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The epoch-making paper [C. R. Rao, Bull. Calcutta Math. Soc. 37, 81–91 (1945; Zbl 0063.06420)] has
made use of Fisher information to define a Riemannian metric on a space of probability distributions on
finite samples, which enabled Rao to derive the Cramér-Rao inequality. After 30 years, B. Efron [Ann.
Stat. 3, 1189–1242 (1975; Zbl 0321.62013)] extended Rao’s ideas to a higher-order asymptotic theory
of statistical inference, defining smooth subfamilies of large exponential families and their statistical
curvature, which is no other than the second fundamental form of subfamilies put down as Riemannian
submanifolds in the Riemannian manifold of the underlying exponential family endowed with the Fisher
metric. In [Proc. R. Soc. Lond., Ser. A 186, 453–461 (1946; Zbl 0063.03050)], H. Jeffreys introduced what
is now called the Kullback-Leibler divergence, where, for two infinitely close distributions, their Kullback-
Leibler divergence was to be written as a quadratic form with elements of the Fisher information matrix
as coefficients, the quadratic form being interpreted as the length of a Riemannian manifold while the
Fisher information playing the role of the Riemannian metric. This geometrization of the statistical model
enabled him to derive his prior distributions as the measures naturally induced by the Riemannian metric.
All this is the harbinger of information geometry.
Inspired by Efron’s above mentioned paper [loc. cit.], S. Amari [Ann. Stat. 10, 357–385 (1982; Zbl
0507.62026)] introduced the notion of α-connections and exhibited its usefulness in the asymptotic the-
ory of statistical estimation, finally realizing Fisher’s unfulfilled dream of showing that the maximal
likelihood estimator is optimal (see also [S. Amari, Differential-geometrical methods in statistics. Berlin
etc.: Springer-Verlag. (1985; Zbl 0559.62001); Differential-geometrical methods in statistics. Corr. 2nd.
printing. Berlin etc.: Springer-Verlag (1990; Zbl 0701.62008)], [S. Amari and H. Nagaoka, Methods of
information geometry. Transl. from the Japanese by Daishi Harada. Providence, RI: AMS, American
Mathematical Society; Oxford: Oxford University Press (2000; Zbl 0960.62005); Methods of information
geometry. Translation from the Japanese by Daishi Harada. Reprint of the 2000 edition. Providence, RI:
American Mathematical Society (AMS) (2008; Zbl 1146.62001)]). S. Amari and H. Nagaoka [Dept. Math.
Eng. and Instr. Phys., Univ. of Tokyo, Technical Report METR 82-7 (1982)] have introduced the notion
of dual connections and developed the general theory of dually flat spaces, which was applied successfully
to the geometry of α-connections. Amari’s ideas of α-connections were preceded by the Soviet mathe-
matician N. N. Chentsov [Sov. Math., Dokl. 5, 1282–1286 (1964; Zbl 0129.10503); translation from Dokl.
Akad. Nauk SSSR 158, 543–545 (1964)], who defined an affine flat connection, called the e-connection,
on the set P+(Ω, µ). N. N. Chentsov [Dokl. Akad. Nauk SSSR 164, 511–514 (1965)] and N. Morse and R.
Sacksteder [Ann. Math. Stat. 37, 203–214 (1966; Zbl 0158.37105)] independently introduced the category
of mathematical statistics almost simultaneously. N. N. Chentsov [Statistical decision rules and optimal
inference. Transl. from the Russian by the Israel Program for Scientific Translations; ed. by Lev J. Leif-
man. Providence, R.I.: American Mathematical Society (AMS). (1982; Zbl 0484.62008)] discovered the
Amari-Chenstov connections and established their uniqueness by the invariance under sufficient statistics.
All this is the emergence of information geometry.
The book under review, devoted to information geometry, consists of six chapters. The first chapter is an
introduction.
Chapter 2, consisting of nine sections, deals with basic constructions in the elementary case that the
underlying space Ω is of finitely many elements. It introduces and discusses (§2.1) manifolds of finite
measures, (§2.2) the Fisher metric, (§2.3) gradient fields, (§2.4) m-connections as well as e-connections,
(§2.5) the Amari-Chentsov tensor as well as the α-connections, (§2.6) congruent families of tensors, (§2.7)
divergences, (§2.8) exponential families, (§2.9) hierarchical and graphical models. The book is mainly
concerned with differential geometry of statistics, but algebraic geometry is also useful in statistics and the
corresponding approach is called algebraic statistics, which is particularly important for comprehending
closures of models. In this regard, the authors present implicit descriptions of exponential families and
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their closures in §2.8.2, while, in the context of graphical models and their closures [D. Geiger et al.,
Ann. Stat. 34, No. 3, 1463–1492 (2006; Zbl 1104.60007)], they establish the Hammersley-Clifford theorem
on the lines of [S. L. Lauritzen, Graphical models. Oxford: Oxford Univ. Press (1998; Zbl 0907.62001)]
in §2.9.3. Algebraic statistics makes use of computational commutative algebra in order to determine
maximum likelihood estimators on the one hand, and provides linear and toric models on the other.
Chapter 3, consisting of three sections, considers a general space Ω, for which a functional analytic
framework is to be developed. Parametrized measure models and suitable integrability properties are also
discussed. The first section is of a more informal character, paving the way to more formal considerations
in the second section, where the authors discuss parametrized measure models based upon [Bernoulli
24, No. 3, 1692–1725 (2018; Zbl 1419.62057)]. The third section investigates the Pistone-Sempi structure
[G. Pistone and C. Sempi, Ann. Stat. 23, No. 5, 1543–1561 (1995; Zbl 0848.62003)], which geometrizes
M+(Ω, µ0) of finite measures compatible with a fixed measure µ0 in place of M(Ω), providing M+(Ω, µ0)
with the structure of a Banach manifold.
Chapter 4 addresses differential geometry of statistical models, discussing dualistic structures which
consist of a Riemannian metric and two dual connections. When both connections are torsion-free, the
structure is to be obtained from potential functions which are convex functions with their second deriva-
tives playing the role of a metric and their third derivatives being regarded as a symmetric 3-tensor. Here
we find a pair of dual affine structures, which is the very geometry discovered by Amari and Chentsov.
The theory of dually affine structures turn out to be a real analogue of Kähler geometry, as can be seen
in [S.-Y. Cheng and S.-T. Yau, in: Differential geometry and differential equations, Proc. 1980 Beijing
Sympos., Vol. 1, 339–370 (1982; Zbl 0517.35020); S. Y. Cheng, in: Proc. Int. Congr. Math., Warszawa
1983, Vol. 1, 533–539 (1984; Zbl 0601.53055)]. The analogy stems from the fact that the Kähler form of a
Kähler manifold is locally obtained as the complex Hessian of some function, while our metric is given by
the real Hessian. The analogy is enjoyed and exploited, by way of example, in [H. Shima, The geometry
of Hessian structures. Hackensack, NJ: World Scientific (2007; Zbl 1244.53004); H. Shima and K. Yagi,
Differ. Geom. Appl. 7, No. 3, 277–290 (1997; Zbl 0910.53034); H. Shima, J. Math. Soc. Japan 47, No. 4,
735–753 (1995; Zbl 0845.53033); H. Shima, Sémin. Gaston Darboux Géom. Topologie Différ. 1988–1989,
1–48 (1989; Zbl 0696.53030); Ann. Inst. Fourier 36, No. 3, 183–205 (1986; Zbl 0586.57013); Prog. Math.
14, 385–392 (1981; Zbl 0481.53038); Ann. Inst. Fourier 30, No. 3, 91–128 (1980; Zbl 0424.53023); Osaka
J. Math. 15, 509–513 (1978; Zbl 0415.53032); J. Math. Soc. Japan 29, 581–589 (1977; Zbl 0349.53036);
S. Amari and J. Armstrong, Differ. Geom. Appl. 33, 1–12 (2014; Zbl 1325.53028); Lect. Notes Comput.
Sci. 9389, 240–247 (2015; Zbl 1396.53048)]. Any statistical model is to be isostatistically immersed into
a standard model stemming from an Amari-Chentsov structure, providing the link between differential
geometry discussed in Chapter 4 and functional analysis discussed in Chapter 3.
Chapter 5 shows that the Fisher metric and Amari-Chentsov tensor are characterized by their invariance
under sufficient statistics, which is to be regarded as one of the main results of information geometry.
Therein the authors discuss estimators and derive a general version of the Cramér-Rao inequality.
The concept of Shannon information is to be related to the entropy concept of Boltzmann and Gibbs,
thereby yielding a natural connection between information geometry and statistical mechanics. Informa-
tion geometry lies at the foundations of such important areas of mathematical biology as the theory of
replicator equations and population dynamics. The information-geometric approach is particularly effi-
cient in natural gradient methods [S. Amari, Information geometry and its applications. Tokyo: Springer
(2016; Zbl 1350.94001)], which greatly improve classical gradient-based algorithms in exploitation of the
natural geometry of the Fisher metric.
Information geometry abounds with applications. Chapter 6 addresses some fields of applications of in-
formation geometry with the authors’ flavor emphasized. The chapter consists of four sections, the first
of which addresses the famous problem of the whole of a complex system being more than the sum
of its parts (usually attributed to celebrated ancient Greek philosopher Aristotle) from an information-
geometric viewpoint based upon [N. Ay, Entropy 17, No. 4, 2432–2458 (2015; Zbl 1338.94032); Ann.
Probab. 30, No. 1, 416–436 (2002; Zbl 1010.62007); N. Ay and A. Knauf, Kybernetika 42, No. 5, 517–538
(2006; Zbl 1249.82011)]. Its second section addresses evolutionary dynamics, which studies the change
in time of relative frequencies of various types in a population. Formally speaking, such relative fre-
quencies are to be regarded as probabilities, leading to dynamical systems on the probability simplex,
which naturally involve the natural metric called the Fisher metric in mathematical statistics and the
Shahashahani metric in evolutionary dynamics [S. Shahshahani, Mem. Am. Math. Soc. 211, 34 p. (1979;
Zbl 0473.92008)]. These yield systems of ordinary differential equations called replicator equations, which,
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if perturbed by noise, result in what physicists call Fokker-Plank equations while mathematicians refer
to as Kolgomorov equations. Its third section is devoted to applications of the Fisher metric to Monte
Carlo methods [T. Bui-Thanh and M. Girolami, Inverse Probl. 30, No. 11, Article ID 114014, 23 p. (2014;
Zbl 1306.65269)]. The last section puts some information-geometric constructions, particularly those dis-
cussed in §4.3, into the context of Gibbs families in statistical mechanincs, concluding that the entropy
and the free energy are dual to each other (more explicitly, the Lagrange multipliers θi are the derivatives
of the negative entropy with respect to the expectation values ηj while the expectation values are the
derivatives of the negative free energy with respect to the Lagrange multipliers).
The book is concluded with three appendices on measure theory, Riemannian geometry and Banach
manifolds.
Last but not least, it is exciting to note that no sooner has the book appeared than a new journal
devoted completely to information geometry is published from Springer (Editor in Chief: Shinto Eguchi,
ISSN 2511-2481 and 2511-249X). The book as well as [Zbl 1350.94001] will remain standard textbooks
on information geometry in the forseeable future and will become the classics in the arena afterwards.
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