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Hypergraph categories were rediscovered several times in several guises with several names, including
well-supported compact closed categories, dgs-monoidal categories and dungeon categories. The resur-
gent nature of this notion comes from the reason that it has a lot of application, including automata
theory, databases, circuits, graph rewriting and belief propagation, and besides, the standard defini-
tion is too involved and too ornate to grasp immediately. Here a hypergraph category is a symmetric
monoidal category in which every object is equipped with the structure of a special commutative Frobe-
nius monoid obeying certain compatibility with the monoid product. The principal objective in this paper
is to show precisely that a hypergraph category is simply a cospan-algebra, which is, roughly speaking,
a lax monoidal from cospans to sets. It was demonstrated in [D. I. Spivak et al., J. Pure Appl. Algebra
221, No. 8, 2064–2110 (2017; Zbl 06817576)] that the operad governing traced monoidal categories is the
operad Cob of oriented 1-dimensional cobordisms. It is similarly shown in this paper that the operad
governing hypergraph categories is Cospan, meaning informally that there is a one-to-one correspon-
dence between the wiring diagrams interpretable in a hypergraph category H and cospans labelled by the
objects of H. The authors think of the cospan representation as an unbiased viewpoint on hypergraph
categories, considering the category of cospan-algebras as a decategorification of the 2-category Hyp of
hypergraph categories, which is the first main result in this paper. The second main result in this paper
is the isomorphism of 1-categories

HypOF =
∫ Λ∈SetList

Lax (CospanΛ, Set)

where OF stands for “objectwise-free”.
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