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A Markov process is a stochastic model depicting a sequence of transitions between states in which the
probability of a transition relies only on the current state. This paper considers only continuous-time
Markov processes with a finite set of states. The authors extend coarse-graining, which is a standard
method of extracting a simpler Markov process from a more complicated one by identifying states, to
open Markov processes, in which probability can flow in or out of certain states called “inputs” and
“outputs”. Open Markov processes are to be seen as morphisms in a category, where we can compose two
open Markov processes by identifying the outputs of the first with the inputs of the second.
The resulting category has been investigated in a number of papers [J. C. Baez and B. Fong, Theory Appl.
Categ. 33, 1158–1222 (2018; Zbl 1402.18005); B. Fong, “The algebra of open and interconnected systems”,
arXiv:1609.05382; B. S. Pollard, “Open Markov processes and reaction networks”, arXiv:1709.09743].
This paper goes further to introduce a double category for depiction of coarse-graining. The authors
construct a pseudo double category Mark, in which

1. finite sets as objects,
2. maps between finite sets as vertical 1-morphisms,
3. open Markov processes as horizontal 1-cells (composition of open Markov processes is only weakly

associative),
4. morphisms between open Markov processes as 2-morphisms.

In previous work [J. C. Baez et al., J. Math. Phys. 57, No. 3, 033301, 30 p. (2016; Zbl 1336.60147); Rev.
Math. Phys. 29, No. 9, Article ID 1750028, 41 p. (2017; Zbl 1383.68053)], it was shown that black-boxing
is a symmetric monoidal functor, where Markov processes are defined to be a directed multigraph, while
this paper works directly with the Hamiltonians, skipping the directed multigraphs.
The principal result in this paper is that black-boxing gives a symmetric monoidal double functor from
the double category Mark to another double category LinRel, which has

1. finite-dimensional real vector spaces as objects,
2. linear maps as vertical 1-morphisms,
3. linear relation as horizontal 1-cells,
4. squares

V1 V2

W1 W2

R⊆V1⊕V2

f g

S⊆W1⊕W2

with (f ⊕ g)R ⊆ S as 2-morphisms.
The most fastidious part in its proof is to show that black-boxing a composite of open Markov pro-
cesses gives the composite of their black-boxings, that is to say, that black-boxing preserves composition
of horizontal 1-cells, which was fortunately established by simply adapting a previous argument [Zbl
1383.68053]. In the final section (§6), the authors construct symmetric monoidal bicategories Mark and
LinRel from the symmetric monoidal double categories Mark and LinRel by using a result of [M. A.
Shulman, “Constructing symmetric monoidal bicategories”, arXiv:1004.0993].
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