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Abstract. In [3], a classification is given of the exceptional Z;, x Z,-
symmetric spaces G/K, where G is an exceptional compact Lie
group or Spin(8), and moreover the structure of K is determined
as Lie algebra. In the present article, we give a pair of commuting
involutive automorphisms (involutions) &, 7 of G concretely and
determine the structure of group G°NG® corresponding to Lie
algebra g’Ng? where G is an exceptional compact Lie group.
Thereby, we realize exceptional Z, x Z,-symmetric spaces, globally.

1. Introduction

According to the article [3], the notion of ['-symmetric spaces introduced by
Lutz [4] is a generalization of the classical notion of a symmetric space, where I'
is a finite abelian group. (As for the definition of I'-symmetric space, see [1].)
In the case I' = Z, this is the classical definition of symmetric spaces, and in
the case I' =7, x Z, we say that this is Z, x Z,-symmetric space. Now, the
definition of Z, x Z,-symmetric space in [3] is as follows.

DEerFINITION. A homogeneous space G/K is Z, x Z,-symmetric space if there
are 6,7 € Aut(G)\{idg} such that 6> = 7> =idg, 6 #% and 6% =76 such that
(G"NG"), = K = G°NGT, where G” (resp. G7) is a fixed points subgroup of G
by & (resp. 7) and (G° N GT), is a connected component containing 1 of G° N G”.
(Hereafter idg is abbreviated as 1.)
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The main purpose of this article is to give a pair of different involutive
automorphisms ¢, 7 in G and to determine the structure of the group G°N G~
corresponding to f=g?MNg’ in the second column of Table 1, where G is a
simply connected compact exceptional Lie group G,, Fu, Eg, E7 or Eg. Thereby,
we realize exceptional Z, x Z,-symmetric spaces, globally. We call those spaces
“Globally exceptional Z, x Z,-symmetric spaces”’. Moreover, we confirm all
types (G/G°,G/G",G/G") of Z, x Z,-symmetric spaces determined by Andreas
kollross, globally. For example, since it follows from the triple group iso-
morphisms (Eg)” = Sp(4)/Z5, (Ee)"” = (Ee)" = Sp(4)/Za, (Es)™""" = (Eq)°
~ (U(1) x Spin(10))/Z4 that Ee/(Ee)”, Ee/(Ee)"", Eo/(Ee)™" are the
symmetric spaces of type EI, EI, EIIl, respectively. Then the globally Z, x Z,-
symmetric space of this type is called type EI-EI-EIIl, and denote EI-EI-EIII by
abbreviated form EI-I-III. In addition, when ¢ and 7 are conjugate in G, we give
explicitly the element d € G such that g = 5to! except for three cases in Ejg.

This article is closely in connection with the preceding articles [5], [6], [7], [8],
[10], [11], [12] and [13], and may be a continuation of those in some sense.

J-S.H and J.U [2] classified the Klein four subgroups I' of Aut(uy) for
each compact Lie algebra 1y by calculating the symmetric subgroups Aut(uo)o
(0 € Aut(up) is a involutive automorphism) and their involution classes, and
determined the fixed point subgroup Aut(uo)r . In general, suppose a group G
is simply connected, we have Aut(G) = Aut(g) ([9]. g is the Lie algebra of G),
moreover when the center z(G) of G is trivial, it is well-known that G < Aut(G).
Since the exceptional compact Lie groups G = G», Fy, Eg are simply connected
and these z(G) are trivial, we see that G < Aut(G) =~ Aut(g). Hence, for
G = Gy, Fy, Eg, our results of G°NGT in Table 1 are realized as the subgroups
of the results of fixed point subgroups of Klein four subgroups in exceptional
case of [2].

In [2], they had approached the ends by using root system of 1y. On the
other hand, we define the mappings between groups explicitly, and give the
proofs of isomorphism of group by using the homomorphism theorem as ele-
mentary approach. The author would like to say that this is one of features about
this article.

For G = Gy, F4, Eg, E7, and Eg, our results are as follows.

Type g f(=g°Ng") Involutions G°NG*

G-G-G 6, | iR@iR o | (U() x U(1)/Z2 % {15¢)
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FI-I-1 fa | u@3) @R 7 VH (U) x U(1) x SU(3))/Z3 > {1,7¢}
FI-I-11 s | sp(2) @sp(l) D sp(l) Y, Y0 (Sp(1) x Sp(1) x Sp(2))/Z>
FII-11-11 fa | 50(8) o,a’ Spin(8)
EL-I-II ¢ | 50(6) DR Iy dyye | (UQ) x SO(6))/Zy > {1, 7}
EL-I-ITT ¢ | 5p(2) D sp(2) Ay dye | (Sp(2) x Sp(2))/Z2 > {1, p}
EL-II-1V ¢ | sp(3) @ sp(1) Ay, (Sp(1) x Sp(3))/ 2>
EIL-II-II e | su(3) @ su(3) @ . (U(1) x U(1) x SU3) x SU(3))/
iR DR Z3 > {1,yc}
EIL-II-ITT ¢ | su(d) @sp(l) @ nay | (Sp(1) x Sp(1) x U(1) x SU(4))/
sp(1) @ iR (Zy x Z4)
EII-II1-II1 ¢ | su(5) ®iR ®iR nomp, | (UQ) x U(1) x SU(5))/(Z2 x Zs)
EII-TI-T11 ¢ | 50(8) ®iR ®iR a,a (U(1) x U(1) x Spin(8))/(Z2 x Z4)
EINI-1V-1V ¢ | s0(9) AT Spin(9)
EV-V-V ¢7 | s0(8) e | SOB8)/Zy x {1,-1}
EV-V-VI ¢7 | su(4) @ su(4) @ iR Jy,dye | (U(1) x SU(4) x SU4))/
(Zy x Z4) ¥ {1,¢}

EV-V-VII 7 | sp(4) Indy | Sp(#)/Zy x {1,-1}
EV-VI-VII ¢7 | su(6) ®sp(l) ®iR 2,y (U(1) x SU(2) x SU(6))/Z24
EVI-VI-VI ¢ | s0(8) @ so(4) @ sp(1) y—c | (SU(2) x Spin(4) x Spin(8))/

e7 | u(l) @ su(6) ®iR 7 H (Z2x Z5)

(UM) x U(1) x SU(6))/Z3 > {1,7c}
EVI-VII-VII ¢7 | s0(10) ® iR ® iR —0,1 (U(1) x U(1) x Spin(10))/Z1»
EVII-VIIVIT | ¢ | iy Y Fyx {1,-1}
EVII-VIII-VIII | ¢ | s0(8) @ s0(8) 0,0 (Spin(8) x Spin(8))/(Z> x Z)
EVII-VIII-IX | ¢ | su(8) @ iR doy doyv | (SOQ2) x SU8))/Zs > {1,p,}
EVILIX-IX | e | s0(12) @ sp(1) @ sp(1) o0 (SU2) x SU(2) x Spin(12))/Z4
EIX-IX-IX es | ¢ @IRDIR V)1 (SO(2) x U(1) x Eg)/Zs > {1,v}
Table 1. Globally exceptional Z, x Z,-symmetric spaces
REMARK. In the forth column, we omit a sign ~, for example 7 is denoted

by y. In the fifth column, a sign X means semi-direct product of groups, for

example (U(1) x SO(6))/Zy < {1,yy}.
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2. Preliminaries

We give the definitions of the simply connected compact exceptional Lie
groups used in this article, and we state general notes for notation.

2.1. Cayley Algebra and Compact Lie Group of Type G>

Let € = {eg = 1,e1, €2, €3,¢€4,e5,¢6, €7} be the division Cayley algebra. In €,
since the multiplication and the inner product are well known, these are omitted.
The simply connected compact Lie group of type G, is given by

Gy = {a € Isog(6) | a(xy) = (ex)(3)}-

2.2. [Exceptional Jordan Algebra and Compact Lie Group of Type Fj

Let 3(3,€) ={X e M(3,€)| X* = X} be the exceptional Jordan algebra. In
3(3,€), the Jordan multiplication X o Y, the inner product (X, Y) and a cross
multiplication X x Y, called the Freudenthal multiplication, are defined by

1

XoY=z(XY+YX), (X,Y)=u(XoY),

—_—

XXY=-2Xo Y -tr(X)Y —tr(Y)X + (tr(X) tr(Y) — (X, Y))E),

2
respectively, where E is the 3 x 3 unit matrix. Moreover, we define the trilinear
form (X,Y,Z), the determinant det X by

(X,Y,Z)=(X,Y x Z), detX ==(X,X,X),

W =

respectively, and briefly denote J(3,€) by 3J.
The simply connected compact Lie group of type Fj is given by

Fy={oelsop(J)|a(X oY) =aXoaY}
= {0 elsop(J) |a(X x Y) =0X x aY}.

Then we have naturally the inclusion G; = Fy.

2.3. Complex Exceptional Jordan Algebra and Compact Lie Group
of Type Es

Let 3(3,6)“ ={XeM(3,6)“|X* =X} be the complexification of the
exceptional Jordan algebra J. In S(3,(€)C, as in 3, we can also define the
multiplication X oY, X x Y, the inner product (X,Y), the trilinear forms
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(X,Y,Z) and the determinant det X' in the same manner, and those have the
same properties. The S(l(‘:)c is called the complex exceptional Jordan algebra,
and briefly denote 3(3,€)C by 3€.

The simply connected compact Lie group of type E¢ is given by

Eg = {0 € Isoc(3°) |det aX = det X, (aX,aY) = <X, Y)},

where the Hermite inner product <X, Y) is defined by (tX,Y) (z is a complex
conjugation in 3 :¢(X +iY) =X —i¥, X,Y e3).

Then we have naturally the inclusion G, < Fy < Eg.

2.4. C-Vector Space and Compact Lie Group of Type E;

We define a C-vector space BC, called the Freudenthal C-vector space, by

B =3@3°@cacC
with the Hermite inner product
(P, 0 ={X,Z) +<Y, W)+ (xO){ + ()

for P=(X,Y,&n), Q= (Z,W,(,w)e B . For peel, 4,BeJ  and ve C, we
define a C-linear mapping ¢(¢, 4, B,v) : ¢ — B by

1
¢X —vX +2B X Y + A

X 3
Y , 1
(ﬂ(¢,A,B,V) f =|24x X — ¢Y+§VY—|—fB 7
n (A7Y)+Vé
(B, X) —vn

where ‘peel is the transpose of ¢ with respect to the inner product
(X,Y): ("X, Y) = (X,9Y) (¢f is the complex Lie algebra of type Eg).

Moreover, for P= (X, Y,¢n), Q= (Z,W,{,0) € BE, we define a C-linear
mapping P x Q: B¢ — B by

¢:—%(X\/ W+2ZvY)

A:—l(ZYx W —EZ — (X)
P x Q= p($,A,B,v), 4

B=-2X xZ —nW — wY)

1
4

—_—

(X, W) +(Z,Y) = 3(Co+ ),

y =

B
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1 1
where X v W eef is defined by (X v W)U == (W, U)X—&-E(X, WHYU —2W x

2
(X x U) for Ue 3.
The simply connected compact Lie group of type E; is given by

E7 = {aeTsoc(BO) |a(P x Q)a~! = aP x a0, {aP,xQ> = (P, 0)}.

Then we have naturally the inclusion G, < Fy < Eg < E;.

2.5. (C-Vector Space and Compact Lie Group of Type Ej

We define a C-vector space egc by
o =ef P OB @COCAC,
with the Lie bracket [R;, Ra], Rix = (¢, Pk, Ok, ks Sk, 1), k = 1,2, defined by

[((plvP17Q13r17slat1)7(¢27P23Q2ar2aS27t2)} = ((paPa Qarasvt)v

¢ =[p1,0,)] + P1 X Q2 — Py X Q4
Q=0 Py— 0 P1 +11 Py — 1P+ 5102 — 5204
P=0,0— 0,01 — 102+ 101+ 1P — 1P

1 1
r= —g{Plan}‘Fg{Pz,Ql}-FSﬂz — 5t

1
s = Z{P],Pz} + 2r182 — 2ra8

1
t= _Z{QI’QZ} —2r1ty + 2ty

where ef is the complex Lie algebra of type E;, {P,Q}= (X, W)—(Y,Z)+
o —nl, P=(X,Y,En), Q= (Z, W,(,w) e BC. Then e becomes the complex
simple Lie algebra of type FEg.

Here, we define a C-linear transformation 4, of ¢{ by

/lw((ﬂv P7 Q7 r,s, t) = ()LQ/I_] ) lQ: —AP, -, _l7 _S)7

where A of the right hand side is the C-linear transformation of B¢ and is defined
in Section 3.4.
Moreover, the complex conjugation in e is denoted by

T((”’ P? Q? r’ S’ t) = (T¢T7 TP? TQ? Tr? TS? Tt)’
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where 7 in the right hand side is the usual complex conjugation in the com-
plexification.
Then we define a Hermitian inner product (R, R;) in ¢{ by

1
(R, Ry = — EBs(Tﬂ»w& , Ry),

where Bs is the Killing form of ¢S (as for Bs, see [10, Section Eg) in detail).
The simply connected compact Lie group Eg are given by

Ey = {oe Isoc(e$) |a[Ry, Ry] = [oRy, aRy], CaRy, 0Ry Y = {(Ry, Ry}

Then we have naturally the inclusion G, < Fy < Eg < E; < Eg.

Now, we state general notes of this article for notation. Let G be a group.
For d € G, 6 denotes the inner automorphism induced by d : d(g) = dgd !, g€ G,
then G° = {ge G|d(g) =g}. Hereafter G° will be also written by G°. For
o, ff € G, when o and f are conjugate in G, it is denoted by o ~ f. Besides, we
almost use the same notations as [10].

3. Globally Exceptional Symmetric Spaces of Type I

In Table 2 below, the list of left half is classification of exceptional symmetric
spaces that was found by Elie Cartan, on the other hand the list of right half is
the results of group realizations corresponding to those. The structures of the
groups G¢ below are well-known fact, however the explicit forms of involutive
inner automorphisms ¢ are seldom known fact, so we write all in the following
Table 2. The definitions of ¢ are written in the each section of this chapter. We
remark that as in Table 1 we omit a sign ~ in the fifth column.

In this chapter, each proof of the theorem is based on [10], and so whereas
we omit the detail. Furthermore, in [10], since the every proofs are written in
detail, refer to those.

Type g f(=~g9) G | Involution o K=aG°

G 9, | sp(l) @sp(l) | Ga ? (Sp(1) x Sp(1))/Z>
FI s | sPB)@sp(l) | Fo ? (Sp(1) x Sp(3))/Z>
FII fa | s0(9) Fy a Spin(9)
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El e | sp(4) Eg Ay Sp(4)/ Z>

EII ¢ | su(6) ®sp(l) | E ? (Sp(1) x SU(6))/Z>
ENI | ¢ | s0(10) @ iR Eg o (U(1) x Spin(10))/Z4
EIV | ¢ |1, Eq 2 F

EV e7 | su(8) E; Ay SU8)/Z,

EVI | & | s(12)@sp(l) | B ) (Sp(1) x Spin(12))/Z>
EVIL | ¢ | es®iR E; . (U(1) x Eo)/Z5
EVII | e | so(16) Ey ey Ss(16)

EIX eg | e7 @ sp(l) Eg v (Sp(1) x Eq7)/Z>

Table 2. Globally exceptional symmetric spaces of type I

3.1. Type G

Let € =H ® Hes be Cayley devision algebra, where H is the field of
quaternion number and e4 is one of basis in €.
We define an R-linear transformation y of € by

y(a+bes) =a—bes, a+besec H® Hey =C.

Then we have y € Gy, > = 1. Hence y induces involutive inner automorphism j
of Gy:9(a) =yay, ae€ Go.
Now, the structure of the group (G)” is as follows.

THEOREM 3.1.1 ([G]). The group (G>)" is isomorphism to the group (Sp(1) x
Sp(1))/Z2: (G2)" = (Sp(1) x Sp(1))/Z>, Z> ={(1,1),(-1,-1)}
Proor. We define a mapping ¢g : Sp(1) x Sp(1) — (G>)” by
og(p,q)(m+ aes) = gqng + (pag)es, m+aes € H® Hey = C.
This mapping induces the required isomorphism (see [10, Section 1.10]). O

3.2. Types FI and FII

Let J be the exceptional Jordan algebra. An clement X € J has the form

& X3 X
X = X3 62 X1 ) €k€R7 Xkeo:«, k= 17273'

Xy X1 &
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Hereafter, in J, we use the following nations:

1 00 0 00 0 0 0
000, EE=|01 0], Es=|0 0 0],
0 00 0 00 0 0 1
0 0 0 0 x 0 x 0
F(x)=|0 X 0 0 0 x 00
0 x 0 x 0 0 0 0 0
We correspond such X € J to an element M +ae J(3,H) ® H 3 such that

& my i
my & omy |+ (a1, a,a3),
my my &

where xy =my +areae H@® Hey =€, k=1,2,3. Then J(3,H) @ H® has the
Freudenthal multiplication and the inner product

(M +a)x (N +b) = (MxN—%(a*b—Fb*a))—%(aN—kbM),
(M +a,N +b) = (M,N) + 2(a, b),

1 . . . .
where (a,b) = 3 (ab™ + ba™), corresponding those of J, that is, J is isomorphic to

S3(3,H) @ H® as algebra. From now on, we identify § with 3(3,H) ® H>.
We define R-linear transformations y, ¢ of J by

S ) & —x3 X
X =73 & x|, oX=|-x% & x|, XeJ,
X2 X1 &3 —X2 X &

respectively, where y of the right hand side is the same one as y € G,. Then
we have that y,0 € Fy, > =0>=1. Hence y, ¢ induce involutive inner auto-
morphisms y, ¢ of Fy: j(a) = yay, () = oug, o€ Fy.

Now, the structures of groups (F4)" and (F4)? are as follows.

THEOREM 3.2.1 ([FI]). The group (F)" is isomorphic to the group (Sp(1) x
Sp(3))/Z> : (Fa)" = (Sp(1) x Sp(3))/Z2, Zy ={(1,E), (-1, -E)}.
Proor. We define a mapping ¢p, : Sp(1) x Sp(3) — (F4)” by
0r1(p A)(M +a) = AMA" + pad*, M +ae3(3,H) ®H =3,

This mapping induces the required isomorphism ([10, Section 2.11]). O
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THEOREM 3.2.2 ([FI)). The group (F4)° is isomorphic to the group Spin(9) :

(F4)? = Spin(9).
ProoF. From [10, Thorem 2.7.4] , we have (Fy), = Spin(9), so by proving
that (Fy)® = (F4)g, ([10, Thorem 2.9.1]) we have the required isomorphism (see
O

[10, Sections 2.7, 2.9] in detail).

3.3. Types EI, EIl, EIIl and EIV
Let 3¢ be the complex exceptional Jordan algebra. The complex conjugation

7 of 3¢ satisfies the equalities:
(XoY)=tXotY, (X x Y)=1tX xtY, X,Ye3".
Here, we define an involutive automorphism 4 of Eg by

M) =07, o€k

Then, from the definition of transpose: (‘aX,Y) = (X,aY), we see that

Aa) = 1o, o€ Eg.

Let the C-linear transformations y, o of 3¢ be the complexification of
ye Gy c Fy, o€ F;. Then we have that y,0 € Es, y> = 0> = 1. Hence, as in Fj,
the group Eg has involutive inner automorphisms 7, & induced by 7,0 : y(a) =

yay, &(o) = oao, o€ Eg.
Now, the structures of the groups (E¢)”, (Es)’, (Es)® and (Eg)” are as follows

THEOREM 3.3.1 ([EI)). The group (Ee)™ is isomorphic to the group Sp(4)/Zs :
(Es)" = (Es)” = Sp(4)/Z2, Zy = {E,~E}.
We define a mapping ¢g, : Sp(4) — (E¢)” by

pe (P)X =g ' (P(gX)P"), X e3°,

— 3(4,H )OC is the C-linear isomorphism. This mapping induces the

PROOF.

where ¢ : 3¢

required isomorphism (see [10, Section 3.12]).

O

REMARK. From A(a) = tar and 7y = y1, we see that A(yay) = t(yay)z, o € E.

THEOREM 3.3.2 ([ELl)). The group (Eg)’ isomorphic to the group (Sp(1) X
SU(6))/Z>: (Es)" = (Sp(1) x SU(6))/Z>, Z, = {(1,E),(—1,—E)}, where SU(6)
={UeM(6,C)|(z"U)U =1,det U = 1)}.
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ProOF. We define a mapping ¢p, : Sp(1) x SU(6) — (Es)” by
9e2(p, U)(M +a) = k' (U(k;M)'U) + pak™' (z'U),
M+ae3(3H) @ H) =3

where both of ky: 3(3,H)C — &(6,C) and k: M(3,H) — M(6,C) are the
C-linear isomorphisms. This mapping induces the required isomorphism (see
[10, Section 3.11]). O

THEOREM 3.3.3 ([EIl]). The group (Eg)? is isomorphic to the group (U(1) X
Spin(10))/Zs : (Ee)” = (U(1) x Spin(10))/Zs,  Zs ={(1,¢1(1)), (=1, ¢1(=1)),
(&, ¢ (=), (=1, 41(0)) }-

ProoF. We define a mapping ¢p; : U(1) x Spin(10) — (Es)° by
9E3(0,0) = ¢,(0)d,

where ¢,(0) : 3¢ — 3¢ is the C-linear mapping and nothing but ¢ defined in
[10, Section 3.10]. This mapping induces the required isomorphism (see [10,
Section 3.10]). O

THEOREM 3.3.4 ([EIV]). The group (Eg)* is isomorphic to the group Fy : (Eg)"
= (E6)T ~ Fy.

Proor. From the explanation at the beginning of this section, we have
(E)* = (E)", so by proving (E¢)* =~ F; we have the required isomorphism
(see [10, Section 3.7]). U

3.4. Types EV, EVI and EVII

Let BC be the Freudenthal C-vector space. We define C-linear transfor-
mations /4, 7, ¢ and 1 of PE by

Y(X, Y, &) = (X, vY, Eom),

o(X,Y,¢n) = (0X,0Y, &),

MX, Y, En) = (Y, —X,n,=),

(X, Y, &) = (—iX,iY,—i,in), (X, Y,&n) € BE,

where i€ C and y, o of the right hand side are the same ones as ye G, <

Fyc Es, 0€ Fy « Es. Then we have that 7,0,4,1€ E; and 2 =62 =1, 1> =

1> = —1. Hence, as in Eg, the group E; has involutive inner automorphisms
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7, ¢ induced by y,0: j(o) = yay, (o) = ouo, o € E;. Moreover, since —1 € z(E7)

(the center of E), 4, ¢ induce involutive inner automorphisms 1, i of E7 : A(x) =

Jod b d(e) = we B

Now, the structures of the groups (E;)”, (E;)” and (E;)" are as follows.

TuHEOREM 3.4.1 ([EV]). The group (E;)" is isomorphic to the group
SU(8)/Z, : (E)" =~ (E7)” ~ SU(8)/Z,, Z, = {E,—E}.

ProOF. We define a mapping ¢gs : SU(8) — (E7)" by
@ES(A)P :X_](A(XP)IA)7 Pe %C7
where y: BE — S(8,C )C is the C-linear isomorphism. This mapping induces the
required isomorphism (see [10, Section 4.12]). N

REMARK. Since Ay is conjugate to 7y in FEg, it is also in E7.

TueoreM 3.4.2 ([EVI]). The group (E7)” is isomorphic to the group
(SU(2) x Spin(12))/Z3 : (E7) = (E) ™" = (E7)° = (SU(2) x Spin(12))/Z2, Z =
{(Evl)»(_E’_G)}'

ProoF. We define a mapping ¢gg : SU(2) x Spin(12) — (E;)? by

Pr6(A4, B) = $2(A)PB,

where ¢,(A4) : P — P is the C-linear mapping and nothing but ¢, defined in
[10, Section 4.11]. This mapping induces the required isomorphism (see [10,
Section 4.11]). [

REMARK. As for the fact that y is conjugate to —o in E7, see [12, Prop-
osition 4.3.5 (3)].

TueoreM 3.4.3 ([EVIIL]). The group (E;)' is isomorphic to the group
(U(l) X EG)/Z3 : (E7)[ = (U<1) X Eé)/Z?n Z5 = {(17 1)7 (CL),¢(CO2)), (C()27¢(60))},
where we C, w> =1, w # 1.

Proor. We define a mapping ¢g; : U(1) x Es — (E7)" by

9e7(0,B) = ¢(9)/’)7

where ¢(6) : PBE — P is the C-linear mapping. This mapping induces the
required isomorphism (see [10, Section 4.10]). O
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3.5. Types EVIII and EIX

Let ¢f be 248 dimensional C-vector space. We define C-linear transfor-
mations A,, y and v of ¢S by

ia)((”a Pa Q7 r,s, t) = (igp)“il?/lQ’ 7/1Pa =, 7t7 7S)a
70, P,Q,r,5,1) = (ypy, 7P, 70, 1,5,1),
U(@,P,Q,V,S,l) = ((ﬁa_Pa_er?SaZ)’ ((D,P,Q,V,S,l) eegc7

where /A, y of right hand side are same ones A€ E7, y € G, <« F4, < Eg < E7. Then
we have that A,,7,v e Eg and A2 = 7> = v> = 1. Hence 4,, y, v induce involutive
inner automorphisms A,, 7, 5 of Eg : (o) = (Jo)ot(le), 7(c) = yay, 5(ct) = vow,
v € Eg. (Remark. A, is nothing but A4’ defined in [10, Section 5.5].)

Now, the structures of the groups (Es)™’ and (Eg)” are as follows.

TueoreM 3.5.1 ([EVIIN]). The group (Es)™’ is isomorphic to the group
Ss(16) : (Eg)™" =~ Ss(16).

PrOOF. Since the homomorphism between (Eg)™” and Ss(16) is not found
in Eg defined in Section 2.5 until now, we omit this proof (see [10, Section 5.8]).

O

THEOREM 3.5.2 ([EIX]). The group (Eg)" is isomorphic to the group
(SUQ2) x E7)/Zy : (Es)" = (SU(2) x Eq)/Z>, Z, ={(E,1),(-E,-1)}.

ProOF. We define a mapping ¢po : SU(2) x E; — (E;)" by

9ro(4, B) = ¢5(A)B,

where ¢5(A) : ef — ¢S is the C-linear transformation and nothing but ¢;(4)
defined in [10, Theorem 5.7.4]. This mapping induces the required isomorphism

(see [10, Section 5.7]). ]

4. Globally Exceptional Z, x Z,-Symmetric Spaces

In this chapter, for G = Gy, Fy, Eg, E7 or Eg, we determine the type (G/G?,
G/G*,G/G") of globally exceptional Z, x Z,-symmetric space and the structure
of group G°N G* by giving a pair of involutive inner automorphisms ¢ and 7 of
G. Most of fundamental K-linear transformations and involutive automorphisms
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used hereafter are defined in previous chapter, where K = R, C, and others are
defined each times.

Even if some proofs of this chapter are similar to ones of the preceding
articles [5], [6], [7], [8], [10], [11], [12] and [13], we rewrite in detail again as much
as possible. As mentioned in Tables 1, 2, we also omit a sing ~ for the elements
of Z2 X Z2.

+ |G2] We study one type in here.

4.1. Type G-G-G

In this section, we give a pair of involutive inner automorphisms 7 and 7.
We define R-linear transformations yy, yo of H by

yu(a+bex) = a— be,
vela+bey) =a+bey, a+beyeC® Cey=H.

Then yy, yo are naturally extended to R-linear transformations yy, y- of € as
follows:

va(X + yes) = yux + (yuy)es,
ve(x + yes) =yex+ (yeyles, x+yeae H® Hey =G

Needless to say, we have that yy,7c € Ga, 3 =92 =1, Yy = Yu?, Vve = Vc)-
Hence py, yc induce involutive inner automorphisms 7., 7.~ of Gy :Jy(a) =

Yu s Ye(®) =ycuye, v € G.

Lemma 4.1.1. In Gy, we have the following facts.
(1) y is conjugate to both of yy and yyy : v~ Yy, ¥ ~ VY-
(2) y is conjugate to both of yo and yyo:y~ e, Y~ Ve

Proor. (1) We define R-linear isomorphisms J,,d, : € — € by

O1: 11, e1—e1, ext— e, €3 e5, €4 €3, €5 €3, €6 — —€, €7 > —e7,
O0r: =1, e e, €2 —e6, €3 — —e7, eq— —ey, es— —e5, e —e, €7 —e3,
respectively where 1 and e;, k =1,2,...,7 are the basis of €. Then we see

01,02 € Gy, 512 = 5% = 1. Hence, by straightforward computation, we have
01y = yyo1, 02y = (yyy)d, that is, y ~yy, y ~ ypy in G
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(2) We define R-linear transformations 63,04 : € — € by
03:1—=1,e —eq, e3> e, 03— €, €4 — €], €5 — —e5, €6 — €3, €7 — —e7,
04 : 1 =1, e — es5, e e, €3 — —e7, €4 — —ey, €5 — €], € — —eg, €7 — —e3,
respectively. Then as in (1) above, we have that J3,d4 € Gy, 5§ :(ﬁ =1, o3y =
703, 04y = (77¢)0s, that is, y ~y¢, 7 ~ppc in G O

We have the following proposition which is the direct result of Lemma 4.1.1.

PrOPOSITION 4.1.2. The group (Gy)” is isomorphic to both of the groups
(G2)™ and (G2)"" : (Gr)” = (Go)"" = (Go) """,

From the result of type G in Table 2 and Proposition 4.1.2, we have the
following theorem.

THEOREM 4.1.3.  For Z, x Z, = {1,y} x {1,y }, the Z, x Zr-symmetric space
is of type (G2/(G2),G2/(G2)"",Ga/(G2)""™) = (Ga/(G2)", G2/ (G2)", Ga/(Ga)),
that is, (G, G, G), abbreviated as G.

Here, we prove lemma needed and make some preparations for theorem below.

LemMA 4.1.4. The mapping ¢g : Sp(1) x Sp(1) — (G2)” of Theorem 3.1.1
satisfies the following equalities:

(1) YH = ¢G(€17€1)7 Yc = ¢G(€27€2)-
(2) yuec(P, e = 96 (Yup, Yuq)-

Proor. The proof of (1) is omitted (see [11, Lemma 1.3.3] in detail). The
equality of (2) is the direct result of (1). O

Consider a group %> = {l,y-}. Then the group %> = {1,y.} acts on the
group U(l) x U(1) by
vela,b) = (yea, peb)

and let (U(1) x U(1)) X 2, be the semi-direct product of U(1) x U(1) and %,
with this action.
Now, we determine the structure of the group (Gy)" N(G,)™.
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THEOREM 4.1.5. We have that (Gy)'N(Gy)™ = (U(1) x U(1))/Zy X %>,
Z, ={(1,1), (=1, =D}, 25 ={1,pc}.

Proor. We define a mapping ¢4 : (U(1) x U(1)) x{L,y-} — (G2)"N
(G2)™ by

(p4]5(a,b, 1) = ¢G(a7 b)?
oas(a,b,7¢) = 9g(a,b)yc,

where ¢g is defined in Theorem 3.1.1. From yy. = vy, yyg = ygy and Lemma
414 (1), we have ¢4s(a,b,1),045(a,b,yc) € (Gy)"N(Gy)"". Hence @5 is
well-defined. Using (aey)c = (ac)es, a,ce€ U(1), we can confirm that ¢, is a
homomorphism. Indeed, we show that the case of ¢4 5(a,b,yc)p45(c,d, 1) =
0a15((a,b,v0)(c,d, 1)) as example. For the left hand side of this equality, we have
that

Pa15(a,b,yc)par5(c,d, 1) = (pg(a,b)yc)oc(c, d)
= (pc(a,b)pg(e2, €2))pG(c, d)
= ¢g((aex)c, (bex)d)

= pg((ac)es, (bd)ey).

On the other hand, for the right hand side of same one, we have that

pars((a;b,7¢0)(e,d, 1)) = gq5((a,b)yc(c,d), yc)
= pg(a(yce),b(ycd))yc

= gg(ac, bd)pg (e, e2)

= ¢c((ac)es, (bd)er)
that is, g4 5(a, b, yc)@a15(c,d, 1) = p45((a,b,70)(c,d, 1)). Similarly, the other cases
are shown.
We shall show that ¢,s is surjection. Let a € (G)” N (G2)"". Since (Gz)” N
(G2)"" = (Gy)", there exist p,q e Sp(1) such that o = ¢5(p,q) (Theorem 3.1.1).

Moreover, from o = ¢g(p,q) € (G2)"", that is, y506(p, ¢)7y = ¢6(p,q), we have
o6 (YuPsvuq) = 06(p,q) (Lemma 4.1.4 (2)). Hence it follows that

YuP =P or YuPp = P
YHqd =4 Yud = —4.
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In the former case, we see that p,q e U(l), then set p=a, g=b, a,be U(1).
Hence we have that o = gg(a,b) = ¢4 5(a, b, 1). In the latter case, we can find the
explicit form of p, ¢ as follows: p = pres + pses = (p2 + p3er)er, ¢ = qrex + qze3
= (g +qse1)e2, pr,qr € R, k=23, that is, p,ge U(l)e; = {ue, |ue U(1)}.
Then, set p = aes, q = bey, a,be U(l), by using y- = ¢pg(e2,e2) (Lemma 4.1.4
(1)), we have that

u = gg(aer,bex) = pgla,b)pg(ez,e2) = pg(a,b)yc = paq5(a b, yc).

Thus @45 is surjection.
From Ker ¢gg = {(1,1),(—1,—1)}, we can easily obtain that Ker ¢, s =

{(1,1,1),(=1,-1,1)} = (Z,, 1).
Therefore we have the required isomorphism

(G))"N(Gy)"™ = (U(1) x U(1))/Zy X Z>. 0
* [F4] We study three types in here.

4.2. Type FI-I-1

In this section, we give a pair of involutive inner automorphisms 7 and 7.
We define R-linear transformations yy, y- of J by

St YuXs Tpxa &1 Yexs Tex2
X =\ Tu%s & oywa |, peX =T & oyena |, XES,
YuX2 TpXt &3 yux2 Ycxi &3

where yp, 7o of the right hand side are the same ones as yy, 7. € G». Then we
have that yy,yc€Fi, 74 =7%=1. Hence y,, yc induce involutive inner
automorphisms J, 7o of Fy:9y5() = ygoyy, $e(a) =yeoye, o€ Fi. (Remark.
In F,, we use y., however we do not use J..)

Moreover, using the inclusion G, = Fy, the R-linear transformations d;, J,
defined in Lemma 4.1.1 are naturally extended to R-linear transformations of
as follows:

< OrX3  Okx2
X =|oxs & qxy |, XeJ k=12
Orxy Okxi &3

Then we see 01,0, € Fy, 512 :5§ =1. As in Gy, since we easily see that y ~ yg,
y ~ yyy in Fy, we have the following proposition.
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PrOPOSITION 4.2.1. The group (Fy)" is isomorphic to both of the groups
(F4)7H and (F4)WH : (F4)y ~t (F4)y” =~ (F4)WH.

From the result of type FI in Table 2 and Proposition 4.2.1, we have the
following theorem.

THEOREM 4.2.2.  For Zy x Ly = {1,y} x {1,yy}, the Zy x Zy-symmetric space
is of type (Fy/(Fa)', Fuf(Fa)"", Fa/(Fa)"™) = (Fa/(Fa), Fy/(Fs)", Fa/(F4)"), that
is, type (F1, Fl, FI), abbreviated as FI-1-1.

Here, we prove lemma needed and make some preparations for the theorem
below.

LemMa 4.2.3. The mapping g, : Sp(1) x Sp(3) — (F4)" of Theorem 3.2.1
satisfies the following equalities:

(1) yu = ori(er,e1E), 7yc = op (e2,E).
(2) yueei(p; vy = op1 (Vups 7HA)-

ProoF. The proof of (1) is omitted (see [11, Lemma 2.3.4] in detail). The
equality of (2) is the direct result of (1). I

Consider a group 2> = {l,y-}. Then the group 2> = {l,y.} acts on the
group U(1) x U(3) by
yC(a7B) = (yCa7 yCB)

and let (U(1) x U(3)) X 2, be the semi-direct product of U(1) x U(3) and %5
with this action.
Now, we determine the structure of the group (Fy)’ N (Fy)™.

THEOREM 4.2.4. We have that (Fy)" N (Fy)"" =~ (U(1) x U(3))/Zy X %>,
Z, = {(I’E)7 (_L _E)}> ZH = {layC}'

ProOF. We define a mapping ¢4, : (U(1) x U(3)) X {1, 7o} — (Fy)" N (Fy)™
by
Pp4(a, B,1) = ¢g(a, B),

Pa24(a, B,y¢c) = op1(a, B)yc,
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where ¢, is defined in Theorem 3.2.1. As the proof of Theorem 4.1.5, it is easily
to verify that ¢, is well-defined and a homomorphism.

We shall show that ¢,,, is surjection. Let o e (Fq)” N (F4)™. Since (F4)"N
(F4)"" = (Fy)”, there exist peSp(l1) and A4 e Sp(3) such that o= gg(p, A)
(Theorem 3.2.1). Moreover, from o = ¢p,(p, A) € (F4)", that is, yy0p, (p, A)yy =
vp1(p, A), we have gp (ygp, yyA) = ¢p;(p, A) (Lemma 4.2.3 (2)). Hence it follows
that

YHP =P YHP = —P
ypd=A4 ypd =—A.

In the former case, we easily see that p e U(1), A € U(3), then set p=a e U(1)
and 4 = Be U(3). Hence we have that « = ¢g(a, B) = ¢44(a, B,1). In the latter
case, in the way similar to the former case of Theorem 4.1.5 we find that
peU(l)ey ={uey|lue U(l)}, Ae UQB)(exE) ={B(e;E)|Be U(3)}. Then, set
p=uaey, A=B(eE), acU(l), Be U(3), by using y. = ¢g(e2,e2E) (Lemma
4.2.3 (1)), we have that

o = gp(aez, B(e2E)) = gy (a, B)pg (€2, 2E) = ¢ (a, B)yc = @aoala, B, y¢).

Thus ¢,,; is surjection.
From Ker ¢ = {(1,E),(—1,—E)}, we can easily obtain that Ker ¢4y =
{(LE1),(-1,-E, 1)} = (Z,,1).
Therefore we have the required isomorphism
(Fa)" N (Fy)™ =~ (U(1) x U(3))/Z, X Z5. O
4.3. Type FI-I-II

In this section, we give a pair of involutive inner automorphisms $ and ya.
Lemma 4.3.1. In Fy, y is conjugate to yo:y ~ yo.

Proor. We define an R-linear transformation ds of J by

¢ X3€4 Xzey
05X = | —esxs & —e4x1e4 |, X e
—esXy  —esXies &3

Then we have that Js5 € Fj, 5§ =1, dsy = (yo)ds, that is, y ~yo in Fy. O
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We have the following proposition which is the direct result of Lemma 4.3.1.

yo .

PrOPOSITION 4.3.2. The group (F4)” is isomorphic to the group (Fy)
(F4)7 = (F4)y”.

From the result of types FI, FII in Table 2 and Proposition 4.3.2, we have
the following theorem.

THEOREM 4.3.3.  For Z, x Z, = {1,y} x {1,ya}, the Z, x Z,-symmetric space
is of type (Fa/(Fa)’, Fa/ (Fa)", Fo/ (Fa)"V") = (Fuo/ (Fa)', Fa/(Fa)7, Fa/ (F3)°), that
is, type (F1, FL, FII), abbreviated as FI-1-11.

Here, we prove lemma needed in theorem below.

LeMMA 4.3.4. The mapping ¢g, : Sp(1) x Sp(3) — (F4)” of Theorem 3.2.1
satisfies the following equalities:

(1) y=9r(=1,-E), o=0¢p(=1,50).
(2) yor1(p, A)y = 91 (p, A), 005 (P, A)o = ¢ (p, 1 Al),
where I} = diag(—1,1,1).

Proor. The proof of (1) is omitted (see [11, Lemma 2.3.4] in detail). The
equalities of (2) are the direct result of (1). N

Now, we determine the structure of the group (Fy)" N (Fy)”.

THEOREM 4.3.5. We have that (F4)" N (F4)" = (Sp(1) x Sp(1) x Sp(2))/Z,
ZZ = {(13 13E)3 (715 713E)}

Proor. We define a mapping ¢435;Sp(1) x Sp(1) x Sp(2) — (Fa)" N (F4)"
by

9135(P> 4, B) = 91 (P, h(q, B)),

0
where / is defined by /4 : Sp(1) x Sp(2) — Sp(3), h(q,B) = (q ) Since the

0 B
mapping ¢,3s is the restriction of the mapping ¢, it is easily to verify that ¢4;5
is well-defined and a homomorphism.
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We shall show that ¢,;5 is surjection. Let a e (Fy)" N (F4)". Since (F4)" N
(F4)" = (Fy)?, there exist pe Sp(l) and A4 e Sp(3) such that o= gg(p,4)
(Theorem 3.2.1). Moreover, from o« = ¢ (p, A) € (F4)’°, that is, (yo)pg(p, 4)(ay)

=¢p1(p,A), wusing  ypp (p, A)y = ¢ (p,A) and  opg (p, A)o = pg (p, [1AL)
(Lemma 4.3.4 (2)), we have ¢ (p,1AI}) = ¢p(p, A). Hence it follows that

p=>r or pP=-D

LAL = A LAL = —A.
In the former case, it is trivial that p € Sp(1), and we get the explicit form of
A € Sp(3) as follows:

A:(g g) geSp(l), BeSp(2).

Hence we have o = ¢p,(p,h(q, B)) = ¢435(p,q, B). In the latter case, this case is
impossible because of p =0 for p e Sp(1). Thus ¢,;5 is surjection.

From Ker g = {(1,E),(—1,—E)}, we can easily obtain that Ker g 35 =
{((1,1,E),(—=1,-1,—-E)} = Z,.

Therefore we have the required isomorphism

(Fa)" N (Fa)™ = (Sp(1) x Sp(1) x Sp(2))/ Z>. O

4.4. Type FIL-II-II

In this section, we give a pair of involutive inner automorphisms ¢ and ¢’'.
We define an R-linear transformation ¢’ of J by

g ox3 —X
dX = X3 & -x1 |, Xeg.
—x2 —X1 &
2 . . . .
Then we have that ¢’ € Fy, ¢’ = 1, 06’ = ¢’0. Hence ¢’ induces involutive inner
automorphism ¢’ of Fy:6'(a) = o'ag’, o€ Fy.

LemMa 4.4.1. In Fy, o is conjugate to both of ¢’ and oo’ :0 ~d',0 ~ od’.

ProOF. We define R-linear transformations dg, d7 of § by

& X1 ox & XX
X =|x1 & X3, X =|x3 & X |, Xel.
X x3 & X ox &
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Then we have that d¢,07 € Fy, 5§ :5% = 1. Hence, by straightforward compu-
tation, we have that d¢o = 6'dg, d70 = (66’)d7, that is, ¢ ~¢’, 0 ~ o0’ in Fy.

O

We have the following proposition which is the direct result of Lemma 4.4.1.

PrOPOSITION 4.4.2. The group (Fy)° is isomorphic to both of the groups
(F3)7 and (F3)7 : (Fy)° = (F3)° = (F;)° .

From the result of type FII in Table 2 and Proposition 4.4.2, we have the
following theorem.

THEOREM 4.4.3. For Z, x L, = {1,0} x {1,0’}, the Z, x Z,-symmetric space
is of type (Fu/(Fs)’ Fa/(Fs) ,Fa/(Fa)* ) = (Fa/(Fa)°, Fa/(F4)°, Fs/(F4)°), that
is, type (FII, FII, FII), abbreviated as FII-1I-11I.

Here, we prove lemma needed in the theorem below.

LEMMA 4.4.4. The Lie algebra (i,)° N (1,)° of the group (F4)°N(F4)° is
given by
(1)"N(14)” ={Deso(8)} = s0(8).

In particular, we have

dim((f,)° N (7)) = 28.

ProOF. Since any element ¢ of the Lie algebra §, of the group Fj is uniquely
expressed as

=D+ A\(ar) + Ay(ar) + A3(a3), Deso(8),aieC k=123,

where Aj(a), k =1,2,3 are R-linear mapping of § (see [10, Section 2.2] in
detail). Using

006 = D+ A\(a)) + As(—az) + A3(—as),

¢'dc' =D + /Il(*cll) + Az(faz) + A3(Cl3),

we can easily prove this lemma. O

Now, we determine the structure of the group (F3)° N (F3)”.
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THEOREM 4.4.5. We have that (F3)° N (F3)° = Spin(8).

Proor. Let Spin(8) = {(o,002,03) € SO(8) x SO(8) x SO(8) | (01x)(02y) =
u3(Xy), x, y € €}. We define a mapping ¢,4s : Spin(8) — (F4)° N (F4)”/ by

& mx3 0Xp
Pags(o,00,03)X = | ;3x3 & x|, XeJ.
oaxy X &3

It is easily to verify that ¢4 is well-defined, a homomorphism and injection.
We shall show that gus is surjection. From (F4)” = Spin(9) ([5, Proposition
1.4)), we have that (F;)° N (F3)” = (F4)°)” = (Spin(9))” . Hence (Fy)° N (Fy)”
is connected. Moreover, together with dim((f,)? N (f,)7) = 28 = dim(s0(8))
(Lemma 4.4.4), we have that ¢, is surjection.
Therefore we have the required isomorphism

(F3)" N (Fy)° = Spin(8). O
+ [E¢] We study eight types in here.

4.5. Type ELII-II

In this section, we give a pair of involutive automorphisms 1y and Ayyc.

Let the C-linear transformations yy, yo of 3¢ be the complexification of
Yi»Vc € Gy = Fy. Then we have that yy,yc € Es, 75 =72 =1, so yc induces
involutive inner automorphism yps of Eg: ya(o) = yeaye, o€ Eg.

Using the inclusion G, < F4 < Eg, the R-linear transformations d3, d4 defined
in Lemma 4.1.1 are naturally extended to C-linear transformations of 3. Hence,
as in Gy, since we easily see that d3y = y03, da4y = yy04 as J3,04 € Eg, that is,
y~7ve, ¥~ yye in Es, we have the following proposition.

PROPOSITION 4.5.1. (1) The group (E¢)™ is isomorphic to the group (Eg)™" :
(Es)" = (Eg)""".
(2) The group (Eg)” is isomorphic to the group (Eg)’c : (Eg)’ = (Eg)’c.

Proor. (1) We define a mapping [ : (E(,)M — (E(,)’WC by

f(OC) = 540(54.
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In order to prove this proposition, it is sufficient to show that the mapping f is
well-defined. Indeed, it follows from y ~ yy. that

Myyef (@yey) = "(7c(0a208)pcy) ™ = ype(S4e " da)yey
= 04(pA(2)7)0s = 04004 = f(at),

that is, f(x) e (Ee)™c.
(2) This isomorphism is the direct result of y ~ y.. O

From the result of types EI, EII in Table 2 and Proposition 4.5.1, we have
the following theorem.

THEOREM 4.5.2. For Zy x Zp = {1, Ay} x {1, Ayyc}, the Zp x Zy-symmetric
space is of type (Es/(Ee)", Eo/(Es) ™", Es/(Ee)™""¢)) = (Eq/(Ee)", Es/(Ee) """,
Eof (Eg)'®) = (Es/(Es)"", Eo/(Ee)"", Es/(Eq)"), that is, type (EL EI, EIL), abbre-
viated as EI-I-11.

Here, we prove lemma and proposition needed and make some preparations
for the theorem below.

LemMA 4.5.3.  The mapping ¢g, : Sp(1) x SU(6) — (Es)” of Theorem 3.3.2
satisfies the following equalities:
(1) 7 ==L E), vy =opler,il), 7c=gmlerJ), o=¢p(-1,h)
(2) 0e2(p, U)y = 0p2(p, U)s 7u0e2(p, Uy = 9pa2(7map, 1UI),
Ye?e2(p, U)ye = ¢pa(vep, —JUJ),  0pgy(p, U)o = ¢gy(p, LUD).
(3) Apea(p, U)) = ppa(p, = (zU)J),

. . 0 1
where ie C, I =diag(l,—1,1,-1,1,-1), J=diag(J1,/1,J1), Ji :( 1 0),
L = diag(—1,-1,1,1,1,1).

Proor. The proof of (1) is omitted (see [11, Lemmas 3.5.7, 3.5.10] in detail).
The equalities of (2) are the direct results of (1).

(3) Using the equality k(M) = —Jk(zM)J, we have the required result.
Indeed,



Realizations of globally exceptional Z, x Z,-symmetric spaces 263

Moea(p, U))(M + a)
= 2(ppa(p, U))t(M +a) (see Section 3.3)
= (g (p, U)) (M + 7a)
= t(k; ' (Uks(xM)'U) + p(za)k ™' (z'U))
= —tk ' (Uk;(tM)'U)J) + patk~'(¢'U)
= k' (J @O (kM)("U)(=E)) + pak~" (z' (=] (zU)J))
=k (= (zU))(kM)J (=J (z'U))(=)) + pak~" ('(=J (zU)J))
= k; (=T (@U)) (kg M) ((=J (zU)T))) + pak ™ (<'(=J (zU)J))
= ¢2(p, —J(TU)J)(M + a),

that is, A(gp2(p, U)) = ¢pa(p, —J(zU)J). O

PROPOSITION 4.5.4. The group (Eg)™ N (Eg)™< is isomorphic to the group
(Es)™ N (Eg)7 : (Ee)™ N (Eg)""" = (Eg)™ N (Eg)™.

PrOOF. We define a mapping ¢ : (E¢)™ N (Ee)"’c — (E¢)™ N (E)'c by
g(o) = A(2).

In order to prove this proposition, it is sufficient to show that the mapping g is
well-defined. Indeed, it follows from A(y) =y, A(yc) =y that

Ayg(0)y) = A(yA(2)y) = Ale) = g(«) and

ved(@)ye = ye@)ye = y(rrcM@)yey)y = yay = y(pA(@)y)y = Ale) = g(a),
that is, (o) € (E¢)” and g(a) € (Eg)’°. 0O

Let {a=x+ yey;|aa=1,x,ye R} = Sp(1) be a group which is isomorphic
to the ordinary unitary group U(1), so this group is also denoted by U(1). In this
section, we use this as U(1).

Consider a group 25 = {1,y5}. Then the group %5 = {l,y,} acts on the
group U(1) x SO(6) by

yula, ) = (@ (iDAG) ™),

where I = diag(l,—1,1,—1,1,—1), and let (U(l) x SO(6)) X 2, be the semi-
direct product of U(1) x SO(6) and %5 with this action.
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Now, we determine the structure of the group (Eg)™ N (Ee) <.
THEOREM 4.5.5. We have that (E¢)™ N (E¢)™"¢ = (U(1) x SO(6))/Z » %5,
Z, = {(lvE)v (-1, _E)}a %= {LVH}-

PrROOF. We define a mapping (U(1) x SO(6)) = {1,y,} — (Es)™ N (Es)’c
by

¢456((07A), 1) = 0719, (a, A)d7,
P436((a, A), yy) = 07(ppa(a, A)yy)o7,

where @p,, 07 are defined in Theorem 3.3.2, Lemma 4.5.1, respectively. From
Lemmas 4.5.1, 4.54, we have ¢u5((a,A),1),p45((a,A),yy) € (Es)™ N (Eg)’c.
Hence ¢,5 is well-defined. Using y; = ¢pa(e1,i) (Lemma 4.5.4 (1)), we can
confirm that ¢4 is a homomorphism. Indeed, we show that the case of

Pase((@,A), V1) Pase (D, B), 1) = 94s6(((a, 4), 74)((b, B), 1)) as example. For the left
hand side of this equality, we have that

P4s6((a, A), 71456 (b, B), 1) = (07(pga(a, A)yp)07) (07982 (b, B)57)
= (971(pr2(a, A)ppa (€1, il))07) (0792 (b, B)O7)
— 61(ppa(ab, AGD)B(T) ™ )pg)07.
On the other hand, for the right hand side of same one, we have that

Pase(((a, A), i) (D, B), 1)) = puse((@, A)yp (b, B), i)
= puss((ab, AGD)B(T) ™), 7y)
= 51(pga(ab, AGI)BGI) " )719)07,

that is, gys6((a, 4), 71)P4s6((D, B), 1) = @456(((a, 4), 7)((b, B), 1)). Similarly, the
other cases are shown.

We shall show that ¢, is surjection. Let o € (Eg)” N (Eq)’c. Hence, since
e (Es)” N (Es)’e = (Eg)’ ~ (Eg)” (Proposition 4.5.2 (2)), there exist p e Sp(1)
and U e SU(6) such that o = d7¢p,(p, U)d7; (Theorem 3.3.2). Moreover, from
% = 0792 (p, U)d7 € (Ee)”, that is, A(y(010p:(p, U)37)7) = 619p5(p, U)d7, using
7e?e2(Ps U)yve = ¢pa(yep, —JUJ) and A(pgy(p, U)) = ¢pa(p, —J(zU)J) (Lemma
4.5.4 (2), (3)), we have that ¢p,(ycp,t4) = ¢p,(p, A). Hence it follows that

{ch=p or {ch:—p
tU=U U=-U.
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In the former case, we see that pe U(l) = {a = po+ prez|aa=1} and Ue
SO(6). Hence we have that o = d7¢g,(a, A)07 = @456((a, A),1). In the latter case,
we can find the explicit forms of p e Sp(1), U e SU(6) as follows:

p=nrpiel + pes =aei(a=p — preae U(l)), U=A(Il), AeSO(6).
Hence we have that

o = 97(ppa(aer, A(il)))07 = 07(¢pa(a, A)ppa(en, il))d7

= 07(pp2(a, A)y))07 = Pase((a, A), 7 h)-

Thus @456 is surjection.

From Ker ¢gp, = {(1,E),(—1,—FE)}, we can easily obtain that Ker g45 =
{((1, E),1),((=1,=E),1)} @ (Z2,1). Therefore we have the following isomor-
phism (E)™ N (Ee)’¢ = (U(1) x SO(6))/Z> > {1,yy}.

Namely, from Proposition 4.5.5, we have the required isomorphism

(Es)" N (E¢)’e = (U(1) x SO(6))/Z> * %,. O

4.6. Type EL-IIII

In this section, we give a pair of involutive automorphisms Ay and Ayg.

Using the inclusion Fy < Eg, the R-linear transformation Js defined in
Lemma 4.3.1 is naturally extended to C-linear transformation of 3¢, Hence, as
in Fy, we easily see that dsy = (yo)ds as Js € Fy < Eg, that is, y ~ yo in Eg.

PROPOSITION 4.6.1. The group (E¢)" is isomorphic to the group (E¢)" :
(Es)"™ =~ (E¢)™".

Proor. We define a mapping f : (E(,)ﬂ"" —( Eé)i?’” by
f(a) = dsa05 ",

where Js is same one above. (Remark. since Js € Fy, it follows that A(ds) = Js.)
In order to prove this proposition, it is sufficient to show that the mapping f is
well-defined. However, it is almost evident from A(ds) =ds and dsy = (ya)ds.

O

From the result of types EI, EIIl in Table 2 and Proposition 4.6.1, we have
the following theorem.
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THEOREM 4.6.2. For Z, x Z, = {1,2y} x {1, ya}, the Z, x Z,-symmetric
space is of type (E6/(E6)“’,E6/(E6);'W,E6/(E6)()'y)wg)) = (Es/(Es)", Eo/(Es)",
E¢/(E)?), that is, type (El, El, EII), abbreviated as EI-I-IIL.

Here, we prove lemma needed and make some preparations for the theorem
below.

LemMa 4.6.3. The mapping ¢g, : Sp(4) — (E6)W of Theorem 3.3.1 satisfies
the following equalities:

(1) y=wei(h), o=0g(h)
(2) ype1(P)y = pp1 (L PL), opg (P)o = ¢g (LPD).
(3) Alpe1(P)) = pei (L PL),
where I} = diag(—1,1,1,1), I, = diag(—1,—1,1,1).
Proor. The proof of (1) is omitted (see [11, Lemma 3.4.4] in detail). The

equalities of (2) are the direct results of (1). As for (3), from A(pg (P)) =
g (P)7, it is easily obtained. I

We define some element p e (Eg)” by

p = ¢e1 (JE),

0 E 1 0
where Jg = (E 0) eSp4), E = (O 1). Then we easily see p> = 1.

Consider a group %, = {1, p}. Then the group 2, = {1, p} acts on the group
Sp(2) x Sp(2) by
p(4,B) = (B, A),

and let (Sp(2) x Sp(2)) X %, be the semi-product of Sp(2) x Sp(2) and %, with
this action.

Now, we determine the structure of the group (Eg)™ N (Ee)™°.

THEOREM 4.6.4. We have that (E¢)"” N (E¢)™" = (Sp(2) x Sp(2))/Z2 » 25,
where Z, = {(E,E),(—E,—E)}, 2> ={l,p}.

PrROOF. We define a mapping ¢u : (Sp(2) X Sp(2)) > {1,p} — (E¢)* N
(Ee)""" by
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¢464((A73)7 1) = (ﬂEl(hl(AaB))7

Pa64((4, B), p) = pg1 (h1(4, B))p,
where ¢g; is defined in Theorem 3.3.1, and #/; is defined as follows:

hy : Sp(2) x Sp(2) — Sp(4), h(A4,B) = (13 g) From Lemma 4.6.3 (2), (3), we
see that g, (A4, B), 1), 94e((4, B), p) € (Es)™ N (Eg)™". Hence gy, is well-defined,
and using p = ¢g;(Jg), it is easily to verify that ¢, ia a homomorphism.
We shall show that g, is surjection. Let o e (E¢)™ N (Eg)™°. Since oe
(E¢)™ N (Eg)™ < (Eg)", there exists P e Sp(4) such that o = ¢y, (P) (Theorem
3.3.1). Moreover, from o = ¢g, (P) € (E¢)"’, that is, (Aya)pg,(P)(Aya) ' = pg, (P),
using y¢g; (P)y = ¢ (L1 Ph), 0¢gi(P)o = ¢g(LPL) and A(pg, (P)) = g, (11 P)
(Lemma 4.6.3 (2), (3)), we have that ¢g,(LPL) = ¢g;(P). Hence, it follows that

IQPIQ =P or 12P12 = —P.

In the former case, we easily get the explicit form of P e Sp(4) as follows:

A0
P<O B), A,Be Sp(2).

Hence, for o€ (Es)” N (E¢)™’, we have that

w=per(( ) = pea(in(4.B) = gy (4. 5).1)

In the latter case, as in the former case, we can also find the explicit form of
P e Sp(4) as follows:

0 C
= S 2.
P (D 0), C,De Sp(2)

Hence, for « e (E¢)™ N (Es)*”, we have that

=l o D=reel(5 )5 o) =ra((G p)eat(y o)

= ¢g1((C, D))p = p464((C, D), p).

Thus ¢4, is surjection.
From Ker g5, = {E,—E}, we can easily obtain that Ker ¢, = {((E, E), 1),
((7E7 7E)v 1)} = (ZZ> 1)
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Therefore we have the required isomorphism

(E)” N (Es)"” = (Sp(2) x Sp(2))/Z> > 2. O

47. Type ELILIV

In this section, we give a pair of involutive automorphisms 1y and j.
From the result of type EI, EII, EIV in Table 2, we have the following
theorem.

THEOREM 4.7.1.  For Z, x Z, = {1, 2y} x {1,7}, the Z, x Zy-symmetric space
is of type (Eo/(Ee)”, Ec/(Es), Ee/(Ee)™) = (Ee/(Ee)", Es/(Es)”, Es/(Es)"),
that is, type (EI, Ell, EIV), abbreviated as EI-1I-1V.

Now, we determine the structure of the group (Eg)™ N (Es).

THEOREM 4.7.2. We have that (Ee¢)™ N (Es)” = (Sp(1) x Sp(3))/Z2, Z> =
{(lvE)»(_l’_E)}'

PROOF. We define a mapping ¢,7, : Sp(1) x Sp(3) — (Ee)™ N (Ee)” by
9a72(p, A) = 951 (12(p, 4)),

where /1, is defined by /i, : Sp(1) x Sp(3) — Sp(4), ha(p, A) = (p

0
mapping ¢,;, i the restriction of the mapping ¢, it is easily to verify that ¢4,

2) Since the

is well-defined and a homomorphism.

We shall show that ¢, is surjection. Let ae (Eg)” N (Es)". Since oe
(E¢)" N (Es)" < (Eg)™, there exists P e Sp(4) such that « = gg,(P) (Theorem
3.3.1). Moreover, from o= pg (P) € (Es)’, that is, ypg(P)y = ¢g,(P), using
91 (P)y = pg (1 PI}) (Lemma 4.6.3 (2)), we have that ¢g, (I,PLi) = ¢g;(P).
Hence it follows that

LPI, =P or LPI,=-P.
In the former case, we easily get the explicit form of P e Sp(4) as follows:
0
P= (g A)7 peSp(l), 4eSp(3).

Hence for o e (E¢)™ N (Eg)™, we have that

b

s=pei((f) 3 )= 00 (np,4) = 9l 4)
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In the latter case, as in the former case, we can also find the explicit form of
P e Sp(4) as follows:

, b,e,d,l,mneH.

S I -~ o
o o o o>
o o o o
o o o

This is contrary to the condition P € Sp(4) because of b = ¢ = d = 0. Hence this
case is impossible. Thus ¢,;, is surjection.

From Ker g = {(1,E),(—1,—E)}, we can easily obtain that Ker ¢ 7, =
{(LE),(-1,—-E)} = Z,.

Therefore we have the required isomorphism

(Es) N (Es)” = (Sp(1) x Sp(3))/ Z>. O

4.8. Type EII-II-II

In this section, we give a pair of involutive inner automorphisms 7 and y.

Again, let the C-linear transformation y, of 3¢ As yc in section 4.5, yy
induces involutive inner automorphism y, of Es:yg(%) = yyoyy, o€ Eg.

Using the inclusion Fy < Eg, the R-linear transformations d;, J, defined in the
proof of Lemma 4.1.1 are naturally extended to the C-linear transformations of
RE Obviously, we have d;,d; € Eg, 512 :(5§ = 1. Hence, as in G, and Fj, since
we easily see that 61y = yyd1, doy = (yyy)do, that is, y ~ yy, 7 ~yyy in Ee, we
have the following proposition.

ProposITION 4.8.1. The group (Eg)’ is isomorphic to both of the groups
(Eg)yH and (EG)WH : (E6)7 = (Eé)yH = (Eﬁ)wH.

From the result of type EII in Table 2 and Proposition 4.8.1, we have the
following theorem.

THEOREM 4.8.2. For Zy x Zy = {1,y} x {1,yy}, the Zy X Zy-symmetric space
is Of type (E6/(E6)y,E6/(E6)7",Eﬁ/(EG)w"), that is, type (EH, EIl, EH), ab-
breviated as EII-1I-II.

Here, we prove proposition needed and make some preparations for the
theorem below.
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We define spaces G35 and Gy 3 by {U € SU(6)|IUl = U} and {U € SU(6) |
IUI = —U}:
Gi3={UeSU(6)|IUI = U}, G;,={UeSU(6)|IUI = U},
respectively, where I = diag(l,—1,1,—-1,1,—1).
0
-1

Moreover, we consider some element M| = € SO(6)

S = O O O O
S O O = O O
S O = O O O
—_ o O O O O

1
0
0 0
0 0
0 0
0 0

< SU(6) such that IM; = M I, where I3 = diag(1,1,1,—1,—1,—1).

ProposITION 4.8.3.  We have the following isomorphisms.

(1) G33=S(UQ3)x U(3)) (as a group), where S(U(3) x U(3)) ={U e SU(6) |
LUL = UY).

(2) G553 =S(U(3)x U(3))" (as a set), where S(U(3) x U(3))” ={U e SU(6) |
LUL = -U}.

(3) S(UB) x U3)) = (U(1) x SU3) x SU(3))/Z3, Z3 = {(1,E, E), (o1, 7,
o E), (0}, 01,0}E)}, where we C, o* =1, o # 1.

Proor. (1) We define a homomorphism k; : S(U(3) x U(3)) — Gs,3 by
k(U) = MyUM;".

Then it is easily to verify that k; is isomorphism as a Lie group.
(2) We define a mapping k; : S(U(3) x U(3))” — G35 by

ky (U )= MU M;!

Then it is easily to verify that k; is isomorphism as a set.
(3) We define a homomorphism /43 : U(1) x SU(3) x SU(3) — S(U(3) x

U(3)) by
h3(9,A,B):<964 9013>'

Then we can easily show that the mapping /3 induces the required isomorphism.
]
We define some element p, € (Eg)” by

0 E .
1= ¢pa(ea, (—E O)), E = diag(1,1,1) e M(3,R),
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where ¢g, is defined in Theorem 3.3.2. Hereafter, we denote the matrix

0 E .
< E 0) by E;. Then, note that E; commutes with M, : E; M, = M| E};.

Consider a group %> = {1,p;}. Then the group %> = {l,p;} acts on the
group U(1) x (U(1) x SU(3) x SU(3)) by

P1 (aa (Q,A,B)) = (ﬁ, (eil’B’A))

and let (U(1) x (U(1) x SU(3) x SU(3))) < 2> be the semi-direct product of
U(l) x (U(1) x SU(3) x SU(3)) and 2, with this action.
Now, we determine the structure of the group (Eg)’ N (Eg)™

THEOREM 4.8.4. We have that (E¢)’ N (Ee)"" =~ (U(1) x (U(1) x SU(3) x
SU(3)))/(ZZ X Z3) ~ gZ’ ZZ:{(17 lvaE)v (7177177E7 7E)}> Z; :{(13 13E3E)a
(1,0, 0% wE), (1,0%, 0,0’E)}, 2, ={1,p,}, where we C, ®> =1, v # 1.

Proor. We define a mapping ¢4, : (U(1) x (U(1) x SU(3) x SU(3))) ~
{1.p1} — (Es)”" N (Eg)™ by

¢484((a7 (07‘473))7 1) - ¢E2(av k1h3(07AvB))v

Pasa((a, (0, 4, B)), py) = opa(a, kih3(0, 4, B))py,

where ki, h3 are defined in Proposition 4.8.3 (1), (3), respectively. From
Lemma 4.5.4 (2), we have ¢45((a, (0,4, B)), 1), p4s4((a, (0,4, B)), py) € (Eg)" N
0 E ), we can
-E 0)”

confirm that ¢, is a homomorphism. Indeed, we show that the case of
Pasa((a; (0,4, B)), p1)pasa((b, (v, C, D)), 1) = p44(((a, (0, 4, B)), p,)((b, (v, C, D)), 1))
as example. For the left hand side of this equality, we have that

(E¢)"™. Hence @5, is well-defined. Using p, —(ﬂE2(€2,<

Pas4((a, (0,4, B)), p1)9asa((D, (v, C, D)), 1)
= (ppa2(a,kih3(0, 4, B))p1)(¢e (b, k1h3(v, C, D)))
= ppa(a, Mih3(0, 4, B)M\)pgy (€2, Ey)(9ga (b, Mih3(v, C, D) M)
= ppy((aex)b, Mh3(0, A, BYME; M h3(v, C, D) M)
= pp,((ab)ey, Mih3(0, A, B)hs(v™', D, C)M, E)

= gp(ab, kihs(0v=', AD, BC))p,
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On the other hand, for the right hand side of same one, we have that
0134(((a, (0,4, B)), p)((b, (v, C, D)), 1))
= ¢454((a, (0,4, B))p, (b, (v, C, D)), py)
= pa54(ab, (0,4,B)(v"', D, C), py)
= gusa(ab, (0v~',4D, BC), p)
= ppa(ab, kil (0v™", 4D, BC))py,

that iS, (0484((”3 (05 Aa B))’p1)¢484((b7 (Va C7 D))7 1) = ¢484(((a’ (05 Aa B))’pl)((b7 (V,
C,D)),1)). Similarly, the other cases are shown.

We shall show that ¢4, is surjection. Let o € (Eg)” N (Eg)™. Since o € (Eg)”
N (Es)™ = (Eg)’, there exist pe Sp(1) and U e SU(6) such that o = ¢g,(p, U)
(Theorem 3.3.2). Moreover, from o = ¢p,(p, U) € (E¢)™, that is, y,0p(p, U)yy

= ¢p2(p, U), using yy0p2(p; U)yyr = @ra(ypp, 1UI) (Lemma 4.5.4 (2)), we have
02 (yp, IUI) = gy (p, U). Hence it follows that

YuP =D YuP = —P
{r-v = {m="v
In the former case, we see that p € U(1) and U € Gs 3. Since there exist 0 € U(1)
and A4, B e SU(3) such that U = k1h3(0, 4, B) for U € Gs 3 (Proposition 4.8.3 (1),
(3)), we have that o = gp,(a,k1h3(0,A,B)) = gus4(a,(0,4,B),1). In the latter
case, first we get the explicit form of p e Sp(1) as follows:

p = pres+ pses =bey (b= pr+ pse; € U(1)),

moreover since U € Gj 5, there exists U~ € S(U(3) x U(3))” such that U=
ky (U™) (Proposition 4.8.3 (2)), that is, there exist C,D e U(3) such that U =

kr(<g g)) (det C)(det D) = —1. Hence, from (g E)ZG; —0D>EJ’

we have that
cC 0 _
:Ml((o _D)EJ)MII

C
Here, since (0 _D)GS(U(3) x U(3)) and M,E; = E;M,, we modify ()

above as follows: (x) = k( )E;. Hence, since there exist ve U(1)

0 -D
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and L, N € SU(3) such that U = kih3(v,L, N)E; (Proposition 4.8.3 (3)), we have
that

o = gpa(bex, kih3(v, L, N)Ej) = s (b, kihs(v, L, N))pgs (€2, Ey)
= g2 (b, kih3(v, L, N))py = @uga((b, (v, L, N)), py).

Thus @454 is surjection.
From Ker ¢gp, = {(1,E),(-1,—E)} and Ker/h; = {(1,E,E), (w,»* oF),
(w?, w,w?E)}, we can easily obtain that

Ker Paga = {(17 (lva E)v 1)7 (_17 (_17 _Ev _E)a 1)}
x {(1,(1,E,E),1),(1,(w,0*, 0E),1), (1, (0? w,0’E), 1)}
= (Z, x Z3,1),

where we C, > =1, w # 1.
Therefore we have the required isomorphism

(E¢)" N (Eg)™ = (U(1) x (U(1) x SU3) x SU(3)))/(Z, x Z3) X 2. O

4.9. Type EI-IL-II

In this section, we give a pair of involutive inner automorphisms j and yg.
Since y ~y0 in Eg as mentioned in Section 4.6, we have the following
proposition which is the direct result of this.

ProOPOSITION 4.9.1.  The group (Ee)’ is isomorphic to the group (Eg)”” :
(Ee)” = (E6)".

From the result of types EIIl, EIIIl in Table 2 and Proposition 4.9.1, we have
the following theorem.

THEOREM 4.9.2.  For Z, x Z, = {1,7y} x {1,ya}, the Z, x Z,-symmetric space
is of type (Es/(Ee)’,Es/(Es)™. Es/(Ee)"") = (Eq/(Es)" Es/(Es)", Eo/(Es)"),
that is, type (EIl, EIl, EI), abbreviated as ENI-11-1I1.

Here, we prove Proposition needed in theorem below.
PROPOSITION 4.9.3. We have the following isomorphism: (U(1) x Sp(1) x

SU@4))/Zy = S(UQR) x U@)), Zs={(1,1,E),(~1,—1,—E), (i, —1,iE), (—i, —1,
—iE)}.
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ProOF. We define a mapping
f:U(1) x Sp(l) x SU(4) LA U(1) x SU(2) x SU(4) it S(U22) x U4))
by
J(0,q,4) = ha(0,k(q), A),
where a isomorphism k& is defined by k:Sp(l) — SU(2), k(a+ bey)=
<—i/b’ Z,) and a homomorphism /4 : U(1) x SU(2) x SU(4) — S(U(2) x
U(4) by hi(0,C.4) = (‘QZC =

express a’ as the components replacing e; by i, that is, a’ = a; + ayi. It is similar

). (Remark. For a=a; +ae; € C, we

to a’ as for b’, so is the components of SU(4).) We can easily show that the
homomorphism f induces the required isomorphism. O

Now, we determine the structure of the group (Eg)” N (Eg)"

THEOREM 4.9.4. We have that (Eg)’ N (Eg)”” = (Sp(1) x (U(1) x Sp(1) x
SU4)))/(Z2x Z4), Z> ={(1,(1,1,E)), (=1, (=1, -1, -E))}, Z4 = {(1,(1,1,E)),
(1,(=1,=1,=E)), (1, (i, =1,iE)), (1, (=i, 1, —iE))}.

ProoF. We define a mapping ¢g4 : Sp(l) x (U(1) x Sp(1) x SU(4)) —
(Ee)" N (E6)" by

Pa04(D, (0,4, 4)) = ppa(p, f(0, 4, 4)),

where f is defined in Proposition 4.9.3. Since the mapping ¢, is the
restriction of the mapping ¢g,, it is easily to verify that @49, is well-defined and
a homomorphism.

We shall show that ¢, is surjection. Let o e (Eg)” N (Es)". Since (Eg)’ N
(E¢)"” = (Eg)", there exist pe Sp(1) and U e SU(6) such that o= ¢p,(p, U)
(Theorem 3.3.2). Moreover, from o = ¢p,(p, U) € (E¢)"’, that is, (ya)pg,(p, U) -
(
(

0y) = ¢pa2(p, U), using ypgy(p, U)y = ¢pa(p, U) and o9gy(p, U)o = gga(p, LUDL)
Lemma 4.5.4 (2)), we easily see ¢p,(p, LUDL) = ¢g,(p, U). Hence it follows that

p=r or p=-r

LUL =U LUL =-U.
In the former case, we see that p e Sp(1) and U e S(U(2) x U(4)). Moreover,
for U e S(U(2) x U(4)), there exist 8 € U(l), g€ Sp(1) and 4 € SU(4) such that
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U= f(0,q,4) (Proposition 4.9.3). Hence we have that o = ¢p,(p, f(0,9,4)) =
0404(p, (0,g9,4)). In the latter case, this is contrary to the condition p e Sp(1)
because of p = 0. Hence this case is impossible. Thus ¢, is surjection.

From Ker g, ={(1,E),(—1,—E)} and Ker f={(1,1,E),(-1,-1,—F),
(i,—1,iE), (—i,—1,—iE)}, we can easily obtain that

Ker Pa94 = {(1’ (17 1>E))v(_17 (_17_17_E))} X {(17 (17 lvE))v (17 (_17_17_E))a
(1, (i, =L iE)), (1, (=i, —1,—iE))} = Z, x Z4.
Therefore we have the required isomorphism

(E6)” N (Eg)" = (Sp(1) x (U(1) x Sp(1) x SU4)))/(Z1 x Z4). OJ

4.10. Type EI-III-II

In this section, we give a pair of involutive inner automorphisms 7 and yp,,
where y,p, is induced by a C-linear transformation y,p, of I :ygp,(a) =
(yupa2)a(pyyy), o € Es, and a C-linear transformation p, of 3¢ is defined below.

We define some element p, € (Eg)” by

P2 = ¢pa(1, La),

where L, = diag(1,1,—1,1,—1,1) € SO(6) = SU(6), and the explicit form of p,

~

as action to 3¢ is given by

& —ixzer  iXpe

L ~C
X =\ ieixs —&  exier |, XeJ©.

ieyxy eixier  —&;

Then we have that p% =1, 01py = py01, d2p, = py02, Where J1, d, are the same
ones used in Section 4.8.

0O 0 001 0
0 0 1 00 0
0 -1 0 0 0 O
Now, for Dg= 0 0 0100 € SO(6) = SU(6), we consider
-1 0 0 0 0 O
0 0 0 0 0 1

some element ¢, (1, Dg) € (Es)”, and we denote ¢p, (1, Dg) by ds : ds = ¢p, (1, Ds).
Then since yo = ¢g,(1, ), we have ds(yo) = p,ds. Hence, together with yp, =
Py, we have dg ' (yp,) = adg "
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LemMma 4.10.1. In Eg, o is conjugate to both of yyp, and yyyp, : 6 ~ yYgps,
G~ VVHP2-
Proor. Using dg'(yp,) = 005", Okpy = padk, k = 1,2, we have that
(05100 (yupy) = 05 G1y)py = 05 (701)ps
=35 ' p(01p2) =I5 7(p201) = (J5 ' (7p2))1
= (005 )61 = 0(d5 '01),

that is, ¢ ~ yyp,. Moreover, we have o ~ yyyp, in the same way as the former
case. Indeed,

(05102) (yyup2) = 05 (O27ym)p2 = 05 (102)p,
=05 '9(02p3) = 05 '9(p262) = (85 ' (yp1))da
= (065 )0> = 0(d5 '),
that is, o ~ yygps. O

We have the following proposition which is the direct result of Lemma 4.10.1.

PrOPOSITION 4.10.2.  The group (Eg)” is isomorphic to both of the groups
(Eé)”/yl)z and (E6)”/VHP2 . (E6)a ~ (Eé)yHI)Z ~ <E6)V/Hp2.

From the result of types EII, EIII in Table 2 and Proposition 4.10.2, we have
the following theorem.

THEOREM 4.10.3. For Zy x Zo = {1,y} x {1,yup,}, the Z, x Zy-symmetric
space is of type (Ee/(Es), Es/(Ee)""", Es/(Ee)"""")) = (Es/(E¢), Ee/(Es)°,
E¢/(Eg)?), that is, type (EIL, EII, EII), abbreviated as EN-ITI-IIL.

Here, we prove proposition needed in theorem below.

PRrROPOSITION 4.10.4.  We have the following isomorphism: (U(1) x SU(5))/Zs
=~ S(U(1) x U(5)), Zs = {(1,v*E)|ve C,v’ =1,k =0,1,2,3,4}.

ProoF. We define a mapping hs : U(1) x SU(S5) — S(U(1) x U(5)) by
0 0
hs(0,4) = .
5( ) ) <0 01A>

Then we can casily show that /s induces the required isomorphism. O



Realizations of globally exceptional Z, x Z,-symmetric spaces 277
Now, we determine the structure of the group (Eg)” N (Eg)""".

THEOREM 4.10.5. We have that (E¢)’ N (Eg)""”> =~ (U(1) x U(1) x SU(5))/
(Z> x Zs), Z> = {(1,1,E),(~1,—1,—E)}, Zs={(1,v* v*E)}, k=0,1,2,3,4.

ProoF. We define a mapping @405 : U(1) x U(1) x SU(5) — (Eg)" N (Eg)”""
by

Par05(a, 0, 4) = pps(a, hs(0, 4)),

where /s is defined in Proposition 4.10.4. Since the mapping @405 1is the
restriction of the mapping ¢g,, it is easily to verify that ¢,,q5 is well-defined and
a homomorphism.

We shall show that ¢4s is surjection. Let o e (Eg)” N (Eg)"""*. Since (Eg)" N
(E¢)""" < (Eg)", there exist p e Sp(l) and U e SU(6) such that « = ¢p,(p, U)
(Theorem 3.3.2). Moreover, from o = ¢g,(p, U) € (Eg)"""2, that is, (y0,)¢p,(p, U) -
(P2vu) = ¢e2(p, U), using yy0e,(p, U)yy = ¢ga(yyp, IUI) (Lemma 4.5.4 (2)) and
P = ¢p(1, L), we have that ¢p,(yup, (IL,) U(LyI)) = ¢gy(p, U). Hence it fol-
lows that

Yul =D YubP = —PD
{ (IL)U(LD)=U { (IL))U(LaD)) = —U.

In the former case, we see that pe U(l), moreover since IL, = L] =
diag(1,—1,—1,—1,—1,—1), we get the explicit form of U e SU(6) as follows:

_(¢ 0 _
U_<O B)’ (eU(l), BeU(S5), detU=1,

that is, U e S(U(1) x U(5)). Hence, since there exist € € U(1) and 4 € SU(5)
such that U = hs(6,4) (Proposition 4.10.4), we have o= pg,(a,hs(0,4)) =
®4105(a, 8, A). In the latter case, as in the former case, we can also find the explicit
form of U e SU(6) as follows:

0 «x
U= C’
<[y 0)7 x7ye ’

where C = {x; + x2i | x;x € R, k = 1,2}. However, this case is impossible because
of det U =0 for U e SU(6). Thus ¢4ys is surjection.

From Ker ¢, = {(1,E),(~1,—E)} and Ker hs = {(vF,vFE) |k = 0,1,2,3,4},
we can easily obtain that Ker ¢y 05 = {(1,1,E),(—=1,—1,—E)} x {(1,v¥,vFE)|
k=0,1,2,3,4} ~ Z, x Zs.
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Therefore we have the required isomorphism

(Es)” N (Ee)’™ =~ (U(1) x U(1) x SU(5))/(Z2 x Zs). 0

4.11. Type EHI-II-III

In this section, we give a pair of involutive inner automorphisms ¢ and &'.

Let the C-linear transformation ¢’ of 3 be the complexification of ¢’ € Fy,
so ¢’ induces involutive inner automorphism ¢’ of Es:6'(a) = ¢’ao’, o € Eg.

Using the inclusion Fy = Eg, the R-linear transformations dg, 07 defined in the
proof of Lemma 4.4.1 are naturally extended to the C-linear transformations
of SC. Then we have d¢,07 € Eg, 5; :53 = 1. Hence, as in Fjy, since we casily
see that dga = 0’0, 070 = (00')d7, that is, 0 ~ o', 6 ~ac’ in Eg, we have the
following proposition.

ProposITION 4.11.1.  The group (Eg)? is isomorphic to both of the groups
(E6)g and (E6)cm : (E(,)a = (E6)o = (Eé)tm.

From the result of Type EIII in Table 2 and Proposition 4.11.1, we have
the following theorem.

THEOREM 4.11.2.  For Z) x Zy = {1,0} x {1,0'}, the Z, x Z-symmetric space
is of type (Es/(Es)”, Es/(Es)” , Es/(Es)” ) = (Es/(Es)’, Es/(Es)’, Es/(Es)”), that
is, type (EIH, EIII, EHI), abbreviated as EITI-IT1-111.

Here, we prove lemmas needed and make some preparations for Proposition
4.11.5 below.
First, we investigate the subgroup ((Es) El)”/ of E¢ defined by

((Eo)g,)" = {o€ Es|aEy = Ey,0'a0’ = a},
where the group (Eg)p, is isomorphic to Spin(10) as the double covering group
of SO(10) (As for the group (Eg)y = Spin(10), see [10, Theorem 3.10.4]).
LemMA 4.11.3.  The Lie algebra ((96)51)(7/ of the group ((EG)EI)U/ are given by
(o))" ={0+iT eeg|o€((ia)p)” T eJtr(T) =0,6'T =T, T o Ey =0},

where ((74)g,)" = (14)7 N (14)" = s0(8) (Section 4.4).
In particular, we have

dim(((es) )" ) =28 + 1 =29,
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PrOOF. Since any element ¢ of the Lie algebra ¢ of the group Eg is
uniquely as ¢=0+iT, defy, TeJy={TeJ|tr(T)=0}, using o'¢a’ =

c'06' +i(c'T), we can easily prove this lemma (As for ((f4))” = s0(8), see
Theorem 4.4.5 and [10, Theorem 2.9.1]). O

Lemma 4.11.4. For 0,veU(l)={0e C|(z0)0 =1}, we define C-linear
transformations ¢,(0) and ¢,(v) of I€ by

0%, Ox3 0% & v vlx
GOX =| 0xs 072 0% |, (X =] v& & x|, Xe3€,
Ox, 07%x 07253 vl X v

respectively, where ¢,(0) is some one in Theorem 3.3.3. Then we have that
$,(0), ,(v) € (E¢)’ N (Eg)°, moreover we have that ¢,(v) e((Es)El)gl and that
$,(0), ¢,(v) are commutative.

Proor. By straightforward computation, we can also easily prove this
lemma. U

ProposITION 4.11.5. We have the following isomorphism: ((Es)g )" =
(U(1) x Spin(8))/Z>, Z, ={(1,1),(—1,0)}.

PrOOF. Let  Spin(8) = (Fy)" N (F4)” = ((F))” = ((Fa),)" = ((Ee)g,)”
(Theorem 4.4.5). Now, we define a mapping ¢, : U(1) x Spin(8) — ((E6)E1)”’ by

P2 (v, B) = dr(v)B.

It is clear that ¢,(v,f) € ((Eg)El)”/ (Lemma 4.11.4). Hence ¢, is well-defined.
Since ¢,(v) commutes with S, ¢, is a homomorphism. Let (v,f) € Ker ¢,. Then
since we see that =1, we can easily obtain that Ker ¢, = {(1,1),(-1,0)}.
Furthermore since ((E(,)El)”’ = (Spin(10))° is connected and dim(((e())El)”I) =
29 =1+ 28 = dim(u(1) ® so(8)

)

) (Lemma 4.11.3), ¢, is surjection. Therefore we
have the isomorphism ((Es)p, o

~ (U(1) x Spin(8))/Z. O

Now, we determine the structure of the group (E6)”ﬂ(E6)”, from Propo-
sition 4.11.5.

THEOREM 4.11.6. We have that (E¢)° N (Es)° = (U(1) x U(1) x Spin(8))/
(ZZXZ4)’ 22:{(1,1,1),(1,—1,0)}, Z4:{(17171)7(_i7ia0/)7(_1a_1a )a
(ia 71’70-,)}'
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PrOOF. Let Spin(8) = (F3)’ N (F4)° < (E¢)’ N (Ee)® (Theorem 4.4.5). We
define a mapping 416 : U(1) x U(1) x Spin(8) — (E¢)? N (E)° by

Pa116(0,v,B) = $1(0)$,(v)B.

It is clear that ¢y,4(60,v,) € (E¢)° N (Ee)” (Lemma 4.11.4). Hence ¢y,¢ is well-
defined. Since ¢,(6), ¢,(v) and f commute with each other, it is clear that ¢4,
is a homomorphism.

We shall show that ¢, is surjection. Let o e (Eg)”N(Eg)”. Since
o e (Eg) N (E)’ < (Ee)°, there exist 0e U(1) and & e Spin(10) such that
«=¢,(0,0) (Theorem 3.3.3). Moreover, from o=g¢_(0,0)€ (EG)”’, that is,
d'p.(0,0)" = ¢_(0,6), using o'¢(0)=¢ (0)c’ (Lemma 4.11.4), we have
¢.,(0,0'06") = ¢_,(0,6). Hence it follows that

L [0=0 L (0=-0
) { 760’ =6, (it { 766’ = ¢y (~1)5,

. [o=i0 o f0=—if
(i) { 0’60’ = ¢y(—ips, V) { 6’5" = ¢, (i)0.

The cases (ii), (iii) and (iv) are impossible because of § =0 for 6 € U(1). In the
case (i), from ¢’dc’ =6, we have that 6 e (Spin(10))” = ((EG)EI)”/. Since there
exist ve U(1) and f e Spin(8) such that o = ¢,(v)f (Proposition 4.11.5), we
have that

x=$1(0)0 = ¢1(0)p,(v)B = (0, v, B).

Thus ¢ is surjection.

From Ker ¢, = {(1,¢(1)), (=1, ¢(=1)), (i, (=), (=i, ¢(i))} and Ker ¢, =
{(1,1),(—=1,0)}, we can easily obtain that

Ker ¢416 = {(1,1,1),(1,-1,0),(=1,-1,0),(=1,-1,1), (i,i,a0"), (i, —i,d"),
(—i,i,a’),(—i,—i,00")}
={(,1,1),(1,=-1,0)} x {(1,1,1), (=i, i,a’), (=1,—1,1), (i, —i,a")}
~7Z) X Zy.

Therefore we have the required isomorphism

(Eo)” N (Ee)” = (U(1) x U(1) x Spin(8))/(Zs x Zs). O
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4.12. Type EII-TV-IV

In this section, we give a pair of involutive automorphisms A and 6.
We define a C-linear transformation dy of 3¢ by

él iX3 i)_Cz 1 0 0
X =|ix35 —& —x1 | =DgXDy, Dg=|0 i 0], Xe SC.
ix, —-x —& 0 0 i

Then we have that dy € Es, J5 = g, d9a = ady and 'dg = do.

PROPOSITION 4.12.1. The group (Ee)* is isomorphic to the group (Eg)™ :
(Eo)" = (Es)™.

PrOOF. We define a mapping f : (Ee¢)* — (E¢)™ by

flo) = doady .

In order to prove this proposition, it is sufficient to show that the mapping f is
well-defined. Indeed, it follows from the properties of 55 =0, 09a = 609, '09 = Jy
and A(o) = o that

(20)f (2) = (40)(392dy ') = A(S900dy ") = A(J9) (@) M) A3 ')
= 9, oudy = 95 (99) (g '0) = (doady e
=f()a,
that is, f(x) € (Ee)™. O

From the results of Types EIIl, EIV in Table 2 and Proposition 4.12.1, we
have the following theorem.

THEOREM 4.12.2.  For Z, X Zy = {1,0} x {1,1}, the Z, x Z,-symmetric space
is of type (Ee/(Ee)”, Es/(Es)", Es/(Es)"") = (Es/(Es)", Ee/(Ee)", Es/(Es)"), that
is, type (EIIl, EIV, EIV), abbreviated as EIII-IV-IV.

Now, we determine the structure the group (Ee)° N (Ee)".

THEOREM 4.12.3.  We have that (Eg)° N (Es)" = Spin(9).

PrROOF. We define a mapping ¢gy; : Spin(9) — (Ee)° N (Eg)" by

Par23(2) = 0.
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Since Spin(9) = (F4)° < (Eg)” (Theorem 3.2.2) and Spin(9) = Fy = (E¢)" (The-
orem 3.3.4), it is clear that ¢,;,; is well-defined, a homomorphism and injection.
We shall show that ¢,,; is surjection. Let o € (E¢)’ N (Eg)”. Since (Eg)° N
(E)* = (Eg)* = F4, it is clear that o e F;. Moreover, from o€ (Eg)®, that is,
ooo = o, we easily see o€ (Fy)” = Spin(9). Thus ¢4, is surjection.
Therefore we have the required isomorphism

(E) N (Eq)" = Spin(9). O
+ |E7] We study seven types in here.

4.13. Type EV-V-V

In this section, we give a pair of involutive inner automorphisms /INy and ryc.
We define C-linear transformations y. of PBE by

yC(X7 vaﬂ//) :(yCX7yCY7£777)J(X7 Y,f,ﬂ)E‘BC,

where y. of the right hand side are the same ones as y- € G, < Fy < Es. Then
we have that y. € E7, y2 = 1, so y. induces involutive inner automorphism . of
E;:jc(0) =yeoye, o€ Eq.

Similarly, for d3,d4 € G, = Fy = Eg, we have 03,04 € E;. Hence, as in Eg, we
easily see that dsy = 03, day = (yyc)da, that is, y ~ 9, v ~ pye in Ej.

LemMmA 4.13.1. In E;, 1 is conjugate to A:1~ A

PrOOF. We define a C-linear transformation &, of P€ by

X —(tr(X)E — 2X) 4+ i(tr(Y)E — 2Y) — ¢E + inE X
s YL i(tr(X)E — 2X) — (tr(Y)E — 2Y) + i¢E — yE Y g€
“1e¢l W8 —tr(X) +ite(Y)+E— iy N '
n itr(X) —tr(Y)—ié+n n

Then, by straightforward computation, we have J,1 = 19,, that is 1 ~ A in E;,
moreover 6,y = y9;, 0;Y¢c = VcO,. O

ReMARK. In fact, using ¢(0, (in/4)E, (in/4)E,0) € ¢7, J; is expressed as
exp ¢(0, (in/4)E, (in/4)E,0) : 6, = exp ¢(0, (in/4)E, (ir/4)E,0).

PROPOSITION 4.13.2. The group (E;)™ is isomorphic to the group (E7)"° :
(En)” = (Ep)".
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ProorF. We define a mapping [ : (E7)’17 — (E7)"¢ by
f(e) = 830, 00,95

In order to prove this proposition, it is sufficient to show that the mapping f is
well-defined. However, it is almost evident from 6,1 = 19,, d3y = yJ3. O

For 0e U(1) = {0 € C|(z'0)0 = 1}, we define a C-linear transformation ¢(6)
of PE by

PO)(X, Y, En) = (0X,07'Y,07°¢,0°), (X, Y,&n)eBC.

Then we have ¢(0) € E7, and set J, = ¢(e’™*¥). Needless to say, we see J, € E7.
Besides, the mapping ¢ gives an embedding from U(1l) into E;.

LemMmA 4.13.3. In E;, A1 is conjugate to —A: 1 ~ —J.

ProoF. By using the definition of J, above, we can easily obtain (1)d, =
0,(—4), that is, A1t ~ —A. O

e .

PROPOSITION 4.13.4.  The group (E;)" is isomorphic to the group (E7)
()" = (B

Proor. We define a mapping ¢ : (E7)M' — (E7)™¢ by
() = 040,09, 194,

where we remark that J4 has the property of d4(A1) = (A1)d4. In order to prove
this proposition, it is sufficient to show that the mapping g is well-defined. Indeed,
it follows from (41)d, = ,(—1) (Lemma 4.13.3) and the property of d4 that

(yyc)g(a) = (Jayyc)(040,00,'04) = (Ja)0490,00, 04 = d4(Ja)d,yad, 'y
= 340,(—2)ya0, 04 = 340,0(—2)p0, 04 = dud,(—1)8, 904
= (030,00, ") (Ayds) = (346,948, '04) (Qayyc) = (o) (Aayye),

that is, g(x) e (E7)™7. O

From the result of type EV in Table 2 and Propositions 4.13.2, 4.13.4, we
have the following theorem.
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THEOREM 4.13.5. For Z, x Lo = {1, Ay} x {119}, the Zp x Zy-symmetric
space is of type (Er/(Er)"”, Er/(E7)", B/ (Eq) 7)) = (Er/(E0)", B/ (E9) 7,
E7/(E7)™), that is, type (EV, EV, EV), abbreviated as EV-V-V.

Here, we prove lemma needed in theorem below.

LEMMA 4.13.6.  The mapping ¢gs : SU(8) — (E7)” of Theorem 3.4.1 satisfies
the following equalities:

(1) y=9ps(l2), 7c=0ps(J), 0= 0ps(la).
(2) yops(A)y = gps(hAL), ycpps(A)yc = pps(JAT),

00ps(A)a = pps(LAL), 19ps(A)1™" = pgs(JAT),

0 1
where I, = diag(—1,-1,1,1,1,1,1,1), J = diag(J,J,J,J), J:< 1 0), I =
diag(—1,—-1,—-1,—-1,1,1,1,1).

Proor. Since the equalities above are the direct results of [10, Lemma 4.5.4],
these proof are omitted. ]

Now, we determine the structure of the group (E;)™ N (E;)"<.

THEOREM 4.13.7. We have that (E;)" N (E;)"¢ =~ SO8)/Zy x %, Z, =
{E,—E}, 2, ={1,—-1}.

PrOOF. We define a mapping SO(8) x {1,—1} — (E;)* N (E7)"¢ by
Pa137(B, 1) = pgs(B),

Pa137(B, —1) = 9gs(B)(—1),

where ¢gs is defined in Theorem 3.4.1. Since the element —1 € z(E7) (the center
of Ej), it is clear that ¢,5;(B, 1), p437(B,—1) € (E;)*, moreover using tpgs(A)i~"!
= pps(JAJ) and ycpps(A)yc = pps(JAJ) (Lemma 4.13.6 (2)), we see that
@4137(B, 1), 04137(B, —1) € (E7)"<. Hence ¢45; is well-defined. Since the mapping
®4137 1 the restriction of the mapping ¢gs, it is easy to verify that ¢,3; is a
homomorphism.

We shall show that ¢, is surjection. Let o e (E7)* N (E;)". Since oe
(E7)" N (E7)"¢ = (E7)", there exists 4 € SU(8) such that o = gg5(4) (Theorem
3.4.1). Moreover, from o = gps(A4) € (E7)7¢, that is, (17¢)ps(A)(ycr™!) = pgs(A4),
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again using 1pps(4)) = pps(UAT) and yepes(Ac = pesUIAT), we have
¢ps(A) = pgs(A). Hence it follows that

A=A or A=—-A.

In the former case, we see 4 € SO(8), then set 4 = B e SO(8). Hence we have
that o = @gs(B) = @4;37(B). In the latter case, we have that 4 = ¢;B, B e SO(8).
Hence we have that o = ggs(e;B) = ¢ps(e1 E)pps(B) = (—1)pps(B), that is, o =
®4137(B)(—=1). Thus @43, is surjection.

Finally, we shall determine Ker ¢4;3;. From the definition of kernel, we have
that

Ker 94137 = {(B,1) | p4137(B, 1) = 1} U{(B, —1) | p4137(B, 1) = 1}.

In the former case, from Ker¢ps ={E,—E}, we can easily obtain that
{(B,1)| ¢4137(B,1) =1} =1} ={(E,1),(—E, 1)}. In the latter case, from —1 =
pps(e1E), it is not difficult to see that {(B,—1)]|¢436(B,—1) =1} = {(e1, —1),
(—ey, —1)}. However, since this is contrary to B € SO(8), this case is impossible.
Hence we have Ker ¢,3; = {(E,1),(—E,1)} = (Z,1).

Therefore we have the required isomorphism

(En)" 01 (Ey)" = SO(8)/Z> x . 0

4.14. Type EV-V-VI

In this section, we give a pair of involutive inner automorphisms /1~y and //1;;.

Using the inclusion Eg = E;, the C-linear transformation ds used in Section
4.6 is naturally extended to the C-linear transformation of B€. Hence, as in
Eg, since we easily see that dsy = (yo)ds as ds € Eg = E7, that is, y ~ yo in E7,
we have the following proposition.

PROPOSITION 4.14.1.  The group (E7)" is isomorphic to the group (E7)™ :
(E7)™ = (Ep)™”.

From the result of types EV, EVI in Table 2 and Proposition 4.14.1, we
have the following theorem.

THEOREM 4.14.2. For Z, x Z, = {1, Ay} x {1, Ayc}, the Z, x Z,-symmetric
space is of type (E7/(E7)", Eq/(E7)"", Er/(En) 7)) = (Eq/(E)", En/(En)”,
E1/(E7)™°) = (E7/(E))", E7/(E7)"  E1/(E;)"), that is, type (EV, EV, EVI), ab-
breviated as EV-V-VI.
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Here, we prove proposition needed and make some preparations for the
theorem below.

PROPOSITION 4.14.3.  We have the following isomorphism: S(U(4) x U(4))
= (U(l) X SU(4> X SU(4))/Z4, Z, = {(I,E, E)7 (—1, —E, —E), (61, —e E, €1E)7
(—617€1E, —elE)}.

ProOF. We define a mapping g : U(1) x SU(4) x SU(4) — S(U(4) x U(4))

by
aA 0
gs(a, A, B) = ( 0 alB>'

Then we easily see that g4 is well-defined and a epimorphism. By straightforward
computation, Ker g4 is obtained as follows:

Ker g4 = {(a,A,B) e U(1) x SU(4) x SU(4) | gs(a,A,B) = E}
={(a,4,B) e U(1) x SU(4) x SU(4) |aA =a"'B=E}
={(a,a"E,aE) e U(1) x SU(4) x SU(4) |a = +1, +e,}
={(l,E,E),(—1,—E,—E),(e1,—e1E,e1E),(—ey,e1E,—e|E)} = Z,.
Therefore we have the required isomorphism

S(U4)x U4) = (U(1) x SU4) x SU4))/Zs. O

We define some element ¢ e (E;)” by
e = gps(J),

0 FE
where J' =

E O
Consider a group 2> = {1,¢}. Then the group %> = {1,¢} acts on the group

S(U(4) x U(4)) by
e(A)=J'A4J', (J)? = E(=diag(1,1,1,1,1,1,1,1)),

)eSU(S), E = diag(1,1,1,1). Then we easily see &> = 1.

and let S(U(4) x U(4)) X %, be the semi-direct product of S(U(4) x U(4)) and
%, with this action.

Now, we determine the structure of the group (E7)™ N (E;)™°.

THEOREM 4.14.4.  We have that (E7)" N (E7)"” = (U(1) x SU(4) x SU(4))/
(Zy x Z3) X %, Z>={(1,E,E),(1,—E,—E)}, Zs={(1,E,E),(~1,—E,—E),
(81, —61E7 elE), (—el,elE, —elE)}, Qéz = {1,8}.
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ProOF. We define a mapping @444 : (U(1) x SU(4) x SU(4)) % {l,¢e} —
(E7)" 0 (E7)™" by
Pa144((a, 4, B), 1) = pgs(ga(a, 4, B)),
Pa144((a, 4, B), €) = pgs(ga(a, 4, B))e,
where g4 is defined in Proposition 4.14.3 above. Since the mapping @444 1S the
restriction of the mapping ¢gs and ¢ € (E;)”, it is clear that ¢,,((a, 4, B), 1),
Pa144((a; 4, B),¢) € (E7)M; moreover using o¢gs(L)o = ggs(lsLls), LeSU(8)
(Lemma 4.13.6 (2)), it is easily to verify that ¢444((a, 4, B), 1), ¢4144((a, A, B),¢)
€ (E7)"7 Hence @444 is well-defined. Using &= pgs(J’), we can confirm that
®4144 18 @ homomorphism. Indeed, we show the case of ¢4 44((a1, A1, B1),¢)-

Pa144((a2, A2, B2), 1) = @4144(((a1, A1, B1),¢)((a2, A2, B2),1)) as example. For the
left hand side of this equality, we have that

Paraa((a1, 41, B1), €)p4144((a2, A2, B>), 1)
= ¢gs(ga(ar, A1, Br))epgs(g4(az, A2, B))
= pgs(9a(ar, A1, B1))pgs(J')pgs(9a(az, A2, Bo))
"(9a(az, A2, By))
! J'J"
Jges(J')
J

)

J
J
= pgs(g4(a1, 41, B1)J
J

/!

(
(
= pes(ga(ar, A1, B,
(
(
( ga(az, A2, B

( )
( )
( )7 (ga( )
= ¢ps(9a(ar, 41, B1)J ' (ga(az, 42, Br)
( )" (g4(a2, 42, B2)
= ggs(ga(ar, A1, B1)J"(ga( )
= pps(ga(ar, A1, Bi)(9a(a; ', By, 42))e
= pps(ga(aray ', A1Ba, Bi4y))e
:¢4144((a1a2’1,A1B2,BlAz),g).
On the other hand, since the action of ¢ to the group S(U(4) x U(4))
is e((i ;>)_<€ g), e acts on the group U(1l) x SU(4) x SU(4) as
follows:

e(a,A,B) = (a”' B, A).

Hence, for the right hand side of same one, we have that
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Pa1aa(((a1, A1, Br),€)((a2, 42, B2), 1)) = pq1aa((ar, A1, Br)e(az, A2, Ba), ¢)
= §04144((a17A1,B])(agl,Bz,Az),E)
= pqpa((may', A1 By, BiAy), ¢).

Similarly, the other cases are shown.

We shall show that ¢,,, is surjection. Let o€ (E7)” N (E;)"°. Since
(E7)" N (E7)"° < (E;)", there exists L e SU(8) such that o = gps(L) (Theorem
3.4.1). Moreover, from o= gpgs(L)e (E;)"’, that is, (Jyo)pgs(L)(apA™") =
¢ps(L), using oggs(L)o = ggs(IsLl;) (Lemma 4.13.6 (2)), we have ¢ps(I4Lly) =
@gs(L). Hence it follows that

I4LI4 =L or I4LI4 =—L.

In the former case, we see that L € S(U(4) x U(4)). Hence, there exist a € U(1),
A,Be SU(4) such that L = g4(a, A, B) (Proposition 4.14.3). Thus we have o« =
ops(ga(a, A, B)) = @4144((a, A, B),1). In the latter case, we take L as form L =
0 F
E 0
way as above, we have that o = ¢gs(ga(a, 4,B)J") = pps(ga(a, 4, B))pgs(J') =
ops(ga(a, A, B))e = ¢p4144((a, A, B),¢). Hence ¢,44 is surjection.

Finally, we shall determine Ker ¢ 4. From Ker ¢pps = {E,—E}, we can

MJ', MeS(U4)xU4)),J = ( >, E =diag(1,1,1,1). Hence, in the same

easily obtain that

Ker 94144 = {((a,4, B), 1) [ p4144((a, 4, B), 1) = 1}
U{((a,4, B),¢) | ps144((a, 4, B), &) = 1}
={((a,4,B),1) | pgs(ga(a, 4, B)) = 1}
U{((a, 4, B),¢) | pps(ga(a, 4, B))e = 1}
={((a,4,B),1)|ad =a'B=+E}YU{((a,4,B),¢)|ad = a ' B =0}
= {(a,a "E,aE),1),(a,—a "E,—aE),1)|a* =1} U¢
={((1,E,E),1),((1,-E,-E), 1)}
x{((1,E,E),1),((=1,—E, —E), 1), ((e1, —e1 E, 1 E), 1),
((—e1, e E,—e1E), 1)}

= (Zz X 2Ly, 1)
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Therefore we have the required isomorphism

(E1)" N (E7)7° = (U(1) x SU(4) x SU(4))/(Z2 x Z4) X Z>. O

4.15. Type EV-V-VII

In this section, we give a pair of involutive inner automorphisms fy and 17))
We have the following proposition which is the direct result of Lemmas
4.13.1, 4.13.3.

PROPOSITION 4.15.1.  The group (E;)” is isomorphic to the group (E;)" :
(E)" = (Ep)™.

From the result of types EV, EVII in Table 2 and Propositions 4.15.1, we
have the following theorem.

THEOREM 4.15.2. For Z, x Z, = {1,2y} x {1,1dy}, the Z, x ZLp-symmetric
space is of type (Er/(Er)"”, E1/(Eq)", Eq/(E7) ")) = (Ey/(E)", En/ (7)™,
Er/(E7)™") = (E1/(Ex)" 7 /(Ex)" E;/(Er)"), that is, type (EV, EV, EVII), ab-
breviated as EV-V-VII.

Here, we prove lemma needed in theorem below.

LemmA 4.15.3. The C-linear transformation $(0) defined in Section 4.13
satisfies the following equalities:

ProoF. By using the definition of A, y and ¢(f) (Sections 3.4, 4.13), it is
easily to verify those. O

1y

Now, we determine the structure of the group (E7)* N (E)

THEOREM 4.15.4. We have that (E;)" N(E;)"" = Sp(4)/Z> x %, Z, =
{E,—E}, % ={1,-1}.

Proor. We define a mapping ¢,54 : Sp(4) x {l,—-1} — (E7);“"/’ﬂ (E7)t/1y by
Pa154(4,1) = pgi(A4),

Parsa(A4, —1) = gg(4)(—1),
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where ¢g; is defined in Theorem 3.3.1. (Remark. The element ¢p;(4) € (E)™ is
identified as elements of the group E;.) Since the mapping ¢,;s, is the restriction
of the mapping ¢g;, it is clear that @45, is well-defined and a homomorphism.

We shall show that g,,s, is surjection. Let o € (E7)* N (E;)". Since Apayl ™
= o and 1(Ayapi~')i7! = o, we have that o € (E7)". Hence, there exist 0 e U(1)
and B e Eq such that o = ¢g;(0,) (Theorem 3.4.3). Moreover, from « e (E;)",
that is, (47)0e7(0,8)(72"") = pe7(0, ), using 2(0)" = (07") and pg(0)y =
$(0) (Lemma 4.15.3), we have ¢g, (07", 2pfpi™") = pg;(6, ). Then, as the ar-
gument above, we also see a € (E7)’M. Hence, it follows that

I /e [0 =wb . [07N = w20

o {? =0 @ {l 5 ]

WByAT =P, Aypya” = P(0?)B, AyByA= = glw)p,
where we C, @*> =1, w# 1. For these cases above, we have the following
results.

Case (i). We have that 0 = —lorf=1and fe (Eé)/ly. Hence, in the case of
0 =1, there exists A € Sp(4) such that o = ¢g;(1,5) = f = g1 (4) = 94154(4, 1)
(Theorem 3.3.1), and in the case of 6 = —1, similarly there exists 4 € Sp(4) such
that o = gg;(—1, ) = ¢(=1)B = (=1)B = ¢ (4)(=1) = @4154(4, -1).

Case (ii). We have that 0 = —w or 0 =w and = d(w?)p’, p e (Es)".
Hence, in the case of § = w, there exists 4’ € Sp(4) such that « = gg; (@, d(w?)B’)
= ¢(w)(p(@*)B") =B = ¢, (A") = pgy54(4’,1) (Theorem 3.3.1), and in the case
of 0 = —w, similarly there exists A’ € Sp(4) such that o = ¢, (—w, p(w?)p’) =
d(—)(p(@>)B) = (=)' = pg;(A")(—1) = p4y54(A’, —1). As a result, this case is
reduced to Case (i).

Case (iii). We have that 0 = —w? or 0 =w? and e d(w)f, B e (Es)".
Hence we have the same result as Case (ii), that is, this case is also reduced to
Case (i).

Thus ¢,54 is surjection. Finally, we shall determine Ker ¢,;54. From Ker ¢,
= {E,—E}, we can easily obtain that

Ker gy154 = {(4, 1) [ p4154(4, 1) = T} U{(A4, 1) [ 41544, =1) = 1}
= {4, 1) |ge1(4) = 1} U{(4, =1) [ g, (4)(=1) = 1}
={(E;1),(=E, 1)} U¢
={(E,1),(=E, 1)} = (Z3,1).

Therefore we have the required isomorphism

(E)" 0 (E7)" =~ Sp(4)/Z x %>. .
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4.16. Type EV-VI-VII

In this section, we give a pair of involutive inner automorphisms Iy and 7.
We have the following proposition which is the direct result of Lemma 4.13.1.

PROPOSITION 4.16.1. The group (E;)* is isomorphic to the group (E;)":
(Er)* = (Ey)"

From the result of types EV, EVI, EVII in Table 2 and Proposition 4.16.1,
we have the following theorem.

THEOREM 4.16.2. For Zo, x Z, = {1, Ay} x {1,y}, the Z, x Z,-symmetric
space is of type (Er/(Er)”,E1/(E)", Er/(E7) ) = (Er/(E7)", Eq/(E7), Er/
(E7)*) = (E7/(E7)”, Er/(Er)", Er/(E7)'), that is, type (EV, EVI, EVII), abbre-
viated as EV-VI-VIL.

Here, we prove proposition needed in theorem below.

12

PROPOSITION 4.16.3.  We have the following isomorphism: S(U(2) x U(6))
(U(l) % SU(Z) % SU(6))/le, Z, = {(eel(Zn/IZ)k efe|(12n/12)kE 651(471/12 kE) |k
0,1,2,...,11}.

ProorF. We define a mapping fq : U(1) x SU(2) x SU(6) — S(U(2) x U(6))

by
’ ’ 0 a B '

Then we easily see that fy is well-defined and a epimorphism. By straightforward
computation, Ker f; is obtained as follows:

Ker fs = {(a,A,B) e U(1) x SU(2) x SU(6) | fs(a,A4,B) = E}
= {(a,4,B) e U(1) x SU(2) x SU(6)|a®*4 =a*B=E}
= {(a,a °E,d®E) e U(1) x SU(2) x SU(6) |a'* = 1}
= {(e” (2n/12)k e—e,(lZn/lz)kE’ ee|(4n/12)kE) k=0,1,2,...,11} = Z)5.
Therefore we have the required isomorphism

S(UQ) x U6)) = (U(1) x SU2) x SU(6))/Z 5. 0
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Now, we determine the structure of the group (E7)™ N (E;)’.

THEOREM 4.16.4. We have that (E;)" N (E7)" =~ (U(1) x SU(2) x SU(6))/
Zyy, Zry = {(a,a®E,a’E) |a = e "/"2* | =0,1,2,...,23}.

PROOF. We define a mapping ¢, : U(1) x SU(2) x SU(6) — (E7)™ N (E7)”
by

(ﬂ4164(f6(a7 A, B)) = pgs(fe(a, 4, B)).

Since the mapping @444 is the restriction of the mapping ¢gs, it is clear that
Par64(fo(a, 4, B)) € (E7)”, and using ypgs(L)y = pgs(bLL), Le SU(8) (Lemma
4.13.6 (2)), it is easily to verify that ¢, (fs(a, 4, B)) € (E7)”. Hence, g4 is
well-defined. Again, since the mapping ¢,¢4 is the restriction of the mapping ¢gs,
it is clear that ¢4, is a homomorphism.

We shall show that ¢4, is surjection. Let a e (E7)* N (E7)". From (E7)* N
(E7)” = (E;)", there exists L e SU(8) such that o = pps(L) (Theorem 3.4.1).
Moreover, from o€ (E7)’, that is, ypgs(L)y = ¢ps(L), again using ypps(L)y =
ops(LLL) (Lemma 4.13.6 (2)), we have that ¢gs(LLDL) = ¢ps(L). Hence, it
follows that

12L12 =L or ]2L12 =—L.

In the former case, we see that L € S(U(2) x U(6)). Hence, there exist a € U(1),
A e SU(2) and SU(6) such that L = f¢(a, A, B) (Proposition 4.16.3). Thus we
have that o = ¢ps(L) = ¢gs(fe(a, 4, B)) = @4164(a, 4, B). In the latter case, as in
the former case, we can also find the explicit form of L e SU(8) as follows:

0 C
L:<D 0>’ CeM(2,6,C), DeM(6,2,C).

This case is impossible because of det L = 0. Thus @44, 1s surjection.
Finally, we shall determine Ker ¢4, From Ker gps = {E,—E}, we can
easily obtain that

Ker g6 = {(a,4,B) € U(1) x SU(2) x SU(6) | py163(a, 4, B) = 1}
={(a,4,B) e U(1) x SU(2) x SU(6) | pgs(fs(a, 4, B)) = 1}
={(a,4,B) e U(1) x SU(2) x SU(6) | fs(a, A, B) = E, f¢(a, A, B)) = —E}
={(a,a®E,aE) e U(1) x SU(2) x SU(6) |a'* = 1,a"* = 1}

= {(a,a°E,a’E)|a = ek |t =0,1,2,...,23} = Zy.
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Therefore we have the required isomorphism

(E7) N (E7)" =~ (U(1) x SU(2) x SU(6))/Za. O

4.17. Type EVI-VI-VI

In this section, there exist two cases with this type.

4.17.1. We begin from the first case: f = s0(8) ® s0(4) @ iR.

In the first case, we give a pair of involutive inner automorphisms $ and
—o¢. We remark that —¢ is same as & because of —1 € z(E7) (the center of E;).
Again, we state y ~y0, y ~ —o in E7; as mentioned in Sections 4.14, 3.4,
respectively.

From the result of type EVI in Table 2 and y ~ yo, y ~ —a, we have the
following theorem.

REMARK. From —1 e z(E;7), it is clear that (E;) 7" = (E;)”.

THEOREM 4.17.1-1. For Z, x Z, = {1,y} x {1, —a}, the Z, x Z,-symmetric
space is of type (Er/(Er)’, Eq/(E7)™", En/(En)"""")) = (Er/(Er)", E1/(E7)', En/
(E7)) = (E7/(E7)", E7/(E7)", E7/(E7)"), that is, type (EVI, EVI, EVI), abbre-
viated as EVI-VI-VIL.

Now, we determine the structure of the group (E;)” N (E7)"7 = (E7)" N (E7)°.

THEOREM 4.17.1-2.  We have that (E7)" N (E7)™7 = (E7)" N (E7)” = (SU(2) x
Splﬂ(4) X Splﬂ(g))/(22 X Z2)> Zy X Z, = {(Ev 17 1)7 (Ea g, 0-)} X {(E7 17 1)7 (_E7 Vs
—ap)}.

Proor. Let

Spin(4) = ((E1)"*) )iy 1. £ 1.5 a0d Spin(8) = (((E7)"™*)) g, (he)-

Since both of the groups Spin(4) and Spin(8) are the subgroups of Spin(12) =~
(E7)"*, we can define a mapping ¢47,_» : SU(2) x Spin(4) x Spin(8) — (E7)" N
(E7)° as the restriction of the mapping gg as follows:

Pa171-2(A, Bas Bg) = ¢2(A)BaPs-

Then this mapping induces the required isomorphism (see [6, Theorem 3.23] in
detail). O
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4.17.2. Next, we study the second case: f=u(6) @ iR.

In the second case, we give a pair of involutive inner automorphisms j
and y.

We define C-linear transformations y, of P by

yH(Xv Yaéa”) = (yHXayHYaéaﬂ)’

where y5 of the right hand side are the same ones as yy € G, < Fy < E. Then
we have that y, € E7, %, = 1, so y, induce involutive inner automorphism 7,
of E7:9y(a) =ygoayy, o€ Eq.

Similarly, for 91,0, € G, < Fy = Es, we have 0,0, € E7. Hence, as in Eg,
since we easily see that 01y = ypy 01, 02y = (yyy)da, that is, y ~py, y ~ pyy in

E;, we have the following proposition.

PROPOSITION 4.17.2-1.  The group (E;)” is isomorphic to both of the groups
(E7)7H and (E7)7yH : (E7)7 = (E7)yH = (E7)WH.

From the result of type EVI in Table 2 and Proposition 4.17.2-1, we have
the following theorem.

THEOREM 4.17.2-2. For Zp x Zp, = {1,y} x {l,yg}, the Z, x Zy-symmetric
space is of type (E7/(E7)’, Er/(En)", Eq/(E7)"™") = (E7/(E7)’, Er/(En)’, En/
(E7)?), that is, type (EVI, EVI, EVI), abbreviated as EVI-VI-VL.

Here, we prove proposition needed and make some preparations for the
theorem below.

First, using identifying (.)€ @ M(3,C)¢ with €, we identify (Bc)< @
(M(3,C)° @ M(3,C)¢) with BE by

(X, Y. &n) + (M,N)=(X+M,Y +N,¢n),

where (PBc)€ = (3¢) D (3¢)€ @ C® C. (As for identifying (J0)¢ ® M(3,C)€
with 3¢ and the definition of (SC)C, see [7, Sections 2.2, 2.3].)

We often denote any element of M(3,C)C by (my,my,ms), where my €
(C3)C, k=1,2,3, moreover denote any element of (‘BC)C by (X,Y,¢&,n) as
above. (Remark. we often denote any element of B¢ by same one.)

We define a C-linear transformation w of (o)< @ (M(3,C)C @ M(3,C)°)

=B by
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w((X,Y, &)+ (M,N))=(X,Y,&n) + (01 M,01N),
(X, Y, &)+ (M,N)e (Be) @ (M(3,C) @ M(3,C)€) = P€,

where w1 M = (wymy, w1my, 0ym3), w1 € C, 0} =1, w; # 1, so is w|N.
Besides, w is defined as the C-linear transformation of C @C3 =C¢ as
follows:

wa+m)=a+wm, a+meC®C’=¢C.

Then we have that w € G5, w3 = 1. Hence, using the inclusion G, = F4 c Eg c E7,
w induces inner automorphism w of order 3 in E;:w(x) = wlaw, o€ E;.

PROPOSITION 4.17.2-3.  We have the following isomorphism: (E7)" = (SU(3) x
SU(6))/Z3, Z3 = {(E,E), (01 E, o E), (01 E, 0 E) }.

Proor. We define a mapping ¢, : SU(3) x SU(6) — (E7)" by
9u(D,A)P = f7H(D, A)(fP), PeBC.

Then this mapping induces the required isomorphism (see [10, Section 4.13] in
detail). O

By identifying (3C)C ®M3,C )C with 3¢, the C-linear transformation 7, Vi
and y. of 3¢ naturally act on (SC)CG—)M(?a,C)C = 3°. Hence, using the in-
clusion Eg = Ej, the C-linear transformations y, y,; and y. of (3¢)€ @ M(3,C)¢
=3¢ are naturally extended to the C-linear transformations of (Bc)< @
(M(3,C)C @ M(3,C)) = B as follows:

WXL Y,En) + (M, N)) = (X, Y, En) + (YM,yN),
VH((Xa Y,é,”)+(MaN)) = (Xv Yvév’?)—i_(yHnyHN)a
ve((X, Y, &)+ (M,N)) = (X, Y,¢n) + (M, N),

where yM = y(m,my,m3) = (ymy,ymy, yms), and so is y, M. In addition, for
m = (my,my, ms) eC?® ym and yym are defined by (m;,—my,—m3) and
(=my,my, —m3) : ym = (my, —my, —m3), yym = (—my, my, —mj3), respectively.

Consider a group 2> = {1,y.}. Then the group %> = {1,y,} acts on the
group U(1) x U(1) x SU(6) by

ve(p:q,4) = (p,q, (Ad J3)A4)
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and let (U(1) x U(1) x SU(6)) % 2, be the semi-direct product of U(1) x U(1)
x SU(6) and Z, with this action.
Now, we determine the structure of the group (E;7)" N (E7)™.

THEOREM 4.17.2-4.  We have that (E7)" N (E7)" = (U(1) x U(1) x SU(6))/
Zy X2, Zy={(1,1,E), (o, 01,mE), (0}, 0}, o?E)}, % ={l,yc}, where
w1 € C, a)13:1, w # 1.

ProoF. We define a mapping ¢475_4 : (U(1) x U(1) x SU(6)) < {1,y-} —
(E7)" N (E7)™ by
¢417274((pa %A)a 1) = gow(D(p,q),A),

90417274((175 q, A)7 yC) = q)w(D(pv q)7 A)yCa

where D(p,q) = diag(p,q, pqg) € SU(3) and ¢,, is defined in Proposition 4.17.2-2.
Then this mapping induces the required isomorphism (see [7, Theorem 2.4.3]
in detail). O

4.18. Type EVI-VII-VII

In this section, we give a pair of involutive inner automorphisms —a
and 7.

LemMma 4.18.1. In E;, 1 is conjugate to —ai: 1~ —aol.

Proor. We define a C-linear transformation d;9 of B¢ by

X (17])1)X*2E1XY+77E1 X
Y 2F X 1— Y E Y
S | B XU )Y acE | e BC,
¢ (E1,Y) 4
n (—E1, X) n

where p; is defined by pi(X) = (X,E|)+4E x (E; x X),X € 3. Then, by
straightforward computation, we have that Jj9 € E7,010t = (—10)d10, that is,
1~ —aot in Ej. O

We have the following proposition which is the direct result of Lemma
4.18.1.
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PROPOSITION 4.18.2.  The group (E7)' is isomorphic to the group (E7)”":
(E7)l = (E7)7m.

From the result of types EVI, EVII in Table 2 and Proposition 4.18.2, we
have the following theorem.

THEOREM 4.18.3. For Zo x Zp, ={l,—c} x {1,1}, the Z, x Z,-symmetric
space is of type (Er/(Er) " Er/(Er)' Er/(En) ™) = (Ey/(Ey)’, Er/(Er)', Eo/
(E7)"), that is, type (EVI, EVIL, EVII), abbreviated as EVI-VII-VIL.

Now, we determine the structure of the group (E7) 7 N(E;)".

THEOREM 4.18.4.  We have that (E;)" "N (E7)" = (U(1) x U(1) x Spin(10))/

(Z4XZ3)’ Z4:{(l,1,1),(1,71,70’),(1,7i,0’¢1(i)),(1,7l',¢1(l'))}, VARS
{(1,1,1), (0, @, 1), (0, 0?,1)}, where we C, o* =1, o # 1.

Proor. Let U(l)={aeC|(ra)a=1} and Spin(10)= (E6)E] ={ae Egs|
aE; = E;}. We define a mapping @444 : U(1) x U(1) x Spin(10) — (E;) " N (E7)"
= (E7)°N(E7)" by

P4184(0,a,0) = ¢(0)$,(a)0,

where ¢, ¢, are defined in Theorems 3.4.3, 3.3.3, respectively. It is clear that
04184(0,a,0) € (E7)', moreover since a¢p(0)ag = ¢(0) and ¢,(a)d € (Eg)”, it is easily
to verify that ¢,,(0,a,0) € (E7)° = (E7)"°. Hence ¢454 is well-defined. Since
#(0) commutes with ¢,(a) and 6 each other and moreover ¢,(¢) commutes with
0, we easily see that ¢34 a homomorphism.

We shall show that ¢,g, is surjection. Let o € (E7) ° N (E7)". Since (E7) N
(E7)' = (E7)', there exist e U(1) and B e E¢ such that o = ¢g;(0,8) (Theorem
3.4.3). Moreover, from o€ (E;7) " = (E7)°, that is, apg;(0,8)0 = pp;(0,8), we
have ¢g;(0,0f0) = pg,(6, ). Hence, it follows that

(i {6’:9 (i) {Hza)ﬁ (i) {02@20
afio = B, afo = d(w?)B, Ba = ().

Then we can easily confirm that (ii) and (iii) are impossible because of 6 = 0.
In the case (i), we have that fe (Eq)” = (U(1) x Spin(10))/Z4. Hence, from
Theorem 3.3.3, there exist a € U(1) and ¢ € Spin(10) such that ff = gg;(a,d) =
¢, (a)o. Thus @454 is surjection.

Finally, we shall determine Ker ¢,5. From Ker ¢p; = {(1,¢,(1)),
(=1, ¢,(=1)), (i, 4, (i), (—i,$,(i))}, we can easily obtain that
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Ker gg150 = {(0,a,6) € U(1) x U(1) x Spin(10) | ¢4,54(0, a,6) = 1}
= {(0,a,6) e U(1) x U(1) x Spin(10) | $(0)¢, (a)d = 1}
={(0,a,0) e U(1) x U(1) x Spin(10) | 0° = 1,a* = 1,6 = ¢, (a"")}
={(1,1,1),(1,=1,=0), (1, =i,a¢,(1)), (1, =i, (i),
(0,0, (1), (@, 074 6y (1), (@, i0*, 1), (0, =i, 0),
(@ 0'2,0),(0?, —0™ 2, 1), (% i0'?, ¢, (i), (0%, —iw"*, 04, (i)}

- {(17 17 1)7 (17 717 70_)7 (17 71‘7 G¢l(i))7 (17 7ia¢1(i))}

x {(1,1,1), (w,w,1), (0%, 0* 1)} = Zy x Z5.

Therefore we have the required isomorphism

(E7) " N(E;) = (U(1) x U(1) x Spin(10))/(Z4 x Z3).

4.19. Type EVII-VII-VII
In this section, we give a pair of involutive inner automorphisms 7 and .

PROPOSITION 4.19.1. The group (E;7)' is isomorphic to both of the groups

(E7)* and (E7)" : (E)' = (E7)" = (E;)".
ProOF. First, we have (E7)' = (E7)" as the direct result of Lemma 4.13.1.
Next, we define a mapping ¢ : (E7)"” — (E7)" by

g(0) = (670, )(6.62),

where both of J, and o, are defined in Section 4.13. In order to prove this
proposition, it is sufficient to show that the mapping g is well-defined. Indeed,

it follows from (A1)d, =d,(A) and A0, =J,: that
19(5) = 1((0;10,1)2(00) = 8, (67 )6,)) = (67107 ) (~2)05,)
= (0710, ) (@(=4)(0,6,)) = (0710, ) (00140;) = (0710, )oG:02))e
=g(x)r,

that is, g(a) € (E7)".
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From the result of type EVII in Table 2 and Proposition 4.19.1, we have
the following theorem

THEOREM 4.19.2.  For Z, x Zy = {1,1} x {1, i}, the Z, x Z,-symmetric space
is of type (Er/(Er)', Er/(E)*, B/ (E7)") = (Er/(En)', En/(En)', Er/(E7)"), that is,
type (EVIL, EVIIL, EVII), abbreviated as EVII-VII-VII.

Now, we determine the structure of the group (E;)'N (E7)A.
THEOREM 4.19.3.  We have that (E;)'N(E;)" = Fy x %5, %, = {1,—1}.

Proor. We define a mapping ¢493 : F4 x {1,—1} by

Pa103(%, 1) = pp7 (1, 20),
Par03(o —1) = pp7(—1, ),

where ¢g; is defined in Theorem 3.4.3. Since the mapping ¢,9; is the restriction
of the mapping ¢g;, it is clear that ¢,,9; is well-defined and a homomorphism.

We shall show that g,0; is surjection. Let o€ (E7)' N (E;)". From (E;)'N
(E7)* = (E7)', there exist 0 e U(1) and f e Es such that o« = pg(0,8) = ¢(0)f
(Theorem 3.4.3). Moreover, from o e (E;)*, that is, Apg;(0,8)A"" = pg:(0,5),
using Ag(0)A"' =4(07") (Lemma 4.15.3), we have that g, (07", 817" =
og7(6,p). Hence, it follows that

L fot =0 o [0 =0 Lo [0 =%
o {030, a{l e L, {5
BA =P, AL = P(w)B, P = d(w)p.

Case (i). We see that § = +1 and € Fy ~ (Es)". Hence, in the case of 6 = 1,
there exist 1 € U(1) and f € F4 such that o = ¢(1)f = f, that is, & = ggs(1,0) =
®4193(2, 1), Similarly, in the case of # = —1, we have that o= gg,(—1,0) =
Par03(o, —1).

Case (ii). We see that 0 = +w and B = ¢(w>)B’, B’ € Fy. Hence, in the case of
0 = w, there exist we U(1) and B = ¢(w?)B’ such that « = d(w)p(w?)p’ = p’,
that is, & = @p;(1, %) = @4193(e, 1). Similarly, in the case of § = —w, we have that
o= @p;(—1,0) = @4195(ct, —1). Thus this case is reduced to Case (i).

Case (iii). We see that 0 = +w? and B = ¢(w)p’, f € Fy. As in Case (ii),
this case is also reduced to Case (i).

Finally, we shall determine the Ker ¢,,9;, however it is easily obtained that

Ker g4195 = ({1}, 1).
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Therefore we have the required isomorphism

(E7)lﬂ(E7))' ~ Fy x 25, [l
+ |Eg] We study four types in here.

4.20. Type EVII-VII-VIII

In this section, we give a pair of involutive inner automorphisms ¢ and ¢’'.
We define C-linear transformations o, ¢’ of ¢ by

0(¢7 P? Q? r? S? t) = (o-¢o-7 O-P) O-Q7 r? S7 l))
a'(p, P, Q,r,5,0) = (¢'ps’,a'P,a’ Q,1,5,1), (p, P, Q,1,5,1) € ¢,

where o, ¢’ of the right hand side are same ones as o,0' € Fy < Eq < E7.

2 . . . .
Then we have that ¢,0’ € Eg, 6> = ¢’~ = 1. Hence o, ¢’ induce involutive inner
automorphisms &, 6 of Eg:é(a) = oao, ¢'(o) = o'ac’, a € Eg.

LemMma 4.20.1. (1) The Lie algebra (e)” of the group (Eg)? is given by

() = {(p, 720, Q,1,5,—75) € eg | p € (¢7)” = su(2) @ s0(12),

Qe (%), reiR, se C}.

(2) The Lie algebra (eg)™ of the group (Eg)™ is given by

()7 = {(9, 170, 0,0,5,—s) € s | p & (e = (&) = su(8),

Qe (), se R}
In particular, we have that
dim((es)”) = (3+66) +((3+8) x2+2)x2+1+1x2=120

=63+ (34 (4x3) x2) +2+ 1 =dim((es) ™).

Proor. By straightforward computation, we can easily prove this lemma.
]

From Lemma 4.20.1 and [13, Lemma 5.3.3], we have the following
proposition.
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PrOPOSITION 4.20.2. The group (Eg)? is isomorphic to the group (Eg))‘”’y:
(Es)” = (Es)™" (= Ss(16)).

REmArRk. The author can not find any element J € Eg which gives the
conjugation: do = (4,y)0.

Here, using the inclusion F; = Eg = E7 = FEg, the C-linear transformations
d¢,07 defined in the proof of Lemma 4.4.1 are naturally extended to the C-linear
transformations of egc. Hence, as in Eg, since we easily see that dgo = o',
070 = (66")07 as J¢,07 € Fy = Eg = E; < Eg, that is, ¢ ~d’, 0 ~gg’ in Eg, we
have the following proposition.

PropPoSITION 4.20.3. The group (Es)? is isomorphic to both of the groups
(Eg)(7 and (Eg)(m : (Eg)a = (Eg)(7 = (Eg)(m.

From the result of type EVIII in Table 2 and Propositions 4.20.2, 4.20.3,
we have the following theorem.

THEOREM 4.20.4. For Z, x Z, = {1,0} x {1,0'}, the Z, x Z,-symmetric space
is of type (Es/(Es)’ Es/(Es)”, Es/(Es)” )= (Es/(Es)”, Es/(Es)”, Es/(Es)°),
that is, type (EVIIL, EVI, EVIII), abbreviated as EVIII-VIII-VIII.

Now, we determine the structure of the group (Es)°N (Es)”.

THEOREM  4.20.5. We have that (Es)° N (Es)” = (Spin(8) x Spin(8))/
(Z2 % Z3), Zy={(1,1),(0,0)}, Z2={(1,1),(d",0")}.

Proor. This proof is omitted (see [8, Theorem 7.1]. The purpose of [8] is
to prove the this theorem). |

4.21. Type EVII-VII-IX

In this section, we give a pair of involutive inner automorphisms A,y and

Aw)V.
LemMA 4.21.1. In Eg, A,yv is conjugate to Ayy : Ayyv ~ Ay).

ProOF. We define a C-linear transformation J, of e{ by

51)(¢7P, Q,}",S, [) = (fﬂ, infiQJ’a 7Saft)7 (gﬂ,P, Qarvsa t) € eSC‘
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Then we have that J, € Eg, 55 =v and J,(Zuy0) = (Aw))dy : Aoy ~ Ayy in Eg,
moreover that o, = A9,. O

We have the following proposition which is the direct result of Lemma
4.21.1.

2y

PROPOSITION 4.21.2.  The group (Eg)*" is isomorphic to the group (Es)
(Eg);«ny” ~ (ES)LHV.

From the results of types EXIII, EIX in Table 2 and Proposition 4.21.1, we
have the following theorem.

THEOREM 4.21.3. For Z; X Zy = {1, Ay} X {1, Auyv}, the Zy X Zy-symmetric
space is of type (Es/(Es)™", Es/(Es)™", Es/(Es)""""")) = (Es/(Es)"", Es/
(Eg)™", Eg/(Eg)"), that is, type (EVIIL, EVIIL, EIX), abbreviated as EVIII-VIII-IX.

Here, we prove lemma needed in theorem below.

LemmA 4.21.4. The mapping ¢ : SU(2) — Es of Theorem 3.5.2 satisfies the
Jfollowing equalites:

(l) oy = ¢3(i1)-
(2) /1!04’53(14))“;1 = lw¢3(A)l;l = ¢3(tA71)-
(3) a¢s(A)o = ¢5(A4),  yh3(A)y = ¢3(A),
where il = diag(i, —i) € SU(2).
ProoF. By straightforward computation, we can easily prove this lemma.

(The C-linear transformation 1, of (¢g) is defined in Section 4.23. As for the
definition of the mapping ¢;, see [10, Theorem 5.7.4].) O

Consider a group 25 = {l,p,}, where p, =J,1. Then the group 2, acts on
the group SO(2) x SU(8) by

po(4,B) = ((N)AGI) ™", JBJ "),

0 1
where J = diag(Jy,J1,J1,J1) € M(8,R), J, = ( ), and let (SO(2) x SU(8))

-1 0
X %, be the semi-direct product SO(2) x SU(8) and %, with this action.

Aw)0

Now, we determine the structure of the group (Es)™’ N (Eg)
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THEOREM 4.21.5. We have that (Eg)™" N (Eg)™" = (SO(2) x SU(8))/Z4 >

ffz, Z4 = {(E7E)7 (E7 —E), (—E7€1E)7 (—E, —elE)}, ffz = {l,pv}.

Proor. We define a mapping ¢,55 : (SO(2) x SU(8)) % {l,p,} — (Es)w N
(Es)™" by
P4215((4, B), 1) = pry(A4, pgs(B)),

P4215((4, B), p) = ppo(A, 9ps(B))p,

where ¢pg, ¢ps are defined in Theorems 3.5.2, 3.4.1, respectively. From
doyy(A)p2,' = §(4), AeSOQ2) (Lemma 4.21.4 (3)) and ops(B) € (E7)"
(Theorem 3.4.1), it is easily to verify that ¢,,,s is well-defined. By straightforward
computation, we can confirm that ¢,,;5 is a homomorphism. Indeed, we show
that the case of ¢y5((4, B),p,)04215((C, D), 1) = p415((4, B), p,)((C, D), 1)) as
example. For the left hand side of this equality, we have that

Pa215((4, B), p,)0a215((C, D), 1) = ¢go (A, 0ps(B))p,@ee(C, 0ps (D))

= ¢3(A) s (B)p,¢3(C)ggs(D).

On the other hand, for the right hand side of same one, using d, = ¢;(il),
19ps(A)17" = pps(JAJ) (Lemmas 4.21.4 (1), 4.13.6 (2)), we have that

9ans((A4, B), p,)((C, D), 1)) = p4015(((4, B)p(C, D))), p,)
= pus(((4, B)((iD)C (D)™, DI ™)), p,)
= @uns((AGHC@E) ™" BIDI ™Y, p,)
= ¢3(A(I)C(I) " )pes(BIDI ))p,
= ¢3(AGI)C(I) ™ )pps(BIDI ) (61)(— T ' = =)
= ¢3(4)0,45(C)0, g5 (B)1ps (D) (6,1)
= §3(4)3,45(C)9, ' pis (B)igs (D)3,
= $3(A4)0,¢3(C)gs(B)1pgs(D)
= ¢3(4)0,0p5(B)h3(C)igps (D) (— pgs(B),1 € Er)
= ¢3(4)pgs(B)(001)$3(C)9gs(D)
= ¢3(A)pes(B)p,93(C)pgs(D).

Similarly, the other cases are shown.



304 Toshikazu MIYASHITA

We shall show that g5 is surjection. Let o e (Eg)™’ N (Eg)™". From
(Eg)™" N (Eg)™" < (Eg)"" %) = (Eg)", there exist AeSU(2) and fe E;
such that o = ppo(4, f) (Theorem 3.5.2). Moreover, from o = ppo(A, B) € (Es)™”,

that is, Zoyppe(A, B)72,' = ppe(A, ), using Zuyds(A)yi,' = ¢3('4~") (Lemma
4.21.4 (2)), we have that pgo(‘A~", JyBy2~") = pro(4, ). (Remark. For « € (Eg)",
that o € (Eg)™” implies that a € (Eg)™’.) Hence, it follows that

tA_l = A [A_l =—A
{ ; -1 or { -1

LyByr =B LyByr = =P
In the former case, we see that 4 € SO(2) and f e (E;)” =~ SU(8)/Z,. Hence,
there exists B e SU(8) such that f = pg5(B) (Theorem 3.4.1). Thus we have that
o= @po(A4, ) = 9po(A, 9gs(B)) = @a215((4, B),1). In the latter case, we see that
A= A'(il), A€ SO(2) and B =p'1, B’ € (E;)”. Hence, in the same way as the
former case, we have that

%= ppo(4,p) = ¢E9(A’(i1),ﬁ’z) = ¢3(A/(i1))(ﬁll) = ¢3(A/)¢3(ﬂ)(ﬁ/l)
= ¢3(A/)¢3(i])ﬂll = ‘/53(14/)/))/(‘/53(”)1) = (059(14’75,)(5&) = ppo(A4’, 0p5(B"))p,
= (04215((A/73/)7Pu)~

Thus ¢4,,4 1S surjection.
Finally, we shall determine Ker ¢,,;5. From the definition of kernel, it is as
follows:

Ker pg15 = {((4, B), 1) [ 9415((4, B), 1) = 1}
U{((4,B),p,) | 0a215((4, B), p,) = 1}
={((4,B),1)| ppo(4, ps(B)) = 1}
U{((4, B),p) | pro(4, ps(B))p, = 1}
Here, for the left hand side case, we have that
{((4,B),1) | peo(4, pes(B)) = 1}
={((4,B),1)| 4 = +E, pgs5(B)) = £1}
={((E,E),1),((E,—E),1),((-E, —e1E), 1), (—E,e1 E), 1)}

On the other hand, for the right hand side case, since ¢go(4, ¢gs(B))p, =1, we
suppose that

§0E9(A7¢E5(B))pu(07070707 170) = (07070705 1) 0)7 Where (OaOaOaOa 1a0) € QSC'
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Then since we have that ¢4(4)(0,0,0,0,i,0) =(0,0,0,0,1,0), there exist no
A € SO(2) such that ¢gy(A4,pgs(B))p, = 1. Hence, the right hand case is im-
possible. Thus we have that

Ker Pa215 = {((EvE)v 1)7 ((E7 _E)v 1)7 ((_Ea —€1E), 1)’ ((_E’elE)’ 1)} = (Z47 1)
Therefore we have the required isomorphism
(Eg)™ N (Eg)™" =~ (SO(2) x SU(8))/Z4 X Z5>. O
4.22. Type EVII-IX-IX

In this section, we give a pair of involutive inner automorphisms & and o.

Lemma 4.22.1. (1) The Lie algebra (¢3)" of the group (Eg)" is given by
(es)” = {(9,0,0,7,5,—75) | p € ¢7,r € iR, 5 € C}.
(2) The Lie algebra (es)” of the group (Eg)™ is given by
(e8)” = {(p,7AQ, O, 1,5, —75) | p € (¢7)7 = su(2) @ s0(12),
Qe (‘JSC)_U7 reiR, se C},

where (BE)_, ={Pe B |oP = —P}.
In particular, we have that

dim((es)")) =133+ 1+2=136=(3+66) + (8 +8) x2x2+1+2
= dim((eg)"”).
ProoOF. By straightforward computation, we can easily prove this lemma.

O

From Lemma 4.22.1 and [13, Lemma 5.3.3], we have the following
proposition.

PROPOSITION 4.22.2. The group (Eg)" is isomorphic to the group (Eg)"™ :
(ES)” ~ (ES)I)(T'

REMARK. The author can not find any element 6 € Eg which gives the
conjugation: vd = d(va).
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From the results of types EVII, EIX in Table 2 and Propositions 4.20.2,
4.22.2, we have the following theorem.

THEOREM 4.22.3. For Z, x L, = {1,0} x {1,v}, the Z, X Zy-symmetric space
is of type (Es/(Es)”, Es/(Es)", Es/(Es)") = (Es/(Es)™, Es/(Es)", Es/(Es)"), that
is, type (EVII, EIX, EIX), abbreviated as EVIII-IX-IX.

Now, we determine the structure of the group (Eg)’ N (Es)".

THEOREM 4.22.4.  We have that (Eg)’ N (Eg)” = (SU(2) x SU(2) x Spin(12))/
(ZZ X Z>), £y = {(E> E, 1), (_E7 E, _1)}; Z, = {(E7 E, 1)7 (E—,E, _0-)}'

PrOOF. We define a mapping ¢y, : SU(2) x SU(2) x Spin(12) — (Eg)’ N
(Es)" by

Pa204(A, B, B) = $5(A) > (B)P,

where ¢;, ¢, are defined in Theorems 3.5.2, 3.4.2, respectively. From o¢;(4)o =
#3(A4) (Lemma 4.21.4 (3)) and ¢,(B)B € (E7)° (Theorem 3.4.2), it is easily to
verify that ¢, is well-defined. Since ¢;(4) commutes with ¢,(B) and f
each other (see [8, Theorem 5.7.6] in detail), moreover ¢,(B) commutes with
B in E; = Eg (see [10, Theorem 4.11.15] in detail), we see that ¢, is a
homomorphism.

We shall show that ¢,,,, is surjection. Let o€ (Eg)” N (Eg)”. From (Eg)’N
(Eg)" = (Eg)", there exist 4 € SU(2) and J € E7 such that & = ¢go(A4,5) (Theorem
3.5.2). Moreover, from o= ggo(A4,0) € (Eg)°, that is, gppy(A4,5)0 = @ge(4,9),
again using o¢s(A)o = ¢;(A), we have that ¢py(A4,000) = ppy(A,0). Hence, it

follows that
A=A A=—-A4
or
{0(50:(5 {0(502—(5.

In the latter case, this case is impossible because of 4 = 0. In the former case,
we see that de (E7)” = (SU(2) x Spin(12))/Z,. Hence, there exist Be SU(2)
and f$ € Spin(12) such that J = gg¢(B, ) = ¢(B)f (Theorem 3.4.2). Thus @4y
is surjection.

Finally, we shall determine Ker ¢4,,,. From Ker ¢pc = {(E,1),(—E,—0)},
we have that
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Ker g4004 = {(4, B, f) € SU(2) x SU(2) x Spin(12) | p4204(4, B, p) = 1}

(

A, B, ) € SU(2) x SU(2) x Spin(12) | 3(A)¢»(B)S = 1}
(
)

E,E1),(E,—~E,—c),(—E,E,~1),(—E,—E,0)}

{( )
{( )
{(4,B,5) e SU(2) x SU(2) x Spin(12) | A = +E, $,(B)f = £1}
{( )
{( )

E,E 1), (-E,E,-1)} x{(E,E,1),(E,—E,—0)} = Zy X Z>.
Therefore we have the required isomorphism

(Es)” N (Es)" = (SU(2) x SU(2) x Spin(12))/(Z5 x Z»). O

4.23. Type EIX-IX-IX

In this section, we give a pair of involutive inner automorphisms & and i.
We define C-linear transformations i, vi, of e8C by

lw((ﬂ, Pv Qv r,s, t) = ("pl—lale —lP,—V,—t, _S)a

Ulw((”; P7 Q7 r,s, t) = (lgolilv _ZQ7 va -7, _t7 _S)a (¢7 P7 Q7 r,s, Z) € e8C7

where 1 of the right hand side is same one as 1 € E;. Then we see that i, v, € Eg,

lZ) = vzi = 1. Hence 1,, v, induce involutive inner automorphisms iy, vi, of

Eg : 15(0) = 160y, Olgy(at) = (v1g,)0(100), o € Eg.

Lemma 4.23.1. (1) The Lie algebra (eg)™ of the group (Eg)™ is given by

"2 u(l) @ e, 0 = (X, itX, &, ité),
(es)l"’Z{((ﬂ,rlQ, 0,0,s,—s) ?Yee(gg é:(c)ie; Q= (X,itk, c, iwc) }

(2) The Lie algebra (eg)™ of the group (Eg)" is given by

[; 1 ) = X7_.X7 7_. )
<eg>”’w={<¢,mQ, 0.0.5,—9) {7 T 1) S @7 T i }

In particular,
dim((eg)) = (14+78)+(27+1)x2+1=136
=(1+78)4+27+1)x2+1= dim((eg)’”w),

Proor. By straightforward computation, we can easily prove this lemma.
O
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From Lemmas 4.22.1 (1), 4.23.1 above and [13, Lemma 5.3.3], we have the
following proposition.

PROPOSITION 4.23.2.  The group (Eg)" is isomorphic to both of the groups
(Eg)lm and (Eg)m” : (ES)U =~ (Eg)l“ =~ (Eg)mw.

REMARK. The author can not find any element 6,6’ € Es which give the
conjugations: vd = di,, 1,0 = 0'v1,,.

From the result of type EIX in Table 2 and Proposition 4.23.2, we have
the following theorem.

THEOREM 4.23.3. For Zy x Z, = {1,0} x {1,1,}, the Z, x ZLy-symmetric

space is of type (Eg/(Eg)", Eg/(Eg)", Eg/(E3)") = (Eg/(Es)", Es/(Es)", Es/(Eg)"),
that is, type (EIX, EIX, EIX), abbreviated as EIX-IX-IX.

Consider a group %, ={1,v}, where v=0,4 (0, and A are defined in
Section 4.21 and Section 3.4, respectively). Then the group %, acts on the group
SO(2) x U(1) x E¢ by

v(4,0,8) = ((iNAGD) ™", 07", 7p7),

and let (SO(2) x U(1) x Eg) X 2, be the semi-direct product SO(2) x U(1l) x Eg
and 25 with this action.
Now, we determine the structure of the group (Es)" N (Eg)™.

THEOREM 4.23.4. We have that (Eg)"N(Eg)"™ = (SO(2) x U(1) x Eg)/
(Zy x Z3) )25, Z,={(E,1,1),(~E—-1,1)}, Z3;={(E,1,1),(E,0,¢(®?)),
(E7w27¢2(w)}: 2 = {I,V}.

Proor. We define a mapping ¢y3 : (SO(2) x U(1) x Eg) X Zy — (Eg)"N
(Es)™ by
94234((4,0,), 1) = 9o (A, 97 (0, B)),
04234((4, 0, ), v) = pro(A4, 97 (0, B))v,

where ¢g; are defined in Theorem 3.4.3. From ¢g;(0,8) € (E;)" and vv = w,
it is clear that ¢43,((4,0,8),1),04((4,0,8),v) € (Es)", moreover from
opo(A, 0p7(0,0)) = ¢3(A)p(0)f and 1,v =i, it is easily to verify that
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Paz34((4,0,8),1),0434((4,0,p),v) € (Eg)*. Hence ¢y is well-defined. By
straightforward computation, we can confirm that ¢,,3, is a homomorphism.

Indeed, we shall show that the case of ¢4((4,6,5),V)0u3((B,{,x),1) =
0a3a(((4,0,0),v)((B,{,x),1)) as example. For the left hand side of this equality,
we have that

P4234((4, 0, 8), V) 04234 ((B, {,5¢), 1) = 9o (A, 97 (0, B))vopo (B, 97 ({ 1))
= ¢3(A)pg7 (0, B)ves(B)pg7 (C, k).

On the other hand, for the right hand side of same one, using J, = ¢;(il),
d,4 =20, (Lemmas 4.21.4 (1), 4.21.1) and w7 = AxA~!, that is, (tx7)A = Ak as
K € Eg = E7, we have that

0234(((4,0,8), V) ((B,(,1), 1)) = pipa (4, 0, /)(W(B, £, 5))), v)
= (4,0, B)(DBGD) ™, L 7)), v)
= (AN B(D) ™, 007", prrce), v)
= oo ((A()B(I) ™", pgy (007", prxt), v)
= 3(AGT)B(T) ™" )i (007", prrce))v
= 3(AGD)B(T) )7 (00, frct)) (6,4)
= $3(A)(6,83(B)3, ) (H(O)( ") (PriT)(6,2)
= ¢3(4) (003(B)3, ) p(O)BHL " )ewe(23,)
= ¢3(4) (0,03(B)3, ) B(OBUA)A™") 5,
= $3(4)(0,95(B)3, ) $(O)BA(()1d,
= §3(4)0.05(B)S, ) (O)B(20,) (L)
= $3(A)P(0)B(G,$3(B), ) (6, 1) ()
= 3(A)$(0)p5,$3(B)ip(O)re
= ¢3(A)$(0)B(6,2)p5(B)(()rc
= ¢3(A)gi; (0, B)vds(B)pg7 ((, 1),

where ¢ is defined in Theorem 3.4.3. Similarly, the other cases are shown.
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We shall show that ¢4, is surjection. Let o e (Eg)" N (Es)™. From (Eg)"N
(Eg)'” = (Es)", there exist 4 € SU(2) and 6 € E; such that o = ggg(A4,5) (Theorem
3.5.2). Moreover, since o = @gy(A4,0) € (Es)™, that is, 1,0pe(4,0)1,,' = ppo(4,6),
using 1,¢5(A)1;" = ¢5('A7") (Lemma 4.21.4 (2)), we have that ggo('4~! 60171 =
Ppo(A4,0). Hence, it follows that

[A71 = A tA71 =—A4
or
{15y1‘1 =0 {z&yl‘l = -J.
In the former case, we see that A4 e SO(2) and de (E;) =~ (U(l) x Eg)/Z5.
Hence, there exist 0 € U(1) and S € E¢ such that 0 = ¢y,(0, ) (Theorem 3.4.3).
Thus we have that o= ¢gy(4,0) = Ppo(4, 0g7(0,5)) = Pa434((4,0,5),1). In the
latter case, we see that 4 = A'(il), A’ € SO(2) and 6 = '/, &' € (E7)'. Hence, as
in the former case, we have that

% = Ppo(A,0) = ppo(A(il),0'2) = ¢3((A(I))(0'2) = ¢3(A")$3(il)(0"2)
= $5(4")0"(§3(i1)2) = $5(A")0"(0,2) = Pro(A4',0")(6,2)
= ¢E9(A/7 ¢E7(0l7ﬁ/))v = (”4234((/1/7 0l>ﬁ/)7 V).

Thus ¢4,34 1S surjection.
Finally, we shall determine Ker ¢,,3,. From the definition of kernel, it is as
follows:

Ker 934 = {((4,0,5),1) | 1234 ((4,0, ), 1) = 1}
U{((4,0,5),v) | 94234((4, 0, 8),v) = 1}
={((4,0,5),1) | s (4, 97 (0, p)) = 1}
U{((4,0,5),v) | prg(A, 97 (0, ))v = 1}
Here, for the left hand side case, we have that
{((4,0,5), 1) | ppo (A4, 057 (0, B)) = 1}
={((4,0,5),1)| 4 = +E, 95 (0, ) = £1}
={((4,0,5),1)| 4 = +E, §(0)f = +1}
= {((E,1,1),1), (E, 0, $5(?)), (E, *, (),
(—E = 1,1),1), (=E, —0, $o(0?)), 1), (= E, —0*, §(@), 1)}

= {(Ev 17 1)7(_E_ 17 1)} X {(Ev 17 1)7 (vav ¢2(w2))7 (E7w2>¢2(w)}'
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For the right hand case, in the same way as the argument of kernel in Theorem
4.21.5, we have that {((4,0,0),v)]|pp(4,0g;(0,0))v =1} =¢. Thus we can
obtain that

Ker V4234 = {(E’ 1’ 1)’ (_E_ 17 1)} X {(Ea 17 1),(E,w,¢2(w2)),(E,w2,¢2(w)}

Zz X Z3.

11

Therefore we have the required isomorphism

(Eg)uﬂ (Eg)l“ = (50(2) X U(l) X E6)/(Z2 X Z3) X %5, [l
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