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Abstract The rupture process of the 2014 Iquique, Chile earthquake is inverted from teleseismic P wave
data applying a novel formulation that takes into account the uncertainty of Green’s function, which has
been a major error source in waveform inversion. The estimated seismic moment is 1.5 x 102" Nm (Mw=8.1),
associated with a 140 km long and 140 km wide fault rupture along the plate interface. The source process is
characterized by unilateral rupture propagation. During the first 20's, the dynamic rupture front propagated
from the hypocenter to the large asperity located about 50 km southward, crossing a remarkably active
foreshock area at high velocity (of about 3.0 km/s), but small and irregular seismic moment release rate. Our
result may suggest that the 20 s long initial phase was influenced by the stress drop due to the foreshock
activity near the main shock hypocenter. Moreover, the 2 week long swarm-like foreshock activity migrating
roughly at 5 km/day toward the main shock hypocenter, and possibly associated slow slip, contributed to the
stress accumulation prior to the Mw 8.1 megaquake. The main shock initial rupture phase might have
triggered the rupture of the large asperity, which had large fracture energy.

1. Introduction

On the night of 1 April 2014, a great thrust earthquake (Mw 8.1) occurred off Iquique, northern Chile. The
earthquake information determined by the Centro Sismoldgico Nacional (CSN), the University of Chile
[http://www.sismologia.cl; last access on 18 April 2014] is as follows: origin time = 1/4/2014 23:46:45 (UT);
epicenter=19.572S, 70.908 W; depth =38.9 km; Mw =8.2. In the off Iquique region, the Nazca Plate is
subducting at a rate of about 63 mm/y beneath the South American Plate along the Peru-Chile trench
[Kendrick et al., 2003], where several great interplate earthquakes have been observed since the dawn of
history. The coupling rate on the plate interface has been estimated from the Global Positioning System (GPS)
data [e.g., Chlieh et al., 2011; Moreno et al., 2011]. Figure 1 shows the aftershock activity during the first 2 days
after the megaquake (hypocenters determined by CSN) and the focal mechanism of the main shock
determined in the present study. The main shock mechanism is consistent with the tectonic stress buildup at
the plate boundary. It is particularly notable that this megathrust event occurred within a plate boundary
segment that has not been ruptured since the great 1877 event, with an estimated magnitude of about 8.8
[Chlieh et al., 2011; Figure 11.

In this study we estimate the detailed rupture process of the 2014 off Iquique earthquake from teleseismic
P wave data, using a newly developed inversion method [Yagi and Fukahata, 2011a] that takes into
account the uncertainty of Green’s function, which has been a major error source in waveform inversion.
Based on the rupture process of the main shock and characteristic foreshock activity, we propose a
scenario to explain the foreshock-main shock interaction.

2, Inversion Analysis

To image the rupture process of the off Iquique earthquake, we inverted teleseismic P wave data recorded at
48 broadband network stations, which were selected to ensure adequate azimuthal coverage and data
quality. The observed waveforms were shifted on the basis of their first arrival time and then converted into
velocity waveforms with a sampling interval of 0.8 s. For mitigating the effect of aliasing and low-frequency
noise, we applied a Butterworth band-pass filter between 0.001 and 0.36 Hz before re-sampling.
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Figure 1. Total slip distribution, aftershock distribution, and moment-
rate function. (a) Map view of inverted total slip distribution of the 2014
off Iquique earthquake. Large and small stars indicate the epicenter of
the main shock and the largest aftershock, respectively. Also shown are
the focal mechanism of main shock determined in this study and the first
2 days aftershocks (black circles), determined by the Centro Sismoldgico
Nacional (CSN), the University of Chile. The seismic source area of 1877 off
lquique (M 8.8) earthquake [Chlieh et al., 2011] is indicated by a thick
dotted line. Topography and bathymetry are from ETOPO1 [Amante and
Eakins, 2009]. (b) The moment-rate function of the main shock.

Waveform inversion is widely used for
constructing seismic source models;
however, models may differ substantially for
the same earthquake [e.g., Beresnev, 2003;
Razafindrakoto and Mai, 2014]. Waveform
inversion is especially problematic for large
earthquakes with a long source time
function, because seismic data for such
events are contaminated by various later
phases, which are difficult to calculate
accurately because of the limited accuracy
of the Green’s function. To cope with this
problem, we applied the newly developed
inversion method of Yagi and Fukahata
[2011a], in which the uncertainty of the
Green'’s function is taken into account. One
of the clear advantages of this method is
that the effect of correlated modeling errors
is naturally mitigated, therefore making
possible to discuss the detailed rupture
process, including the small initial rupture
phase [Yagi and Fukahata, 2011b].
According to this method, the smoothness
of slip distribution is objectively determined
from the observed data, based on Akaike’s
Bayesian Information Criterion (ABIC)
[Akaike, 1980; Yabuki and Matsu'ura, 1992]
and the non-negative constraint for slip is
not needed.

We calculated the theoretical Green’s
function using the method of Kikuchi and
Kanamori [1991] with a sampling rate of
0.1 5. To explain the teleseismic waveforms,
we slightly modified the structure model of
Delouis et al. [2009]. We assumed that the
faulting occurred on a single plane and
adopted a hypocenter (19.572S, 70.908 W;
depth =22 km) and fault mechanism (strike
350°, dip 15°) that were slightly modified
from the CSN hypocenter and the Global
Centroid-Moment-Tensor (GCMT) solution
[http://www.globalcmt.org; last access on
18 April 2014], respectively. The fault area
used for the source process inversion was
taken as 225 km x 195 km, which was
expanded into bilinear B-splines with an
interval of 15 km. Recent studies show that
great earthquakes have a complex rupture
manner including back propagating
rupture and slip reactivation around the

hypocenter [e.g., Ide et al., 2011]. Therefore, we took a slip-rate duration of 56 s on each fault patch, which was
expanded into linear B-splines with an interval of 0.8 s. Based on preliminary analyses, we assumed that the
rupture front velocity can be up to 3.4 km/s, which yielded the start time of the linear B-splines at each
sub-fault. We also assumed no slip after 80 s from the initial rupture.
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Figure 2. Snapshots of the main shock , projected along the average slip vector direction, at specific time steps and seismicity
before the main shock. (a) The rectangle indicates the fault plane. Large and small yellow stars indicate the epicenter of the
main shock and largest foreshock, respectively. (b), (c), (d), and (e) Snapshots of slip distribution from 0 to 55, 10 to 15, 20 to
255, and 35 to 40, respectively, after earthquake initiation. White dots show epicenters of earthquakes (M = 3.0) occurred
from 1 January 2014 to the origin time of the main shock determined by CSN. (f) Foreshocks in region A (red circles), region B
(green circles), and region C (blue circles). The solid line X-X' indicates the projection direction used in Figure 3.

3. Results

The inverted slip distribution and moment rate function of the main shock are shown in Figure 1 (see supporting
information Figs. S1 and S2 for the waveform fitting results and projection of the slip distribution on the main
shock fault, respectively). The maximum slip was about 4.6 m to the south of the Mw 8.1 epicenter. The
obtained total seismic moment was 1.5 x 102" Nm (Mw = 8.1), which agrees with the GCMT solution: 1.6 x 10°" Nm.
The effective rupture area was roughly estimated to be 140 km long and 140 km wide along the plate interface.
The earthquake started abruptly but continued afterward with low-rate seismic moment release during
the first 20 s. The seismic moment during the first 20s is 7.6 x 10'° Nm, only 5% of the total seismic moment.
After the initial stage, the moment rate rapidly increased and reached 6.8 x 10'® Nm/s at 35 s from the initial
break and then rapidly decreased with time.

Figure 2 shows snapshots of slip distribution at specific time steps together with the seismicity (M = 3.0) from
1 January 2014 to the origin time of the main shock (hypocenters determined by CSN). We can detect three
high-seismicity areas (Figure 2f) on the source region of the main shock (Figures 2b-2e). In the northern
region (region A, in Figure 2f), the seismicity became active from the beginning of February to the middle of
March. In the middle region B, the largest foreshock (M6.7) occurred on 16 March 2014, and many aftershocks
of this largest foreshock were observed afterward. In the southern region C, the seismicity became active
during January 2014.

The rupture started in a low-seismicity area in-between the high-seismicity regions A and B, and then
propagated southward from hypocenter at a low slip-rate. The main rupture started at 20 s after the initial
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Figure 3. Space-time plots of seismicity in region B (Figure 2f) and schematic diagram showing the fracture energy distri-
bution. (a) Green open circles denote events occurred in region B (M = 3.0) plotted as function of time and distance from
the Mw 6.7 foreshock epicenter, along the X-X' line (Figure 2f). Black dashed line represents the approximate location of
the earthquake migration front. (b) Qualitative fracture energy distribution along the X-X' line. Large and small stars
represent epicenters of main shock and the Mw 6.7 foreshock, respectively.

break in the southern edge of region B. After that, the slip-rate in the main asperity area, centered about
80 km south from the epicenter, accelerated until 55 s. Note that the location of the main asperity of the main
shock corresponds well to a gap between two highly active seismic patches (regions B and C). As shown in
Figure 13, the largest aftershock (Mw 7.7) occurred at the southern edge of the large co-seismic slip area of
the main shock. The main shock waveform pulses are relatively narrow at azimuths similar to those of the
rupture propagation direction and become broader at stations located at opposite azimuths.

4, Discussion

During the first 20 s, the dynamic rupture front of the main shock propagated from the hypocenter to the
large asperity area via the foreshock region B at a high velocity of about 3.0 km/s, while the moment rate
released during this initial phase was small and irregular. Assuming that the stress drop of foreshocks is not
unusually small, we hypothesize that it might have contributed to such initial phase features by reducing the
potential of a large rupture in region B. Note that similar irregular initial phases have been reported for
various other earthquakes [e.g., Beroza and Ellsworth, 1996; Ellsworth and Beroza, 1998], and our result is
consistent with the underlying mechanisms discussed in such studies [e.g., Ellsworth and Beroza, 1995].

A remarkable and extensively analyzed foreshock sequence was observed before the 2011 Tohoku-oki
megathrust earthquake [e.g., Ando and Imanishi, 2011; Kato et al., 2012; Marsan and Enescu, 2012]. To
compare the 2014 off Iquique foreshock sequence with the one preceding the 2011 Tohoku-oki earthquake,
we concentrate our discussion on the foreshock activity in region B of this study. As shown in Figure 2f, the
foreshock region B extends about 60 km long and 30 km wide along the plate interface. Figure 3a shows a
space-time plot of seismicity in the source region of the Iquique main shock between 16 March 2014 and the
origin time of the main shock. The foreshock activity migrates toward the rupture initiation point of the main
shock at a speed of about 5 km/day, which is similar with the Tohoku-oki earthquake case: about 2-5 km/day
[Kato et al., 2012]. In the case of the Tohoku-oki earthquake, a remarkable slow-slip event accompanying the
characteristic foreshock activity was detected by acoustic GPS and pressure gauges [Ohta et al., 2012],
repeating earthquakes [Kato et al., 2012], as well as the analysis of broadband F-net waveform data [Marsan
and Enescu, 2012]. In general, large slow-slip events have been commonly observed after thrust earthquakes
in subduction zones; these events are known as afterslip or post-seismic slip [e.g., Heki et al., 1997; Chlieh et al.,
2007; Suito et al., 2011]. The slow-slip event is triggered in an area surrounding the seismic source region of a
large earthquake and then contributes to the stress accumulation prior to a next large earthquake [e.g., Yagi
et al.,, 2001]. Considering the resemblance between the two foreshock sequences (i.e., Tohoku-oki and off
Iquique) and the peculiarity of thrust earthquakes in subduction zones, we hypothesize that in the case of the
2014 event as well slow slip—associated with the foreshock sequence—might have migrated toward the
rupture initiation point of the main shock and contributed to the nucleation of this great earthquake. It is also
reasonable to assume that static stress transfer [Stein, 1999] from nearby large foreshocks to the main shock
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asperity region might have contributed to the triggering of the megathrust event; a similar mechanism was
proposed for the case of the 2011 Tohoku-oki [e.g., Marsan and Enescu, 2012].

Although it is beyond the scope of this paper to build a detailed physical model, it is worth providing a
hypothetic scenario underlying the complex rupture of this sequence. The hierarchical asperity model
proposed by Ide and Aochi [2005], Hori and Miyazaki [2011], and Noda et al. [2013] may provide an
appropriate framework. Figure 3b shows a schematic, qualitative diagram of the fracture energy distribution
before the largest foreshock, as suggested by the observations and based on the delayed cascade-up model
[Noda et al., 2013]. Thus, the area of the M6.7 foreshock (Figure 3b) and its aftershocks can be regarded as
having the smallest fracture energy (thereby critical crack length) compared with the surrounding areas:
otherwise, the rupture of the M6.7 event would not have stopped, but instead would have grown up into a
larger event. Furthermore, the foreshock (and possibly associated slow slip) migration toward north suggests
that this area (where the main shock initiated) had a “middle-sized” critical crack length. Finally, the main
shock asperity area (to the south) was likely the “strongest” patch (highest fracture energy region); the
rupture here was dynamically triggered by the propagation of the initial rupture phase of the main shock. The
relation between the foreshock activity and main shock rupture process can thus provide an insight into the
cascade-up rupture growth of great interplate earthquakes.

5. Conclusions

We have estimated the rupture process of the 2014 off Iquique earthquake and discussed its characteristics in
relation to the preceding seismicity in the region. The megathrust event ruptured a 140 km long by 140 km
wide fault along the plate interface and released a seismic moment of 1.5 X 102" Nm (Mw=8.1).

A remarkable foreshock sequence started about 2 weeks before the main shock and migrated northward, at a
speed of about 5 km/day, to the hypocenter of the megathrust event. The rupture of the main shock
propagated into an opposite direction (toward south) crossing the foreshock area at high velocity (of about
3.0 km/s), but with a small and irregular seismic moment release rate. The stress drop during previous
foreshocks may explain such characteristics of the initial rupture phase.

The foreshock activity and possibly associated slow slip likely contributed to the triggering of the main shock.
The initial rupture phase of the main shock might have triggered the rupture of the large asperity, which had
large fracture energy.
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