zbMATHㅍ.

the first resource for mathematics

Hoefnagel, Michael

Products and coequalizers in pointed categories. (English) Zbl 07141212
Theory Appl. Categ. 34, 1386-1400 (2019).
This paper investigates the property (P) that binary products commute with arbitrary coequalizers in pointed categories, being concerned with pointed varieties, i.e., varieties possessing a unique constant. It is shown (Theorem 2.16) that a pointed variety satisfies the condition (P) iff there exist integers $m \geqslant 0$ and $n \geqslant 1$ such that its theory admits binary terms $b_{i}(x, y)$ and unary terms $c_{i}(x)$ for each $1 \leqslant i \leqslant m$ and ($m+2$)-ary terms p_{1}, \ldots, p_{n} abiding by the equations

$$
\begin{aligned}
p_{1}\left(x, y, b_{1}(x, y), \ldots, b_{m}(x, y)\right) & =x \\
p_{i}\left(y, x, b_{1}(x, y), \ldots, b_{m}(x, y)\right) & =p_{i+1}\left(x, y, b_{1}(x, y), \ldots, b_{m}(x, y)\right) \\
p_{n}\left(y, x, b_{1}(x, y), \ldots, b_{m}(x, y)\right) & =y
\end{aligned}
$$

and, for each $i=1, \ldots, n$, we have

$$
p\left(0,0, c_{1}(z), \ldots, c_{m}(z)\right)=z
$$

The author then considers varieties abiding by the condition (P) locally, i.e., varieties in which each fiber $\mathrm{Pt}_{\mathbb{C}}(X)$ of the fibration of points

$$
\pi: \operatorname{Pt}(\mathbb{C}) \rightarrow \mathbb{C}
$$

is pervious to the condition (P). Every pointed variety \mathbb{C} obeying the condition (P) has normal projections in the sense of [Z. Janelidze, Theory Appl. Categ. 11, 212-214 (2003; Zbl 1018.18001)], though the converse does not hold. What is therefore remarkable, it turns out (Theorem 3.7) that a variety is pursuant to the condition (P) locally iff it has normal local projections [Z. Janelidze, Georgian Math. J. 11, No. 1, 93-98 (2004; Zbl 1052.18007)]. It is also shown that the condition (P) and its local version may be regarded as variants of Gumm's shifting lemma [H. P. Gumm, Geometrical methods in congruence modular algebras. Providence, RI: American Mathematical Society (AMS) (1983; Zbl 0547.08006)], meaning that any cogruence modular variety stands by the condition (P) locally.

Reviewer: Hirokazu Nishimura (Tsukuba)

MSC:

$08 B 05$ Equational logic in varieties of algebras
08B10 Congruence modularity and generalizations in varieties of algebras
18A30 Limits; colimits
18B99 Special categories
$03 \mathrm{C05}$ Universal algebra (model theory)

Keywords:

product preserves coequalizers; stability of coequalizers under product; product commutes with coequalizers; normal projections; shifting lemma

Full Text: Link

References:

[1] J. Adamek, J. Rosicky, and E. M. Vitale. What are sifted colimits?Theory and Applications of Categories, 23(13):251260, 2010. • Zbl 1225.18002
[2] D. Bourn. Mal'cev categories and fibration of pointed objects. Applied Categorical Structures, 4:307-327, 1996. • Zbl 0856.18004
[3] D. Bourn and M. Gran. Categorical aspects of modularity. Fields Institute Communications, 43:77-100, 2004. . Zbl 1081.08011
[4] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra, 84:145-158, 1993. • Zbl 0784.18001
[5] A. Carboni, J. Lambek, and M. C. Pedicchio. Diagram chasing in Mal'cev categories. Journal of Pure and Applied Algebra, 69:271-284, 1990. • Zbl 0722.18005
[6] A. Carboni, M. C. Pedicchio, and N. Pirovano. Internal graphs and internal groupoids in Mal'cev categories. CMS Conference Proceedings, 13:97-109, 1991. • Zbl 0791.18005
[7] I. Chajda. The egg-box property of congruences. Mathematica Slovaca, 38(3):243- 247, 1988. • Zbl 0649.08002
[8] M. Gran. Applications of categorical galois theory in universal algebra. Fields Institute Communications, 43, 2004. . Zbl 1067.18011
[9] H. P. Gumm. Geometrical methods in congruence modular algebras. Memoirs of the American Mathematical Society, 1983. Zbl 0547.08006
[10] M. Hoefnagel. Majority categories. Theory and Applications of Categories, 34:249-268, 2019. • Zbl 1411.18002
[11] M. Hoefnagel. M-coextensivity and the strict refinement property. arXiv:1905.10119, 2019.
[12] M. Hoefnagel. Characterizations of majority categories. Applied Categorical Structures, 2019, https://doi.org/10.1007/s10485-019-09571-z.
[13] Z. Janelidze. Characterization of pointed varieties of universal algebras with normal projections. Theory and applications of categories, 11(9):212-214, 2003. Zbl 1018.18001
[14] Z. Janelidze. Varieties of universal algebras with normal local projections. Georgian Mathematical Journal, 11(1):93--98, 2004. • Zbl 1052.18007
[15] Z. Janelidze. Subtractive categories. Applied Categorical Structures, 13(4):343-350, 2005. • Zbl 1095.18002
[16] Z. Janelidze. Closedness properties of internal relations I: a unified approach to Mal'tsev, unital and subtractive categories. Theory and Applications of Categories, 16:236-261, 2006. • Zbl 1104.18002
[17] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium I. Oxford University Press, 2002. • Zbl 1071.18001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.

