We remark that

Hs
p(R

n) ⊂ Bs
p,∞(Rn)

and that

Bs′

p,∞(Rn) ⊂ Hs
p(R

n) if s < s′.

Now let Ω be a bounded domain in Rn with smooth boundary ∂Ω. In
order to define function spaces on Ω, we make use of restriction arguments
(see [36, Chapter 3]).

Let D′(Ω) be the space of distributions on Ω. Then we let

Hs
p(Ω) =

{
f ∈ D′(Ω) : f = g|Ω for some g ∈ Hs

p(R
n)
}
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with the norm

∥f∥Hs
p(Ω) = inf

{
∥g∥Hs

p(R
n) : g|Ω = f for g ∈ Hs

p(R
n)
}
.

Similarly, we define the Besov space

Bs
p,q(Ω) =

{
f ∈ D′(Ω) : f = g|Ω for some g ∈ Bs

p,q(R
n)
}

with the norm

∥f∥Bs
p,q(Ω) = inf

{
∥g∥Bs

p,q(R
n) : g|Ω = f for g ∈ Bs

p,q(R
n)
}

(see, for example, [37] and [23]).

2.3 Generalized Sobolev spaces and Strichartz’s norms

For the proof of Theorem 1.1, we make use of the following characterization
of generalized Sobolev spaces Hs

p in terms of Strichartz’s norms, which may
be found, for example in [37, p. 194, Theorem 3.5.3].

Lemma 2.3 Let 0 < s < 1 and 1 < p <∞. Then the quantity

Ns
p (g) = ∥g∥Lp(Rn) + ∥Ls(g)∥Lp(Rn)

defines an equivalent norm on the Sobolev space Hs
p(R

n), where

Ls(g)(x) (2.5)

=


(∫

Rn |g(x+ h)− g(x)|2 dh
|h|n+2s

)1/2
if p ≥ 2,(∫∞

0

(∫
{0<|h|≤1} |g(x+ th)− g(x)| dh

)2
dt

t1+2s

)1/2

if 1 < p < 2.

Moreover, we need the following lemma:

Lemma 2.4 Let 1 < p <∞ and 0 ≤ γ ≤ 1. If we let

Th(f)(x) := f(x+ h)− f(x),

then there exists a constant C > 0, depending on γ, such that

∥Th(f)∥Hγ
p (Rn) ≤ C |h| ∥f∥H1+γ

p (Rn) (2.6)

for all f ∈ H1+γ,p(Rn) (see Figure 2.1).
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H1
p(R

n)
Th−−−−−→ Lp(Rn)x x

H1+γ
p (Rn)

Th−−−−−→ Hγ
p (R

n)x x
H2

p(R
n) −−−−−→

Th

H1
p(R

n)

Fig. 2.1 The mapping properties of Th for 1 < p < ∞ and 0 ≤ γ ≤ 1 in Lemma 2.4

Proof The proof of Lemma 2.4 is divided into three steps.

Step (1): The case where γ = 0 (cf. Ziemer [44, Theorem 2.1.6]). We have
only to show that

∥f(·+ h)− f(·)∥Lp(Rn) ≤ |h| ∥∇f∥Lp(Rn) for all f ∈ C∞
0 (Rn), (2.7)

since the space C∞
0 (Rn) is dense in H1

p (R
n) =W 1,p(Rn).

To do so, we make use of the formula for h ̸= 0

f(x+ h)− f(x)

|h|
=

1

|h|

∫ |h|

0

d

dt

(
f

(
x+ t

h

|h|

))
dt (2.8)

=
1

|h|

∫ |h|

0

∇f
(
x+ t

h

|h|

)
· h
|h|

dt.

Therefore, by applying Minkowskii’s inequality for integrals (see [11, p. 194,
Theorem 6.19]) to formula (2.8) we obtain that

∥f(·+ h)− f(·)∥Lp(Rn)

|h|

≤ 1

|h|

∫ |h|

0

∥∥∥∥∇f (·+ t
h

|h|

)∥∥∥∥
Lp(Rn)

dt =
1

|h|

∫ |h|

0

∥∇f∥Lp(Rn) dt

= ∥∇f∥Lp(Rn) .

This proves the desired inequality (2.7).

Step (2): The case where γ = 1. We remark that

∥Th(f)∥H1
p(R

n) ≤ C

( n∑
j=1

∥∥∥∥∂Th(f)∂xj

∥∥∥∥
Lp(Rn)

+ ∥Th(f)∥Lp(Rn)

)
(2.9)

≤ C

( n∑
j=1

∥∥∥∥Th( ∂f

∂xj

)∥∥∥∥
Lp(Rn)

+ ∥Th(f)∥Lp(Rn)

)
.
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However, it follows from Step (1) that∥∥∥∥Th( ∂f

∂xj

)∥∥∥∥
Lp(Rn)

+ ∥Th(f)∥Lp(Rn) (2.10)

≤ C |h|
(∥∥∥∥ ∂f∂xj

∥∥∥∥
H1

p(R
n)

+ ∥f∥Lp(Rn)

)
.

Therefore, by combining inequalities (2.9) and (2.10) we obtain the desired
inequality for γ = 1

∥Th(f)∥H1
p(R

n) ≤ C |h| ∥f∥H2
p(R

n) .

Step (3): The case where 0 < γ < 1. From Steps (1) and (2), we ob-
tain that the operator Th is bounded on H1

p (R
n) = W 1,p(Rn) into Lp(Rn)

and on H2
p (R

n) = W 2,p(Rn) into H1
p (R

n), respectively. Then, by using an
interpolation argument of linear operators we obtain that

Th : H
1+γ
p (Rn) −→ Hγ

p (R
n)

is bounded for all 0 < γ < 1, with the inequality

∥Th(f)∥Hγ
p (Rn) ≤ C |h| ∥f∥H1+γ

p (Rn) for all f ∈ H1+γ
p (Rn).

The proof of Lemma 2.4 is complete. ⊓⊔

The next lemma describes important relationships between the conditions
H(θ0) and A(θ0) (see [36], [23]):

Lemma 2.5 Let 0 < θ0 < 1. Then we have the following relationships between
conditions H(θ0) and A(θ0):

(i) There exists a constant C1(θ0) > 0 such that

sup
x,h∈Rn

(
|g(x+ h)− g(x)|

|h|θ0

)

≤ C1(θ0)

(
sup
x∈Rn

(∫
Rn

|g(x+ h)− g(x)|2 dh

|h|n+2θ0

)1/2

+ ∥g∥∞

)
for all g ∈ L∞(Rn).

(ii) Conversely, for every 0 ≤ θ < θ0 < 1 there exists a constant C2(θ) > 0
such that

sup
x∈Rn

(∫
Rn

|g(x+ h)− g(x)|2 dh

|h|n+2θ

)1/2

≤ C2(θ)

(
sup

x,h∈Rn

|g(x+ h)− g(x)|
|h|θ0

+ ∥g∥∞

)
for all g ∈ L∞(Rn).

(iii) If K ∈ L∞(Rn ×Rn), then we have the following two assertions:
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(a) H(θ0) <∞ implies that A(θ0) <∞.
(b) A(θ0) <∞ implies that H(θ) <∞ for all 0 ≤ θ < θ0.

Proof Indeed, we have, for 0 < s < 1,

∥g∥Bs
∞,∞

= ∥g∥∞ + sup
x,h∈Rn

|g(x+ h)− g(x)|
|h|s

and

∥g∥Bs
∞,2

= ∥g∥∞ + sup
x∈Rn

(∫
Rn

|g(x+ h)− g(x)|2 dh

|h|n+2s

)1/2

.

Therefore, the lemma follows from the embeddings (see [36, Section 2.7])

Bθ0
∞,2(R

n) ⊂ Bθ0
∞,∞(Rn) ⊂ Bθ

∞,2(R
n) for 0 ≤ θ < θ0.

The proof of Lemma 2.5 is complete. ⊓⊔

3 Mapping properties of Lévy operators

In this section we prove some mapping properties of Lévy integro-differential
operators defined on Rn (Theorem 3.1) in Subsection 3.1 and on Ω (Theorem
3.2) in Subsection 3.2, respectively.

3.1 Boundedness of Lévy operators defined on Rn

In this subsection, we consider the Lévy integro-differential operator

Su(x) =

∫
Rn\{0}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz),

and prove that the Lévy operator

S : Hθ+2
p (Rn) −→ Hθ

p (R
n)

is bounded for all 1 < p <∞.
Our main result in this section is stated as follows:

Theorem 3.1 Let 1 < p < ∞ and 0 < θ0 < 1. Assume that the growth
condition (1.4) and the moment condition (1.6) are satisfied. Then the Lévy
operator

S : H2+θ
p (Rn) −→ Hθ

p (R
n)

is bounded for all 0 ≤ θ ≤ θ0. Namely, there exists a constant C > 0, depending
on p and θ, such that

∥Su∥Hθ
p(R

n) ≤ C ∥u∥H2+θ
p (Rn) for all u ∈ H2+θ

p (Rn), (3.1)
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Remark 3.1 By part (iii) of Lemma 2.5, we find that H(θ) < ∞ for all 0 ≤
θ ≤ θ0.

Theorem 3.1 is proved by Taira [30, Lemmas 1.6 and 1.7] in the framework
of Hölder spaces under the condition A(θ0) < ∞. In this paper we give a
simpler proof by using real analysis techniques.

First, we shall show that the mapping S can be considered as a bounded
operator from H2,p(Rn) to Lp(Rn) (the case θ = 0). More precisely, we shall
prove the inequality

∥Su∥Lp(Rn) (3.2)

≤ C ∥K∥∞

(∫
{|z|>1}

|z|µ(dz) +
∫
{0<|z|≤1}

|z|2 µ(dz)
)
∥u∥H2

p(R
n)

for all u ∈ H2
p (R

n).

Secondly, we shall show the inequality

∥Lθ(Su)∥Lp(Rn) (3.3)

≤ C (∥K∥∞ +H(θ))

(∫
{|z|>1}

|z|µ(dz) +
∫
{0<|z|≤1}

|z|2 µ(dz)
)
∥u∥Hθ+2

p (Rn)

for all u ∈ H2+θ
p (Rn),

where

Lθ(Su)(x) =

(∫
Rn

|Su(x+ h)− Su(x)|2

|h|n+2θ
dh

)1/2

, 0 < θ ≤ θ0.

By virtue of Lemma 2.3, the desired inequality (3.1) follows from inequal-
ities (3.2) and (3.3).

3.1.1 The estimate of ∥Su∥Lp(Rn) for θ = 0

In order to prove the Lp–boundedness, we write Su(x) in the form

Su(x) = S1u(x) + S2u(x).

Here:

S1u(x) :=

∫
{|z|>1}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz),

S2u(x) :=

∫
{0<|z|≤1}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz).

(1) First, we estimate the norm ∥S1u∥Lp(Rn): If we let

g1(x) :=

∫
{|z|>1}

|u(x+ z)− u(x)| µ(dz)
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and

g2(x) :=

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣ ∫

{|z|>1}
|zj | µ(dz),

then we have the inequality

|S1u(x)| ≤ ∥K∥∞ (g1(x) + g2(x)) . (3.4)

However, it follows from an application of Minkowskii’s inequality for integrals
(see [11, p. 194, Theorem 6.19]) and inequality (2.6) with γ := 0 that

∥g1∥Lp(Rn) ≤
∫
{|z|>1}

(∫
Rn

|u(x+ z)− u(x)|p dx
)1/p

µ(dz) (3.5)

≤ C

(∫
{|z|>1}

|z|µ(dz)
)
∥u∥H1

p(R
n).

Moreover, we have the inequality

∥g2∥Lp(Rn) ≤
n∑

j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

( n∑
j=1

∫
{|z|>1}

|zj | µ(dz)
)

(3.6)

≤ C

(∫
{|z|>1}

|z|µ(dz)
)
∥u∥H1

p(R
n) .

By combining inequalities (3.4), (3.5) and (3.6), we obtain that

∥S1u∥Lp(Rn) ≤ ∥K∥∞

(
∥g1∥Lp(Rn) + ∥g2∥Lp(Rn)

)
(3.7)

≤ C ∥K∥∞

(∫
{|z|>1}

|z|µ(dz)

)
∥u∥H1

p(R
n) .

(2) In order to estimate the norm ∥S2u∥Lp(Rn), by using Taylor’s formula
we obtain that

u(x+ z)− u(x)−
n∑

k=1

zk
∂u

∂xk
(x) =

n∑
k=1

zk

∫ 1

0

(
∂u

∂xk
(x+ tz)− ∂u

∂xk
(x)

)
dt.

Hence we have the inequality

|S2u(x)| ≤ ∥K∥∞
n∑

k=1

∫ 1

0

∫
{0<|z|≤1}

|z|
∣∣∣∣ ∂u∂xk (x+ tz)− ∂u

∂xk
(x)

∣∣∣∣ µ(dz) dt.
By Minkowskii’s inequality for integrals, it follows that

∥S2u∥Lp(Rn) (3.8)

≤ C∥K∥∞

×
∫ 1

0

∫
{0<|z|≤1}

|z|
n∑

k=1

(∫
Rn

∣∣∣∣ ∂u∂xk (x+ tz)− ∂u

∂xk
(x)

∣∣∣∣p dx)1/pµ(dz) dt.
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However, by applying inequality (2.6) with γ := 0 we obtain tha6

n∑
k=1

(∫
Rn

∣∣∣∣ ∂u∂xk (x+ tz)− ∂u

∂xk
(x)

∣∣∣∣p dx)1/p

≤ Ct |z|
n∑

k=1

∥∥∥∥ ∂u∂xk
∥∥∥∥
H1

p(R
n)

≤ Ct |z| ∥u∥H2
p(R

n) for all 0 ≤ θ ≤ 1.

Therefore, we have, by inequality (3.8),

∥S2u∥Lp(Rn) ≤ C∥K∥∞∥u∥H2
p(R

n)

∫ 1

0

∫
{0<|z|≤1}

t|z|2 µ(dz) dt (3.9)

≤ C∥K∥∞
(∫

{0<|z|≤1}
|z|2 µ(dz)

)
∥u∥H2

p(R
n).

The desired inequality (3.2) follows by combining inequalities (3.7) and
(3.9):

∥Su∥Lp(Rn) ≤ ∥S1u∥Lp(Rn) + ∥S2u∥Lp(Rn)

≤ C ∥K∥∞

(∫
{|z|>1}

|z|µ(dz) +
∫
{0<|z|≤1}

|z|2 µ(dz)
)
∥u∥H2

p(R
n)

3.1.2 The estimate of ∥Lθ(Su)∥Lp(Rn) for 0 < θ ≤ θ0

In the following, it suffices to consider the case where p ≥ 2. In fact, the case
where 1 < p ≤ 2 can be handled by duality as follows:

p =
q

q − 1
, 2 ≤ q <∞.

(A): The estimate of Lθ(S1u): First, we prove the inequality

∥Lθ(S1u)∥Lp(Rn) ≤ C (∥K∥∞ +H(θ))

∫
{|z|>1}

|z| µ(dz)·∥u∥Hθ+1
p (Rn) . (3.10)

To do this, we write the difference

S1u(x+ h)− S1u(x)

in the following form:

S1u(x+ h)− S1u(x)

=

∫
{|z|>1}

(u(x+ h+ z)− u(x+ z) + u(x)− u(x+ h))K(x+ h, z)µ(dz)

+

∫
{|z|>1}

(u(x+ z)− u(x)) (K(x+ h, z)−K(x, z)) µ(dz)

+

n∑
k=1

(
∂u

∂xk
(x)− ∂u

∂xk
(x+ h)

)∫
{|z|>1}

zkK(x+ h, z)µ(dz)
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+

n∑
k=1

∂u

∂xk
(x)

∫
{|z|>1}

zk (K(x, z)−K(x+ h, z)) dt)µ(dz)

:= A1(x, h) +A2(x, h) +A3(x, h) +A4(x, h).

Then we have the inequality

Lθ(S1u)(x) =

(∫
Rn

|S1u(x+ h)− S2u(x)|2

|h|n+2θ
dh

)1/2

(3.11)

≤ C

(∫
Rn

|A1(x, h)|2

|h|n+2θ
dh+

∫
Rn

|A2(x, h)|2

|h|n+2θ
dh

+

∫
Rn

|A3(x, h)|2

|h|n+2θ
dh+

∫
Rn

|A4(x, h)|2

|h|n+2θ
dh

)1/2

≤ C

((∫
Rn

|A1(x, h)|2

|h|n+2θ
dh

)1/2

+

(∫
Rn

|A2(x, h)|2

|h|n+2θ
dh

)1/2

+

(∫
Rn

|A3(x, h)|2

|h|n+2θ
dh

)1/2

+

(∫
Rn

|A4(x, h)|2

|h|n+2θ
dh

)1/2)
.

(1) The estimate of A1(x, h): We have, by Taylor’s formula,

A1(x, h)

=

∫
{|z|>1}

(∫ 1

0

n∑
k=1

( ∂u
∂xk

(x+ h+ tz)− ∂u

∂xk
(x+ tz)

)
zk dt

)
K(x+ h, z)µ(dz).

Since p ≥ 2, it follows from definition (2.1) and Minkowskii’s inequality for
integrals that(∫

Rn

(∫
Rn

|A1(x, h)|2
dh

|h|n+2θ

)p/2

dx

)1/p

(3.12)

≤ C∥K∥∞
n∑

k=1

∥∥∥∥Lθ

(
∂u

∂xk

)∥∥∥∥
Lp(Rn)

(∫
{|z|>1}

|z|µ(dz)

)
.

(2) The estimate of A2(x, h): In this case, we have the inequality(∫
Rn

|A2(x, h)|2
dh

|h|n+2θ

)1/2

≤
∫
{|z|>1}

|u(x+ z)− u(x)|
(∫

Rn

|K(x+ h, z)−K(x, z)|2 dh

|h|n+2θ

)1/2

µ(dz)

≤ H(θ)

∫
{|z|>1}

|u(x+ z)− u(x)|µ(dz).
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Hence, by applying Minkowskii’s inequality for integrals and inequality (2.6)
with γ := 0 we obtain that∫

Rn

(∫
Rn

|A2(x, h)|2
dh

|h|n+2θ

)p/2

dx

1/p

(3.13)

≤ CH(θ) ∥u∥Lp(Rn)

(∫
{|z|>1}

|z| µ(dz)

)
.

(3) The estimate of A3(x, h): Since p ≥ 2, it follows from definition (2.1)
that(∫

Rn

|A3(x, h)|2
dh

|h|n+2θ

)1/2

≤ ∥K∥∞
n∑

k=1

Lθ

(
∂u

∂xk
(x)

)(∫
{|z|>1}

|z|µ(dz)
)
.

Hence we have, by Minkowskii’s inequality for integrals,(∫
Rn

(∫
Rn

|A3(x, h)|2
dh

|h|n+2θ

)p/2

dx

)1/p

(3.14)

≤ ∥K∥∞
n∑

j=1

∥∥∥∥Lθ

(
∂u

∂xj

)∥∥∥∥
Lp(Rn)

(∫
Rn

|z|µ(dz)
)
.

(4) The estimate of A4(x, h): In the last case we obtain that(∫
Rn

(∫
Rn

|A4(x, h)|2
dh

|h|n+2θ

)p/2

dx

)1/p

(3.15)

≤ H(θ)

(∫
{|z|>1}

|z|µ(dz)
) n∑

j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

.

By applying Minkowskii’s inequality for integrals to inequality (3.11), we
obtain from inequalities (3.12) through (3.15) that

∥Lθ(S1u)∥Lp(Rn) (3.16)

≤ C

(
∥K∥∞

∥∥∥∥Lθ

(
∂u

∂xj

)∥∥∥∥
Lp(Rn)

+H(θ)∥u∥Lp(Rn) +H(θ)

n∑
j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

)

×
(∫

{|z|>1}
|z|µ(dz)

)
≤ C

(
∥K∥∞ +H(θ)

)
×
(
∥u∥Lp(Rn) +

n∑
j=1

(∥∥∥∥Lθ

(
∂u

∂xj

)∥∥∥∥
Lp(Rn)

+

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

))
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×
(∫

{|z|>1}
|z|µ(dz)

)
.

However, we have, for 0 < θ < 1,

n∑
j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(Rn)

≤ ∥u∥H1
p(R

n) ≤ C ∥u∥Hθ+1
p (Rn) ,

and, by Lemma 2.3,

n∑
j=1

∥∥∥∥Lθ

(
∂u

∂xj

)∥∥∥∥
Lp(Rn)

≤ C

n∑
j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
Hθ

p(R
n)

≤ C ∥u∥H1+θ
p (Rn) .

Therefore, it follows from inequality (3.16) that

∥Lθ(S1u)∥Lp(Rn) ≤ C (∥K∥∞ +H(θ)) ∥u∥Hθ+1
p (Rn)

∫
{|z|>1}

|z| µ(dz).

This proves the desired inequality (3.10).
(B) The estimate of Lθ(S2u): Secondly, we prove the inequality

∥Lθ(S2u)∥Lp(Rn) (3.17)

≤ C(H(θ) + ∥K∥∞)

∫
{0<|z|≤1}

|z|2 µ(dz) · ∥u∥H2+θ
p (Rn).

To do this, we write the difference

S2u(x+ h)− S2u(x)

in the following form:

S2u(x+ h)− S2u(x) := B1(x, h)−B2(x, h),

where

B1(x, h) =

∫
{0<|z|≤1}

(
u(x+ z + h)− u(x+ z)− u(x+ h) + u(x)

−
n∑

j=1

zj

(
∂u

∂xj
(x+ h)− ∂u

∂xj
(x)

))
K(x+ h, z)µ(dz)

and

B2(x, h)

=

∫
{0<|z|≤1}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)
)
(K(x+ h, z)−K(x, z))µ(dz).
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Then we have the inequality

Lθ(S2u)(x) =

(∫
Rn

|S2u(x+ h)− S2u(x)|2

|h|n+2θ
dh

)1/2

(3.18)

≤ C

(∫
Rn

|B1(x, h)|2

|h|n+2θ
dh+

∫
Rn

|B2(x, h)|2

|h|n+2θ
dh

)
.

First, if we let

f jtz(x) :=
∂u

∂xj
(x+ tz)− ∂u

∂xj
(x),

then it follows that

|B1(x, h)| ≤ ∥K∥∞
n∑

k=1

∫
{0<|z|≤1}

∫ 1

0

|z|
∣∣fktz(x+ h)− fktz(x)

∣∣ dt µ(dz).
Hence we have the inequality(∫

Rn

|B1(x, h)|2

|h|n+2θ
dh

)1/2

≤ ∥K∥∞
n∑

k=1

∫
{0<|z|≤1}

|z|
∫ 1

0

Lθ(f
k
tz)(x) dt µ(dz).

However, by applying inequality (2.6) with γ := θ we obtain that∥∥∥Lθ(f
j
tz)
∥∥∥
Lp(Rn)

≤ C
∥∥∥f jtz∥∥∥

Hθ
p(R

n)
≤ C |tz|

∥∥∥∥ ∂u∂xj
∥∥∥∥
H1+θ

p (Rn)

for all 0 < t ≤ 1.

Therefore, we have the inequality∫
Rn

(∫
Rn

|B1(x, h)|2

|h|n+2θ
dh

)p/2

dx

1/p

(3.19)

≤ C ∥K∥∞
∫
{0<|z|≤1}

|z|2 µ(dz)
n∑

j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
H1+θ

p (Rn)

≤ C ∥K∥∞ ∥u∥H2+θ
p (Rn)

∫
{0<|z|≤1}

|z|2 µ(dz)

On the other hand, we have the inequality

|B2(x, h)| ≤
n∑

j=1

∫ 1

0

∫
{0<|z|≤1}

|z|
∣∣∣∣ ∂u∂xj (x+ tz)− ∂u

∂xj
(x)

∣∣∣∣
× |K(x+ h, z)−K(x, z)|µ(dz) dt.

By the growth condition (1.4), it follows that(∫
Rn

|B2(x, h)|2

|h|n+2θ
dh

)1/2
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≤ H(θ)

n∑
j=1

∫
{0<|z|≤1}

|z|
∫ 1

0

∣∣∣∣ ∂u∂xj (x+ tz)− ∂u

∂xj
(x)

∣∣∣∣ µ(dz) dt.
By applying Minkowskii’s inequality for integrals, we obtain from inequality
(2.6) with γ := 0 that∫

Rn

(∫
Rn

|B2(x, h)|2

|h|n+2θ
dh

)p/2

dx

1/p

(3.20)

≤ CH(θ)

n∑
k=1

∥∥∥∥ ∂u∂xk
∥∥∥∥
H1

p(R
n)

∫
{0<|z|≤1}

|z|2 µ(dz)

≤ CH(θ) ∥u∥H2
p(R

n)

∫
{0<|z|≤1}

|z|2 µ(dz).

By applying Minkowskii’s inequality for integrals to inequality (3.18), we
obtain from inequalities (3.19) and (3.20) that

∥Lθ(S2u)∥Lp(Rn)

≤ C
(
∥K∥∞ ∥u∥H2+θ

p (Rn) +H(θ) ∥u∥H2
p(R

n)

)∫
{0<|z|≤1}

|z|2 µ(dz)

≤ C (H(θ) + ∥K∥∞)

∫
{0<|z|≤1}

|z|2 µ(dz) · ∥u∥H2+θ
p (Rn) .

This proves the desired inequality (3.17).
Now the proof of inequality (3.3) (and hence that of Theorem 3.1) is com-

plete. ⊓⊔

3.2 The case of a bounded domain

We study the non-homogeneous boundary value problem (1.14) in the frame-
work of generalized Sobolev spaces H2+θ,p(Ω) for 1 < p <∞ and 0 ≤ θ < θ0.
To do so, we prove the following version of Theorem 3.1 with respect to the
bounded domain Ω:

Theorem 3.2 Assume that the integral kernel K(x, z) satisfies conditions
(1.4), (1.5) and (1.6). Then the Lévy operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is bounded for all 1 < p < ∞ and 0 ≤ θ ≤ θ0 (see Figure 3.1). Moreover, if
n < p <∞, then the Lévy operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is compact for all 0 ≤ θ < θ0.
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H2
p(Ω)

S−−−−−→ Lp(Ω)x x
H2+θ

p (Ω)
S−−−−−→ Hθ

p (Ω)x x
H2+θ0

p (Ω) −−−−−→
S

Hθ0
p (Ω)

Fig. 3.1 The mapping properties of S for 1 < p < ∞ and 0 ≤ θ ≤ θ0 in Theorem 3.2

Proof The proof of Theorem 3.2 is divided into four steps.
Step 1: By virtue of condition (1.5), the boundedness follows from Theorem

3.1 by restriction arguments:

S : H2+θ
p (Ω)

E−→ H2+θ
p (Rn)

S−→ Hθ
p (R

n) −→ Hθ
p (Ω),

where
E : H2+θ

p (Ω) −→ H2+θ
p (Rn)

is Seeley’s extension operator (see [27], [1, Theorems 5.21 and 5.22]).
Step 2: In order to prove the compactness, we make use of an idea of

Bony–Courrège–Priouret [7, Théorème XXI]. We show that the Lévy operator

S : H2
p (Ω) −→ Lp(Ω)

is compact for n < p <∞.
We recall that K(x, z) = 0 if x + z ̸∈ Ω. Hence, we can express Su(x) as

follows:

Su(x) =

∫
M

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz),

where
M = ∪x∈Ω

{
Ω − x

}
.

First, we take a smooth function χ in C∞
0 (R) such that

χ(t) =

{
1 if |t| ≤ 1,

0 if |t| ≥ 2.

For every 0 < ε < 1, we let

Φε(z) := 1− χ

(
|z|
ε

)
.

We remark that

Φε(z) =

{
0 if |z| ≤ ε,

1 if |z| ≥ 2ε.
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Moreover, by Dini’s theorem it follows that the sequence Φε(x, z) converges
uniformly to 1 for z ̸= 0, as ε ↓ 0.

Now we introduce a family of truncation operators given by the formula

SΦεu(x)

=

∫
M

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)Φε(z)µ(dz)

=

∫
M∩{|z|≥ε}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)Φε(z)µ(dz).

By part (a) of Lemma 2.5, we can find a constant C0 > 0 such that

|K(x, z)−K(y, z)| ≤ C0 |x− y|θ0 for all x, y ∈M and almost all z ∈ Rn.

Then it is easy to see that the Lévy operator

SΦε
: C1(Ω) −→ C(Ω)

is bounded. Indeed, we have, by the mean value theorem,

|SΦε
u(x)| ≤

∫
M

∣∣∣∣∣∣u(x+ z)− u(x)−
n∑

j=1

zj
∂u

∂xj
(x)

∣∣∣∣∣∣ |K(x, z)|Φε(z)µ(dz)

≤
∫
M∩{|z|≥ε}

|u(x+ z)− u(x)| |K(x, z)| µ(dz)

+

n∑
j=1

∫
M∩{|z|≥ε}

|zj | |K(x, z)| µ(dz)
∣∣∣∣ ∂u∂xj (x)

∣∣∣∣
≤ C ∥K∥∞

(∫
M∩{|z|≥ε}

|z| µ(dz)

)
∥u∥C1(Ω)

≤ C ∥K∥∞

(
1

ε

∫
{ε≤|z|≤1}

|z|2 µ(dz) +
∫
{|z|>1}

|z| µ(dz)

)
∥u∥C1(Ω)

for all x ∈ Ω.

This proves that SΦε
u ∈ C(Ω) for all u ∈ C1(Ω), since the function

Ω ∋ x 7−→ K(x, z)

is continuous for almost all z ∈ Rn.
Since the embedding

H2
p (Ω) ↪→↪→ C1(Ω)

is compact for n < p < ∞ (see the Rellich–Kondrachov theorem [1, Theorem
6.3 and Paragraph 7.32]) and since the embedding

C(Ω) −→ Lp(Ω)
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is continuous, we obtain that the Lévy operator

SΦε
: H2

p (Ω) −→ Lp(Ω) (3.21)

is compact. The situation can be visualized as follows:

SΦε
: H2

p (Ω) ↪→↪→
compactly

C1(Ω)
SΦε−→ C(Ω) −→ Lp(Ω).

On the other hand, we obtain from inequality (3.2) that

∥SΦεu∥Lp(Ω)

≤ C ∥K∥∞

(∫
{|z|>1}

|z|χ
(
|z|
ε

)
µ(dz) +

∫
{0<|z|≤1}

|z|2 χ
(
|z|
ε

)
µ(dz)

)
× ∥u∥H2

p(Ω) for all u ∈ H2
p (Ω) and 0 < ε < 1.

Furthermore, it follows from an application of Lebesgue’s dominated conver-
gence theorem that

SΦε −→ S as ε ↓ 0 (3.22)

with respect to the operator norm in the space L
(
H2

p (Ω), Lp(Ω)
)
of bounded

linear operators onH2
p (Ω) into Lp(Ω). Indeed, just as in the proof of inequality

(3.2) we obtain that

∥Su− SΦε
u∥Lp(Ω)

≤ C∥K∥∞
(∫

{|z|>1}
|z|χ

(
|z|
ε

)
µ(dz) +

∫
{0<|z|≤1}

|z|2χ
(
|z|
ε

)
µ(dz)

)
× ∥u∥H2

p(Ω) for all u ∈ H2
p (Ω).

However, by the moment condition (1.6) it follows from Lebesgue’s dominated
convergence theorem that

lim
ε↓0

(∫
{|z|>1}

|z|χ
(
|z|
ε

)
µ(dz) +

∫
{0<|z|≤1}

|z|2 χ
(
|z|
ε

)
µ(dz)

)
= 0.

Therefore, by applying [43, p. 278, Theorem] (or [26, Theorem 4.11]) we
obtain from assertions (3.21) and (3.22) that the Lévy operator

S : H2
p (Ω) −→ Lp(Ω)

is compact for n < p <∞.
Step 3: Theorem 3.1 tells us that the Lévy operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is bounded for all 1 < p <∞ and 0 ≤ θ ≤ θ0. Moreover, we obtain from Step
2 that the Lévy operator

S : H2
p (Ω) −→ Lp(Ω)
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is compact for n < p <∞.
Step 4: Finally, in order to prove Theorem 3.2 we make use of the following

result concerning the complex interpolation of compact linear operators, due
to Cwikel–Kalton [10, Theorem 10]):

Theorem 3.3 (Cwikel–Kalton) Let (X0, X1) be a Banach couple such that
X0 is reflexive and is given by the formula

X0 = [X1,W ]α

for some 0 < α < 1 and some Banach space W which forms a Banach couple
with X1. Here [W,X1]α is Calderón’s complex method (see [8]). Assume that
the operator

T : Xj −→ Yj

is bounded for j = 0, 1, and further that the operator

T : X0 −→ Y0

is compact. Then the operator

T : Xγ = [X0, X1]γ −→ Yγ = [Y0, Y1]γ

is compact for each 0 < γ < 1 (see Figure 3.2).

X0
T−−−−−→ Y0x x

Xγ
T−−−−−→ Yγx x

X1 −−−−−→
T

Y1

Fig. 3.2 The mapping properties of T for 0 < γ < 1 in Theorem 3.3

First, it is known (see [1, Chapter 3, Theorem 3.6] and [1, p. 250]) that
H2,p(Ω) is reflexive and further (see [36, p. 88, Theorem] and [37, p. 44, The-
orem]) that

H2
p (Ω) =

[
H2+θ

p (Ω), Lp(Ω)
]
α
, α =

2

2 + θ
.

Therefore, by applying Theorem 3.3 with

X1 := H2+θ0
p (Ω), W := Lp(Ω),

X0 := H2
p (Ω) =

[
H2+θ0

p (Ω), Lp(Ω)
]
α
, α =

2

2 + θ0
,
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Y0 := Lp(Ω), Y1 := Hθ0
p (Ω),

we obtain that the Lévy operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is compact for all 0 ≤ θ < θ0 and n < p <∞.
Now the proof of Theorem 3.2 is complete. ⊓⊔

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof is divided into
two Subsections 4.1 and 4.2, due to its length.

4.1 The differential operator case

First, we consider the case where S ≡ 0 and T ≡ 0. Namely, we consider the
boundary value problemAu = f in Ω,

Λu = µ(x′)
∂u

∂n
+ γ(x′)u = φ on ∂Ω

(4.1)

in the framework of Sobolev spaces H2+θ
p (Ω) and Besov spaces B

1+θ−1/p
p,p,⋆ (∂Ω).

The next theorem is proved in Taira [30, Theorem 1] and [33, Theorem 1.1].
A more general result in the framework of spaces of Besov–Triebel–Lizorkin
type F s

p,q and Bs
p,q is given by Runst [22].

Theorem 4.1 Let 1 < p < ∞. If condition (1.13) is satisfied, then the map-
ping

(A,Λ) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B
1+θ−1/p
p,p,⋆ (∂Ω)

is an algebraic and topological isomorphism for all 0 ≤ θ < θ0. In particular,
there exists a unique solution u ∈ H2+θ

p (Ω) of the problem (4.1) for any f ∈
Hθ

p (Ω) and any φ ∈ B
1+θ−1/p
p,p,⋆ (∂Ω),

4.2 End of Proof of Theorem 1.1

First, we have the formula

(W,Λ) = (A+ S,Λ) = (A,Λ) + (S, 0).

However, by Theorem 4.1 it follows that

ind (A,Λ) = 0. (4.2)



Ventcel’ boundary value problems for elliptic Waldenfels operators 31

Moreover, by using Theorem 3.2 we obtain that the Lévy operator

S : H2+θ
p (Ω) −→ Hθ

p (Ω)

is compact for all 0 ≤ θ < θ0. Namely, the operator

(W,Λ) = (A+ S,Λ) = (A,Λ) + (S, 0)

is a compact perturbation of the operator (A,Λ).
Hence we have, by assertion (4.2),

ind (W,Λ) = ind (A,Λ) = 0, (4.3)

since the index is stable under compact perturbations (see [15, Theorem 2.6],
[26, Theorem 5.10]).

Therefore, the proof of Theorem 1.1 is complete if we prove that the oper-
ator

(W,Λ) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B
1+θ−1/p
p,p,⋆ (∂Ω)

is injective for all 0 ≤ θ < θ0.
In this way, Theorem 1.1 follows by combining assertion (4.3) and the

following uniqueness theorem:

Theorem 4.2 (the uniqueness theorem) Let 0 < θ < 1 and n < p < ∞.
Assume that c(x) ≤ 0 in Ω, but c(x) ̸≡ 0 in Ω and further that condition
(1.13) is satisfied. If u ∈ H2+θ

p (Ω) is a solution of the homogeneous boundary
value problem {

Wu = 0 in Ω,

Λu = 0 on ∂Ω,

then it follows that

u = 0 on Ω.

Proof (i) First, we consider the case where u is a constant M in Ω. Then we
have the formula

0 =Wu(x) = Au(x) + Su(x) =M c(x) in Ω.

This proves that M = 0, since c(x) ̸≡ 0 in Ω.
(ii) Secondly, we consider the case where u is not a constant in Ω. Our

proof is based on a reduction to absurdity. If (necessarily replacing u(x) by
−u(x)), we may assume that there exists a point x0 of the closure Ω such that

u(x0) = max
x∈Ω

u(x) > 0.

If x0 is an interior point, then it follows from an application of the strong
maximum principle (Theorem 6.2) that u(x) is a constant in Ω. This is a
contradiction.
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Now we assume that there exists a boundary point x0 such that{
u(x0) = maxx∈Ω u(x) > 0,

u(y) < u(x0) for all y ∈ Ω.

Then, by applying the Hopf boundary point lemma (Lemma 6.1) we obtain
that

∂u

∂n
(x0) < 0.

Hence we have the formula

0 = Λu(x0) = µ(x0)
∂u

∂n
(x0) + γ(x0)u(x0). (4.4)

However, since we have the assertions

∂u

∂n
(x0) < 0,

u(x0) = max
x∈Ω

u(x) > 0,

it follows from condition (1.13) that

µ(x0)
∂u

∂n
(x0) + γ(x0)u(x0) < 0.

This contradicts formula (4.4).
The proof of Theorem 4.2 is complete. ⊓⊔

5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof is divided into
two Subsections 5.1 and 5.2, due to its length.

5.1 Mapping properties of Lévy–Ventcel’ operators

In this subsection, we study the Lévy–Ventcel’ boundary operator

Tu(x′) = γ0(Tu) =

∫
Rn\{0}

(u(x′ + z)− u(x′)) J(x′, z) ν(dz) (1.8)

for x′ ∈ ∂Ω,

where γ0 is the trace operator.
Our main result of this subsection is stated as follows:

Theorem 5.1 Assume that conditions (1.9) through (1.12) are satisfied. Then
the Lévy–Ventcel’ boundary operator

γ0T : H2+θ
p (Rn) −→ B1+θ−1/p

p,p (Rn−1)

is bounded for all 1 < p <∞ and 0 ≤ θ ≤ θ1.
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Proof We remark that trace operator

γ0 : H
1+θ
p (Rn) = F 1+θ

p,2 (Rn) −→ F 1+θ−1/p
p,p (Rn−1) = B1+θ−1/p

p,p (Rn−1)

is continuous for all 1 < p < ∞. Here the space F s
p,q(R

n) are called Triebel–
Lizorkin spaces (see [37, Theorem 4.4.2]). Hence we are reduced to the study
of the integro-differential operator

Tu(x) =

∫
Rn\{0}

(u(x+ z)− u(x)) J(x, z) ν(dz) for x ∈ Rn

under the moment condition (1.12).
The proof of Theorem 5.1 is divided into two steps.
Step (i): First, we find that the integro-differential operator

T : H1+θ
p (Rn) −→ Hθ

p (R
n)

is bounded for all 0 ≤ θ < 1, just as in the proof of Theorem 3.1. In fact, we
can obtain the following inequalities (see the inequalities (3.2) and (3.3)):

∥Tu∥Lp(Rn) (5.1)

≤ ∥J∥∞

{∫
{0<|z|≤1}

|z| ν(dz) · ∥∇u∥Lp(Rn) + 2

∫
{|z|>1}

ν(dz) · ∥u∥Lp(Rn)

}
≤ C ∥J∥∞

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H1

p(R
n)

and (see Remark 1.1)

∥Lθ(Tu)∥Lp(Rn) (5.2)

≤ C (∥J∥∞ + ∥∇xJ∥∞)

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H1+θ

p (Rn)

for all 0 ≤ θ < 1.

Step (ii): Secondly, we show that the integro-differential operator

T : H2+θ
p (Rn) −→ H1+θ

p (Rn)

is bounded for all 0 ≤ θ ≤ θ1.
To do so, we make use of the formulas

∂

∂xi
(Tu(x)) =

∫
Rn\{0}

(
∂u

∂xi
(x+ z)− ∂u

∂xi
(x)

)
J(x, z) ν(dz) (5.3)

+

∫
Rn\{0}

(u(x+ z)− u(x))
∂J

∂xi
(x, z) ν(dz)

:= Ai(x) +Bi(x) for 1 ≤ i ≤ n.

Hence, it suffices to show that we have, for 1 ≤ i ≤ n,

Ai, Bi ∈ Lp(Rn), (5.4a)
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Lθ (Ai) , Lθ (Bi) ∈ Lp(Rn). (5.4b)

First, we can prove the following inequalities (see the inequality (5.1)):

• ∥Ai∥Lp(Rn) (5.5a)

≤ C ∥J∥∞

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥∇u∥H1

p(R
n) .

• ∥Bi∥Lp(Rn) (5.5b)

≤ C ∥∇xJ∥∞

(∫
{0<|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H1

p(R
n) .

Therefore, by using inequalities (5.5) we obtain from formula (5.3) that

∥Tu∥H1
p(R

n) (5.6)

≤ C (∥J∥∞ + ∥∇xJ∥∞)

(∫
{0<|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H2

p(R
n) .

Moreover, we can prove the following inequalities for all 0 ≤ θ ≤ θ1 (see
the inequality (5.2)):

∥Lθ (Ai)∥Lp(Rn) (5.7)

≤ C ∥J∥∞

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥∇u∥H1

p(R
n)

≤ C ∥J∥∞

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H2

p(R
n)

for 1 ≤ i ≤ n,

and (see Remark 1.1)

∥Lθ (Bi)∥Lp(Rn) (5.8)

≤ C (∥∇xJ∥∞ +G(θ))

(∫
{0<|z|≤1}

|z| ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥H1+θ

p (Rn) .

Therefore, the desired assertions (5.4b) follow from inequalities (5.7) and (5.8).
The proof of Theorem 5.1 is complete. ⊓⊔

By combining Theorem 5.1 with the Rellich–Kondrachov theorem ([1, The-
orem 6.3 and Paragraph 7.32]) and the trace theorem ([37, Theorem 4.4.2]),
we can obtain the following:

Theorem 5.2 Assume that conditions (1.9) through (1.12) are satisfied. Then
the Lévy–Ventcel’ boundary operator

γ0T : H2+θ
p (Ω) −→ B1+θ−1/p

p,p (∂Ω)

is compact for all n < p <∞ and 0 ≤ θ < θ1.
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Proof The proof of Theorem 5.2 is divided into four steps.
Step 1: Just as in the proof of Theorem 3.2, we introduce a family of

truncation operators given by the formula

TΦεu(x) =

∫
Rn\{0}

(u(x+ z)− u(x)) J(x, z)Φε(z) ν(dz) (5.9)

=

∫
{|z|≥ε}

(u(x+ z)− u(x)) J(x, z)Φε(z) ν(dz).

Then it is easy to see that the operator

TΦε : C
1(Ω) −→ C1(Ω)

is bounded. Indeed, we have the inequality

|TΦε
u(x)| ≤ 2 ∥J∥∞ ∥u∥C(Ω)

(∫
{ε≤|z|≤1}

ν(dz) +

∫
{|z|>1}

ν(dz)

)
(5.10)

≤ 2 ∥J∥∞

(
1

ε

∫
{ε≤|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥C(Ω)

for all x ∈ Ω.

Hence, by virtue of inequality (5.10) it follows from an application of the
Lebesgue dominated convergence theorem that

TΦεu ∈ C(Ω) for all u ∈ C(Ω),

since the function
Ω ∋ x 7−→ J(x, z)

is continuous for almost all z ∈ Rn.
Moreover, we have the formulas

∂

∂xi
(TΦε

u(x)) =

∫
{|z|≥ε}

(
∂u

∂xi
(x+ z)− ∂u

∂xi
(x)

)
J(x, z)Φε(z) ν(dz) (5.11)

+

∫
{|z|≥ε}

(u(x+ z)− u(x))
∂J

∂xi
(x, z)Φε(z) ν(dz)

:= Ci(x) +Di(x) for 1 ≤ i ≤ n.

However, we have the inequalities (see the inequality (5.1))

|Ci(x)| ≤ 2 ∥J∥∞

(
1

ε

∫
{ε≤|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥∇u∥C(Ω) (5.12)

for all x ∈ Ω,

and

|Di(x)| ≤ 2∥∇xJ∥∞
(
1

ε

∫
{ε≤|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥C(Ω) (5.13)
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for all x ∈ Ω.

Therefore, by using inequalities (5.12) and (5.13) we obtain from formula (5.11)
that∣∣∣∣ ∂∂xi (TΦεu(x))

∣∣∣∣ ≤ |Ci(x)|+ |Di(x)| (5.14)

≤ 2 (∥J∥∞ + ∥∇xJ∥∞)

(
1

ε

∫
{ε≤|z|≤1}

|z|ν(dz) +
∫
{|z|>1}

ν(dz)

)
∥u∥C1(Ω)

for all x ∈ Ω.

By virtue of inequality (5.14), it follows from an application of Lebesgue’s
dominated convergence theorem that TΦε

u ∈ C1(Ω) for all u ∈ C1(Ω), since
the functions

Ω ∋ x 7−→ J(x, z)

and

Ω ∋ x 7−→ ∂J

∂xi
(x, z), 1 ≤ i ≤ n,

are all continuous for almost all z ∈ Rn (see part (a) of Lemma 2.5).
Step 2: Summing up, we find that the operator

TΦε
: H2

p (Ω) −→ H1
p (Ω)

is compact for n < p < ∞. More precisely, the situation can be visualized as
follows:

H2
p (Ω) : ↪→↪→

compactly
C1(Ω)

TΦε−→ C1(Ω) −→ H1
p (Ω).

Step 3: Furthermore, it follows from an application of Lebesgue’s domi-
nated convergence theorem that

TΦε
−→ T as ε ↓ 0 (5.15)

with respect to the operator norm in the space L
(
H2

p (Ω),H1
p (Ω)

)
of bounded

linear operators on H2
p (Ω) into H1

p (Ω).
Indeed, just as in the proof of inequality (5.1) we obtain that

∥Tu− TΦεu∥Lp(Ω) (5.16)

=

∥∥∥∥∥
∫
Rn\{0}

(u(x+ z)− u(x)) J(x, z)χ

(
|z|
ε

)
ν(dz)

∥∥∥∥∥
Lp(Ω)

≤ C ∥J∥∞

(∫
{0<|z|≤1}

|z|χ
(
|z|
ε

)
ν(dz) +

∫
{|z|>1}

χ

(
|z|
ε

)
ν(dz)

)
∥u∥H1

p(R
n).

Moreover, we have, by formulas (5.11) for 1 ≤ i ≤ n,

∥∇ (Tu− TΦεu)∥Lp(Ω) (5.17)
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≤ C∥J∥∞
(∫

{0<|z|≤1}
|z|χ

(
|z|
ε

)
ν(dz) +

∫
{|z|>1}

χ
( |z|
ε

)
ν(dz)

)
∥u∥H2

p(R
n)

+ C ∥∇xJ∥∞
(∫

{0<|z|≤1}
|z|χ

( |z|
ε

)
ν(dz) +

∫
{|z|>1}

χ
( |z|
ε

)
ν(dz)

)
∥u∥H1

p(R
n).

However, by the moment condition (1.12) it follows from Lebesgue’s dominated
convergence theorem that

lim
ε↓0

{∫
{0<|z|≤1}

|z|χ
(
|z|
ε

)
ν(dz) +

∫
{|z|>1}

χ

(
|z|
ε

)
ν(dz)

}
= 0.

Therefore, the desired assertion (5.15) follows by combining inequalities
(5.16) and (5.17).

By using [43, p. 278, Theorem] (or [26, Theorem 4.11]), we find that the
operator

T : H2
p (Ω) −→ H1

p (Ω)

is compact for n < p <∞.
Step 4: Finally, by applying Theorem 3.3 with

X1 := H2+θ1
p (Ω), W := Lp(Ω),

X0 := H2
p (Ω) =

[
H2+θ1

p (Ω), Lp(Ω)
]
α
, α =

2

2 + θ1
,

Y0 := H1
p (Ω), Y1 := H1+θ1

p (Ω),

we obtain that the operator

T : H2+θ
p (Ω) −→ H1+θ

p (Ω)

is compact for all 0 ≤ θ < θ1 and n < p <∞ (see Figure 5.1 below).
Now the proof of Theorem 5.2 is complete. ⊓⊔

H2
p(Ω)

T−−−−−→ H1
p(Ω)x x

H2+θ
p (Ω)

T−−−−−→ H1+θ
p (Ω)x x

H2+θ1
p (Ω) −−−−−→

T
H1+θ1

p (Ω)

Fig. 5.1 The mapping properties of T for 0 ≤ θ < θ1 and n < p < ∞ in Theorem 5.2
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5.2 End of Proof of Theorem 1.2

First, we remark that the index of the mapping

(W,Λ) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B1+θ−1/p
p,p (∂Ω)

is equal to zero:

ind (W,Λ) = 0 (4.3)

under the condition

µ(x′) > 0 on ∂Ω. (1.18)

However, by using Theorem 5.2 we obtain that the Lévy–Ventcel’ boundary
operator

γ0T : H2+θ
p (Ω) −→ B1+θ−1/p

p,p (∂Ω)

is compact for all 1 < p <∞ and 0 ≤ θ < θ1. Namely, the operator

(W,L) = (W,Λ+ γ0T ) = (W,Λ) + (0, γ0T )

is a compact perturbation of the operator (W,Λ).
Hence we have, by the assertion (4.3),

ind (W,L) = ind (W,Λ) = 0, (5.18)

since the index is stable under compact perturbations (see [15, Theorem 2.6],
[26, Theorem 5.10]).

Therefore, the proof of Theorem 1.2 is complete if we prove that the oper-
ator

(W,L) : H2+θ
p (Ω) −→ Hθ

p (Ω)⊕B1+θ−1/p
p,p (∂Ω)

is injective for 0 ≤ θ < min{θ0, θ1}.
In this way, Theorem 1.2 follows by combining assertion (5.18) and the

following uniqueness theorem:

Theorem 5.3 (the uniqueness theorem) Let n < p < ∞. Assume that
the following transversality condition is satisfied:

µ(x′)− γ(x′) +

∫
{x′+z∈Ω}

J(x′, z) ν(dz) > 0 on ∂Ω. (5.19)

If u ∈ H2+θ
p (Ω) is a solution of the homogeneous boundary value problem{

Wu = (A+ S)u = 0 in Ω,

Lu = (Λ+ γ0T )u = 0 on ∂Ω,

then it follows that

u = 0 on Ω.
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Proof Just as in the proof of Theorem 4.2, we have only to consider the case
where u is not a constant in Ω. Our proof is based on a reduction to absurdity.

We may assume, to the contrary, that there exists a boundary point x′0
such that {

u(x′0) = maxx∈Ω u(x) > 0,

u(x′0 + z) < u(x′0) for all x′0 + z ∈ Ω.
(5.20)

Then, by applying the Hopf boundary point lemma (Lemma 6.1) we obtain
that

∂u

∂n
(x′0) < 0. (5.21)

Moreover, since we have the assertions

u(x′0 + z)− u(x′0) < 0 for all x′0 + z ∈ Ω,

J(x, z) ≥ 0 almost everywhere in Rn ×Rn,

it follows that

0 = Lu(x′0) = Λu(x′0) + Tu(x′0) (5.22)

= µ(x′0)
∂u

∂n
(x′0) + γ(x′0)u(x

′
0) +

∫
{x′

0+z∈Ω}
(u(x′0 + z)− u(x′0)) J(x

′
0, z) ν(dz).

However, by condition (5.18) we obtain from assertions (5.20) and (5.21) that

Lu(x′0)

= µ(x′0)
∂u

∂n
(x′0) + γ(x′0)u(x

′
0) +

∫
{x′

0+z∈Ω}
(u(x′0 + z)− u(x′0)) J(x

′
0, z) ν(dz)

< 0.

This contradicts formula (5.22).
The proof of Theorem 5.3 is complete. ⊓⊔

Remark 5.1 Intuitively, the transversality condition (5.19) implies that one of
the reflection and absorption phenomena and the inward jump phenomenon
from the boundary occurs at every point x′ ∈ ∂Ω (see [32]).

6 The maximum principle for elliptic Waldenfels operators in
Sobolev spaces

In the last section, we prove various maximum principles for second-order,
elliptic Waldenfels integro-differential operators with discontinuous coefficients
such as the weak and strong maximum principles (Theorems 6.1 and 6.2) and
the Hopf boundary point lemma (Lemma 6.1) in the framework of Lp Sobolev
spaces which play an essential role throughout the paper. The results here
are adapted from Bony [5], [6], Bony–Courrège–Priouret [7], Garroni–Menaldi
[12], Troianiello [38] and also Taira [32] and [34].
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Let Ω be a bounded domain in Euclidean space Rn, n ≥ 2, with bound-
ary ∂Ω of class C1,1. We consider a second-order, elliptic Waldenfels integro-
differential operator W with real L∞ coefficients such that

Wu(x) = Au(x) + Su(x), x ∈ Ω, (1.1)

where

Au(x) =

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x)

and

Su(x) =

∫
Rn\{0}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz).

More precisely, we assume that the coefficients aij(x), bi(x) and c(x) of the
differential operator A satisfy the following three conditions (1), (2) and (3):

(1) aij(x) ∈ L∞(Ω), aij(x) = aji(x) for all 1 ≤ i, j ≤ n and for almost all
x ∈ Ω and there exist a constant λ > 0 such that

1

λ
|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤ λ |ξ|2 (6.1)

for almost all x ∈ Ω and all ξ ∈ Rn.

(2) bi(x) ∈ L∞(Ω) for all 1 ≤ i ≤ n.
(3) c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.
(4) K ∈ L∞(Rn ×Rn) with K(x, y) ≥ 0 almost everywhere in Rn ×Rn, and

it satisfies the growth condition (1.4) for some 0 < θ0 < 1 and condition
(1.5).

(5) µ(dz) is a Radon measure on Rn \ {0} that has a density with respect
to the Lebesgue measure dz on Rn, and it satisfies the moment condition
(1.6).

6.1 The weak maximum principle

The purpose of this subsection is to formulate a variant of the weak maximum
principle in the framework of Lp Sobolev spaces, essentially due to Bony (cf.
[5, Théorème 2], [13, Section 9.1, Theorem 9.1], [38, Chapter 3, Lemma 3.25]):

Theorem 6.1 (the weak maximum principle) Assume that a function u
in the Sobolev space W 2,p(Ω) with n < p <∞ satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (6.2)

Then we have the inequality

max
Ω

u ≤ max
∂Ω

u+,
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where
u+(x) = max{u(x), 0} for x ∈ Ω.

A detailed proof of Theorem 6.1 is given in Taira [34, Theorem 8.1].

6.2 Hopf’s boundary point lemma

In this subsection, we study the inward normal derivative ∂u/∂n(x′0) at a
boundary point x′0 where the function u(x) takes its non-negative maximum.

The Hopf boundary point lemma reads as follows (cf. [7, Théorème VIII],
[12, Theorem 3.1.5]):

Lemma 6.1 (Hopf) Assume that a function u ∈W 2,p(Ω), with n < p <∞,
satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (6.2)

If u(x) attains a non-negative, strict local maximum at a point x′0 of ∂Ω, then
we have the inequality

∂u

∂n
(x′0) < 0, (6.3)

where n = (n1, n2, . . . , nn) is the unit inward normal to the boundary ∂Ω.

Proof By Theorem 6.1 (or [34, Theorem 8.1]), it suffices to consider the case{
u(x′0) = m := maxx∈Ω u(x) ≥ 0,

u(y) < u(x′0) for all y ∈ Ω.
(6.4)

The proof of inequality (6.3) is divided into three steps.
Step 1: By condition (6.4), we can find an open ball B(y, r) contained in

the domain Ω, centered at y, such that

(a) The point x′0 is on the boundary S(y, r) = {z ∈ Ω : |z − y| = r} of B(y, r);
(b) n = s(y − x′0) for some s > 0.

Step 2: Near the boundary point x′0, we introduce local coordinate sys-
tems (x′, xn) such that x′ = (x1, x2, . . . , xn−1) give local coordinates for the
boundary ∂Ω and that

Ω = {(x′, xn) : xn > 0} , ∂Ω = {(x′, xn) : xn = 0} ,
x′0 = (0, . . . , 0, 0) ∈ ∂Ω, y = (0, . . . , 0, r) ∈ Ω, |x′0 − y| = r.

Substep 2-1: Now we introduce a function v(x) by the formula

v(x) = v(x′, xn) = exp
[
−γ|x− y|2

]
− exp

[
−γr2

]
, (6.5)

where γ is a positive constant to be chosen later on. Then it is easy to see that

Av(x) =

n∑
i,j=1

aij(x)
∂2v

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂v

∂xi
(x) + c(x)v(x) (6.6)
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= exp
[
−γ|x− y|2

]
×
[
4γ2
( n∑

i,j=1

aij(x)(xi − yi)(xj − yj)

)

− 2γ

( n∑
i=1

(
aii(x) + bi(x)(xi − yi)

))]
+ c(x)v(x).

However, we have, by formula (6.5) and condition (6.1),

v(x) ≤ exp
[
−γ|x− y|2

]
for all x ∈ Ω,

and

n∑
i,j=1

aij(x)(xi − yi)(xj − yj) ≥
1

λ
|x− y|2 for almost all x ∈ Ω.

Hence, it follows from formula (6.6) that

Av(x) ≥ exp
[
−γ|x− y|2

]
(6.7)

×
[
4γ2

λ
|x− y|2 − 2γ

( n∑
i=1

(
aii(x) + |bi(x)| |xi − yi|

)
+ |c(x)|

)]
for almost all x ∈ Ω.

Moreover, for any ρ > 0, we can choose a constant γ = γ(ρ) > 0 so large that
we have, for ρ < |x− y| < r,

4γ2

λ
|x− y|2 − 2γ

( n∑
i=1

(
aii(x) + |bi(x)| |xi − yi|

)
+ |c(x)|

)
(6.8)

≥ 4ρ2

λ
γ2 − Cγ,

where

C = 2

( n∑
i=1

(∥∥aii∥∥
L∞(Ω)

+ r
∥∥bi∥∥

L∞(Ω)

)
+ ∥c∥L∞(Ω)

)
,

r = |x′0 − y|.

Therefore, by combining inequalities (6.7) and (6.8) we obtain that, for any
ρ > 0 there exists a constant γ = γ(ρ) > 0 such that

Av(x) ≥
(
4ρ2

λ
γ2 − Cγ

)
exp

[
−γ|x− y|2

]
(6.9)

for almost all x ∈ Γρr := {z ∈ Ω : ρ < |z − y| < r}.

Substep 2-2: On the other hand, we can obtain an L∞-version of Theorem
3.2 as follows:
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Lemma 6.2 For every ε > 0, there exists a constant C(ε) > 0 such that we
have, for all u ∈ C2(Ω),

∥Su∥L∞(Ω) ≤
1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

+ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) . (6.10)

Here

σ(ε) :=

∫
{0<|z|≤ε}

|z|2 µ(dz).

Proof For each ε > 0, we decompose the integral term Su(x) into the two

terms S
(1)
ε u and S

(2)
ε u as follows:

Su(x) = S(1)
ε u(x) + S(2)

ε u(x).

Here:

S(1)
ε u(x) :=

∫
{0<|z|≤ε}

(
u(x+ z)− u(x)−

n∑
j=1

zj
∂u

∂xj
(x)

)
K(x, z)µ(dz)

=

∫ 1

0

(1− t) dt

∫
{0<|z|≤ε}

z · ∇2u(x+ tz)z K(x, z)µ(dz)

and

S(2)
ε u(x) :=

∫
{|z|>ε}

(u(x+ z)− u(x)− z · ∇u)µ(dz).

(1) First, we have the inequality∥∥∥S(1)
ε u

∥∥∥
Lp(Ω)

≤ 1

2
∥K∥∞

(∫
{0<|z|≤ε}

|z|2 µ(dz)
)∥∥∇2u

∥∥
L∞(Ω)

(6.11)

=
1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

.

By condition (1.6), it follows from an application of Lebesgue’s dominated
convergence theorem that

lim
ε↓0

σ(ε) = 0. (6.12)

(2) Secondly, we rewrite the term S
(2)
ε u in the form

S(2)
ε u(x) =

∫
{|z|>ε}

K(x, z) (u(x+ z)− u(x))µ(dz)

+

n∑
j=1

∫
{|z|>ε}

K(x, z) zj
∂u

∂xj
(x)µ(dz)

:= A(x) +B(x).

Then, by using condition (1.6) we can estimate the term B(x) as follows:

|B(x)| ≤
∫
{|z|>ε}

K(x, z)|z| ·
n∑

j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣µ(dz)
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≤ ∥K∥∞

(∫
{|z|>ε}

|z|µ(dz)
)
∥∇u∥L∞(Ω)

= δ(ε) ∥K∥∞ ∥∇u∥L∞(Ω) for all x ∈ Ω,

where

δ(ε) :=

∫
{|z|>ε}

|z|µ(dz).

However, the term δ(ε) can be estimated as follows:

δ(ε) =

∫
{|z|>1}

|z|µ(dz) +
∫
{ε<|z|≤1}

|z|µ(dz) (6.13)

≤
∫
{|z|>1}

|z|µ(dz) + 1

ε

∫
{ε<|z|≤1}

|z|2 µ(dz)

≤
∫
{|z|>1}

|z|µ(dz) + 1

ε

∫
{0<|z|≤1}

|z|2 µ(dz)

= C2 +
C1

ε
.

Hence we obtain the inequality

∥B∥L∞(Ω) ≤
(
C1

ε
+ C2

)
∥K∥∞ ∥∇u∥L∞(Ω). (6.14)

On the other hand, by Morrey’s imbedding theorem (see [13, Theorem
7.17]) we can find a constant C > 0 such that

|u(x+ z)− u(x)| ≤ C |z|1−n/p ∥∇u∥Lp(Ω) .

Hence, it follows from inequality (6.13) that

|A(x)| ≤
∫
{|z|>ε}

K(x, z) (u(x+ z)− u(x))µ(dz)

≤ C ∥K∥∞
∫
{|z|>ε}

|z|1−n/p
µ(dz) · ∥∇u∥Lp(Ω)

= C ∥K∥∞
∫
{|z|>ε}

|z| · 1

|z|n/p
µ(dz) ∥∇u∥Lp(Ω)

≤
C ∥K∥∞
εn/p

(∫
{|z|>ε}

|z|µ(dz)
)
∥∇u∥Lp(Ω)

= δ(ε)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω) ≤
(
C1

ε
+ C2

)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω)

= Cε ∥K∥∞ ∥∇u∥Lp(Ω) for all x ∈ Ω,

where

Cε :=
C

εn/p

(
C1

ε
+ C2

)
.
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Thus we have the estimate

∥A∥L∞(Ω) ≤
(
C1

ε
+ C2

)
C ∥K∥∞
εn/p

∥∇u∥Lp(Ω) (6.15)

= Cε ∥K∥∞ ∥∇u∥Lp(Ω)

≤ Cε ∥K∥∞ C3 |Ω|1/p ∥∇u∥L∞(Ω) for some constant C3 > 0,

where |Ω| is the volume of the domain Ω.
Therefore, we obtain from estimates (6.14) and (6.15) that∥∥∥S(2)
ε u

∥∥∥
L∞(Ω)

≤ ∥A∥L∞(Ω) + ∥B∥L∞(Ω) ≤ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) , (6.16)

where

C(ε) :=

(
C1

ε
+ C2

)(
1 +

CC3

εn/p
|Ω|1/p

)
.

(3) The desired estimate (6.10) follows by combining estimates (6.11) and
(6.16):

∥Su∥L∞(Ω) ≤ ∥S(1)
ε u∥L∞(Ω) + ∥S(2)

ε u∥L∞(Ω)

≤ 1

2
σ(ε) ∥K∥∞

∥∥∇2u
∥∥
L∞(Ω)

+ C(ε) ∥K∥∞ ∥∇u∥L∞(Ω) .

The proof of Lemma 6.2 is complete. ⊓⊔

By combining inequality (6.10) (for the function v defined by formula (6.5))
with assertion (6.12), we can find that, for every small η > 0 there exists a
constant Cη > 0 such that

|Sv(x)| ≤
(
ηγ2 + Cηγ

)
exp

[
−γ|x− y|2

]
(6.17)

for almost all x ∈ Γρr := {z ∈ Ω : ρ < |z − y| < r}.

Therefore, by taking

η :=
2ρ2

λ
,

γ >
λ

2ρ2
(Cη + C) ,

we obtain from inequalities (6.9) and (6.17) that

Wv(x) = Av(x) + Sv(x) ≥ Av(x)− |Sv(x)| (6.18)

≥
(
2ρ2

λ
γ2 − (C + Cη) γ

)
exp

[
−γ|x− y|2

]
=

2ρ2

λ
γ

(
γ − λ(C + Cη)

2ρ2

)
exp

[
−γ|x− y|2

]
> 0 for almost all x ∈ Γρr := {z ∈ Ω : ρ < |z − y| < r}.
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Step 3: Without loss of generality, we may assume that

u(x) < u(x0) in B(y, r). (6.19)

If ε > 0, we let
w(x) := u(x)− u(x0) + ε v(x).

(a) First, we have, by condition (6.19),

w(x) = u(x)− u(x0) + ε v(x) ≤ 0 on S(y, ρ) = {z ∈ Ω : |z − y| = ρ},

if ε > 0 is chosen sufficiently small.
(b) Secondly, it follows that

w(x) = u(x)− u(x0) + εv(x) ≤ 0 on S(y, r) = {z ∈ Ω : |z − y| = r},

since v(x) = 0 on S(y, r).
Hence we have, by assertions (a) and (b),

w(x) ≤ 0 on ∂Γρr = S(y, ρ) ∪ S(y, r).

On the other hand, by inequalities (6.2) and (6.18) it follows that

Ww(x) =Wu(x) + εWv(x)− u(x0) (W1) (x) ≥ εWv(x)− c(x)u(x0)

> −c(x)u(x0)

≥ 0 for almost all x ∈ Γρr = B(y, r) \B(y, ρ).

Therefore, by applying the weak maximum principle (Theorem 6.1) with
Ω := Γρr we obtain that

w(x) ≤ 0 in Γρr = B(y, r) \B(y, ρ). (6.20)

(c) On the other hand, we have the formula

w(x0) = ε v(x0) = 0. (6.21)

Therefore, it follows from assertions (6.20) and (6.21) that

∂w

∂n
(x′0) =

∂u

∂n
(x′0) + ε

∂v

∂n
(x′0) ≤ 0. (6.22)

However, we have, by formula (6.5),

∂v

∂n
(x′0) = 2γre−γr2 > 0. (6.23)

Summing up, we obtain from inequalities (6.22) and (6.23) that

∂u

∂n
(x′0) ≤ −ε ∂v

∂n
(x′0) = −2εγre−γr2 < 0.

Now the proof of Lemma 6.1 is complete. ⊓⊔
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6.3 The strong maximum principle

Finally, we can prove the following strong maximum principle for the operator
A (cf. [5, Théorème 2], [7, Théorème VII], [12, Theorem 3.1.15]):

Theorem 6.2 (the strong maximum principle) Assume that a function
u ∈W 2,p(Ω), with n < p <∞, satisfies the condition

Wu(x) ≥ 0 for almost all x ∈ Ω. (6.2)

If u(x) attains a non-negative maximum at an interior point of Ω, then it is
a (non-negative) constant function.

Proof Our proof is based on a reduction to absurdity. We let

m := max
x∈Ω

u(x) ≥ 0,

S := {x ∈ Ω : u(x) = m},

and assume, to the contrary, that

S ⫋ Ω.

Since S is closed in Ω, we can find a point x0 of S and an open ball B(y,R)
contained in the set Ω \ S, centered at y, such that

(a) B(y,R) ⊂ Ω \ S;
(b) x0 is on the boundary S(y,R) = {z ∈ Ω : |z − y| = R} of B(y,R).

By applying the Hopf boundary point lemma (Lemma 6.1) with Ω :=
B(y,R), we obtain that

n∑
i=1

ni
∂u

∂xi
(x0) < 0, (6.24)

where

n = (n1, n2, . . . , nn) =
y − x0
|y − x0|

.

However, since u(x0) = m for some interior point x0 ∈ Ω, it follows that

∂u

∂xi
(x0) = 0, 1 ≤ i ≤ n.

Hence we have the assertion

n∑
i=1

ni
∂u

∂xi
(x0) = 0.

This contradicts inequality (6.24).
The proof of Theorem 6.2 is complete. ⊓⊔
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