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Topological combinatorics is concerned with the applications of the many powerful techniques of algebraic
topology to problems in combinatorics. One of its landmarks is [L. Lovász, J. Comb. Theory, Ser. A 25,
319–324 (1978; Zbl 0418.05028)], which gave an elegant proof of Kneser conjecture [Martin Kneser,
Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 58, No. 2, 27 (1955)] by exploiting
[K. Borsuk, Fundam. Math. 20, 177–190 (1933; Zbl 0006.42403; JFM 59.0560.01)]. The present book aims
to give a clear and vivid presentation of some of the most beautiful and accessible results from the area.
The text, based upon some courses by the author at Freie Universität Berlin, is designed for an advanced
undergraduate student.
The book consists of 9 chapters, the first four of which being intended for main topics while the remaining
five being concerned with appendices. The first chapter deals with envy-free fair and consensus divisions,
which lead to two distinct topological tools, namely, Brouwer’s fixed point theorem and the theorem of
Borsuk and Ulam, which turn out to have combinatorial analogues called the lemma of Spencer and
that of Tucker. The second chapter is concerned with Kneser conjecture settled by Lovász, as mentioned
above. “Lovász associated a simplical complex to a graph in such a way that the topology of the complex
provides some information about the chromatic number of the graph, therefore transforming a discrete
problem into a topological one.” The third chapter is based upon [M. Aigner, Combinatorial search.
Wiley-Teubner Series in Computer Science. Stuttgart (FRG): B. G. Teubner; Chichester (UK): Wiley
(1988; Zbl 0663.68076)]; [B. Bollobás, Extremal graph theory. Reprint of the 1978 original. Mineola, NY:
Dover Publications (2004; Zbl 1099.05044); Extremal graph theory. London–New York–San Francisco:
Academic Press (1978; Zbl 0419.05031)]; [Daria Schymura, Über die Fragekomplexität von Mengen-und
Grapheneigenschaften, Master’s thesis, Freie Universität Berlin (2006)] and [J. Kahn, M. Saks and D.
Sturtevant, Combinatorica 4, 297–306 (1984; Zbl 0577.05061)]. The fourth chapter answers the question
whether a given graph G is planar, namely, Kuratowski’s theorem, by using methods of algebraic topology.
Proceeding more generally, the author considers whether a given simplicial complex admits a geometric
realization in some fixed dimension n. The author investigates, besides questions of embeddability and
nonembeddability, whether all maps of a given graph or a complex into some Euclidean space have some
predetermined intersection property and whether maps with such a property exist. The remaining five
chapters are devoted to Appendix A (basic concepts from graph theory), Appendix B (crash course in
topology), Appendix C (partially ordered sets, order complexes, and their topology), Appendix D (groups
and group actions) and Appendix E (some results and applications from Smith theory) based upon [G.
E. Bredon, Introduction to compact transformation groups. New York–London: Academic Press (1972;
Zbl 0246.57017)] and [R. Oliver, Comment. Math. Helv. 50, 155–177 (1975; Zbl 0304.57020)].

Reviewer: Hirokazu Nishimura (Tsukuba)

MSC:
05-01 Textbooks (combinatorics)
05A99 Classical combinatorial problems
54H25 Fixed-point and coincidence theorems in topological spaces
55M20 Fixed points and coincidences (algebraic topology)
55M35 Finite groups of transformations
05C10 Topological graph theory
05C15 Coloring of graphs and hypergraphs
06A06 Partial order

Cited in 6 Documents

Keywords:
graph theory; algebraic topology; Smith theory; Kneser conjecture; the theorem of Borsuk and Ulam;

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2019 FIZ Karlsruhe GmbH Page 1

https://zbmath.org/
https://zbmath.org/authors/?q=ai:de-longueville.mark
https://zbmath.org/1273.05001
https://zbmath.org/1273.05001
https://zbmath.org/journals/?q=se:00009073
https://zbmath.org/?q=an:0418.05028
https://zbmath.org/?q=an:0006.42403
https://zbmath.org/?q=an:59.0560.01
https://zbmath.org/?q=an:0663.68076
https://zbmath.org/?q=an:1099.05044
https://zbmath.org/?q=an:0419.05031
https://zbmath.org/?q=an:0577.05061
https://zbmath.org/?q=an:0246.57017
https://zbmath.org/?q=an:0304.57020
https://zbmath.org/authors/?q=ai%3Anishimura.hirokazu
https://zbmath.org/classification/?q=cc:05-01
https://zbmath.org/classification/?q=cc:05A99
https://zbmath.org/classification/?q=cc:54H25
https://zbmath.org/classification/?q=cc:55M20
https://zbmath.org/classification/?q=cc:55M35
https://zbmath.org/classification/?q=cc:05C10
https://zbmath.org/classification/?q=cc:05C15
https://zbmath.org/classification/?q=cc:06A06
https://zbmath.org/?q=rf:1273.05001|05877216
https://zbmath.org/?q=ut:graph+theory
https://zbmath.org/?q=ut:algebraic+topology
https://zbmath.org/?q=ut:Smith+theory
https://zbmath.org/?q=ut:Kneser+conjecture
https://zbmath.org/?q=ut:the+theorem+of+Borsuk+and+Ulam
https://www.fiz-karlsruhe.de/
http://www.euro-math-soc.eu/
http://www.haw.uni-heidelberg.de/


Brouwer’s fixed-point theorem; the lemma of Spencer; the lemma of Tucker; Lovász complex; embedding
problems; mapping problems; Kuratowski’s theorem; chromatic number

Full Text: DOI

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2019 FIZ Karlsruhe GmbH Page 2

https://zbmath.org/?q=ut:Brouwer%27s+fixed-point+theorem
https://zbmath.org/?q=ut:the+lemma+of+Spencer
https://zbmath.org/?q=ut:the+lemma+of+Tucker
https://zbmath.org/?q=ut:Lov%C3%A1sz+complex
https://zbmath.org/?q=ut:embedding+problems
https://zbmath.org/?q=ut:embedding+problems
https://zbmath.org/?q=ut:mapping+problems
https://zbmath.org/?q=ut:Kuratowski%27s+theorem
https://zbmath.org/?q=ut:chromatic+number
http://dx.doi.org/10.1007/978-1-4419-7910-0
https://www.fiz-karlsruhe.de/
http://www.euro-math-soc.eu/
http://www.haw.uni-heidelberg.de/

