zbMATHㅌ

the first resource for mathematics

Liao, Hsuan-Yi; Stiénon, Mathieu

Formal exponential map for graded manifolds. (English) Zbl 07130853
Int. Math. Res. Not. 2019, No. 3, 700-730 (2019).
The principal objective in this paper is to introduce, for every \mathbb{Z}-graded manifold, a formal exponential map in a purely algebraic way and investigate its properties with applications. Although the geodestic exponential map exp : $T_{M} \rightarrow M \times N$ associated to an affine connection ∇ on a smooth manifold M fails to transpose straightforwardly to the graded manifold context, its fiber-wise infinite-order jet evaluated along the zero section of T_{M} admits a genuinely algebraic description carrying over to the \mathbb{Z}-graded context. It is established (Theorem 4.3) that the formal exponential map pbw : $\Gamma\left(S\left(T_{M}\right)\right) \rightarrow \mathcal{U}\left(T_{M}\right)$ is an isomorphism of filtered coalgebras over $\mathcal{C}^{\infty}(M)$. As applications, a much more transparent proof of the Emmrich-Weinstein theorem [C. Emmrich and A. Weinstein, Prog. Math. 123, 217-239 (1994; Zbl 0846.58031)] for graded manifolds and a proof based on homological perturbation of an analog of V. Dolgushev's result in [Adv. Math. 191, No. 1, 147-177 (2005; Zbl 1116.53065)] using B. V. Fedosov's iterative method [J. Differ. Geom. 40, No. 2, 213-238 (1994; Zbl 0812.53034)] in the context of \mathbb{Z}-graded manifold are given.

Reviewer: Hirokazu Nishimura (Tsukuba) (MR 3910470)

MSC:

58C50 Analysis on supermanifolds or graded manifolds

Full Text: DOI

