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This paper investigates the property (P) that binary products commute with arbitrary coequalizers in
pointed categories, being concerned with pointed varieties, i.e., varieties possessing a unique constant. It
is shown (Theorem 2.16) that a pointed variety satisfies the condition (P) iff there exist integers m ⩾ 0
and n ⩾ 1 such that its theory admits binary terms bi(x, y) and unary terms ci(x) for each 1 ⩽ i ⩽ m
and (m + 2)-ary terms p1, . . . , pn abiding by the equations

p1(x, y, b1(x, y), . . . , bm(x, y)) = x

pi(y, x, b1(x, y), . . . , bm(x, y)) = pi+1(x, y, b1(x, y), . . . , bm(x, y))
pn(y, x, b1(x, y), . . . , bm(x, y)) = y

and, for each i = 1, . . . , n, we have

p(0, 0, c1(z), . . . , cm(z)) = z

The author then considers varieties abiding by the condition (P) locally, i.e., varieties in which each fiber
PtC(X) of the fibration of points

π : Pt(C) → C

is pervious to the condition (P). Every pointed variety C obeying the condition (P) has normal pro-
jections in the sense of [Z. Janelidze, Theory Appl. Categ. 11, 212–214 (2003; Zbl 1018.18001)], though
the converse does not hold. What is therefore remarkable, it turns out (Theorem 3.7) that a variety is
pursuant to the condition (P) locally iff it has normal local projections [Z. Janelidze, Georgian Math. J.
11, No. 1, 93–98 (2004; Zbl 1052.18007)]. It is also shown that the condition (P) and its local version
may be regarded as variants of Gumm’s shifting lemma [H. P. Gumm, Geometrical methods in congru-
ence modular algebras. Providence, RI: American Mathematical Society (AMS) (1983; Zbl 0547.08006)],
meaning that any cogruence modular variety stands by the condition (P) locally.
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