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A *-category is a category with an involution * fixing the objects. This paper is concerned with the
following categories C of *-categories and their marked versions C+:

1. *-categories ∗Cat1: categories A endowed with an involution ∗ : A → Aop.
2. C-linear *-categories ∗

CCat1: *-categories enriched over C-vector spaces with an anti-linear involu-
tion.

3. pre-C∗-categories C∗
preCat1: C-linear *-categories which admit a maximal C∗-completion.

4. C∗-categories C∗Cat1: pre-C∗-categories whose Hom-vector spaces are complete in the maximal
norm.

C∗-categories have been investigated in [I. Dell’Ambrogio, Homology Homotopy Appl. 14, No. 2, 101–127
(2012; Zbl 1261.46067)]. Many arguments in this paper are merely modifications of that paper.
The paper consists of 14 sections. §2 introduces the notion of *-category and various C-linear versions.
§3 is concerned with adjunctions. §4 addresses the representability of the functors taking the sets ob-
jects, morphisms, unitary morphisms of a (marked) *-category in the respective cases. §5 introduces the
∞-categories of *-categories, C-linear *-categories, pre-C∗-categories, C∗-categories and their marked ver-
sions by inverting unitary (or marked, respectively) equivalences. §6 is engaged in the tensor and power
structure over groupoids. §7 considers the functor categories, serving as explicit fibrant resolutions in
§13, from the arrow category G̃ with a group G. §8 is concerned with completeness, cocompleteness and
local presentability. §9 claims the main theorem on the model category structures. §10 shows that the
model category structures depicted in the previous section are simplicial model categories. §11 demon-
strates that the model category structure on any of ∗Cat1, ∗

CCat1, C∗Cat1 and their marked versions is
cofibrantly generated.
Given a group G with BG

HomBG(pt, pt)

regarded as a *-category in such a way that

g∗ = g−1

one of the principal objectives in this paper is to calculate the object

lim
BG

ℓBG(A)

in C∞ for A in Fun(BG, C), which is tantamount to providing an object B of C with equivalence

l(B) ≃ lim
BG

ℓBG(A)

where l : C → C∞ denotes the localization inverting the (marked) unitary equivalences. §12 provides a
candidate for B, denoted by ÂG, whose justification is given in §13 (Theorem 13.7). §14 is concerned
with infinity-categorical G-orbits, where it is established (Theorem 14.6) that

colim
BG

ℓBG(C) ≃ (C#BG)

for any C of ∗Cat1, ∗
CCat1, C∗Cat1 and their marked versions with an object C in C.
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