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A CHARACTERIZATION OF ISOPARAMETRIC

HYPERSURFACES IN A SPHERE WITH ga 3

By

Setsuo Nagai

Abstract. Ki and Nakagawa [Tôhoku Math. J., 39, 27–40 (1987)]

characterized the minimal isoparametric hypersurfaces in a sphere

that have three distinct constant principal curvatures from the stand

point of the Ricci tensor. In this paper we generalize their results

and characterize the isoparametric hypersurfaces, again in a sphere

and with three distinct constant principal curvatures, that are either

minimal or parallel to a minimal hypersurface.

1. Introduction

Let Snþ1ð1Þ be a unit sphere in an ðnþ 2Þ-dimensional Euclidean space

Enþ2. We consider the induced Riemannian metric on Snþ1ð1Þ. Then Snþ1ð1Þ
comes to be a connected, complete and simply connected Riemannian manifold

with constant sectional curvature 1. We call an n-dimensional Riemannian

manifold Mn a hypersurface of Snþ1ð1Þ when Mn is isometrically immersed into

Snþ1ð1Þ. A hypersurface Mn of Snþ1ð1Þ is said to be an isoparametric hyper-

surface if Mn is locally defined by the level hypersurface of an isoparametric

function on Snþ1ð1Þ ([3]).

E. Cartan [3] proved that a hypersurface Mn is isoparametric if and only if

it is a hypersurface with constant principal curvatures.

Let Mn be an isoparametric hypersurface of Snþ1ð1Þ and let l1; . . . ; lg be

all of the distinct constant principal curvatures with multiplicities m1; . . . ;mg,

respectively. E. Cartan [4] classified the isoparametric hypersurfaces with ga 3

and showed that all of them are homogeneous. Here we call Mn homogeneous if
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Mn is obtained as the orbit space of an analytic subgroup of the isometry group

of Snþ1ð1Þ. Later, Münzner [11] proved by a topological argument that the

number of distinct principal curvatures g must be one of g ¼ 1; 2; 3; 4 or 6. For

g ¼ 6, Abresch [1] showed that the multiplicity of each principal curvature is the

same number m where m is either 1 or 2. Dorfmeister and Neher [6] proved the

homogeneity of such hypersurfaces with g ¼ 6 and m ¼ 1. Recently, R. Miyaoka

[12] finally proved that isoparametric hypersurfaces with g ¼ 6 and m ¼ 2 are

also homogeneous. So, we know that isoparametric hypersurfaces in Snþ1ð1Þ are

homogeneous for g ¼ 1; 2; 3 or 6.

We are interested in geometric characterizations of homogeneous isopara-

metric hypersurfaces in a sphere. More precisely, we consider characterization of

such hypersurfaces from the standpoint of the Ricci tensor. The Ricci tensor S

of Mn is said to be cyclic parallel if the following equation holds for all vector

fields X , Y and Z on Mn:

hð‘XSÞY ;Ziþ hð‘YSÞZ;Xiþ hð‘ZSÞX ;Yi ¼ 0:

Here, h� ; �i denotes the Riemannian metric and ‘ the Levi-Civita connection

of Mn.

A Riemannian manifold is said to be a D’Atri space if its local geodesic

symmetries are volume-preserving up to sign. Such spaces were first studied by

J. E. D’Atri and H. K. Nickerson ([5]). An analytic Riemannian manifold is

knowen to be a D’Atri space if and only if it satisfies an infinite sequence of

equations for the curvature tensor and its covariant derivatives ([2], [9]). The

cyclic-parallel condition of the Ricci tensor is the first equation in the infinite

sequence.

In this paper, we consider the cases where ga 3. Isoparametric hypersurfaces

of Snþ1ð1Þ with g ¼ 3 will be called Cartan hypersurfaces. Ki and Nakagawa

[8] gave a characterization of minimal Cartan hypersurfaces and obtained the

following theorem.

Theorem 1.1 (Ki and Nakagawa [8]). Let Mn be a closed hypersurface

in Snþ1ð1Þ with constant mean curvature. If the Ricci tensor S of M is cyclic-

parallel but not parallel, then Mn is congruent to one of the minimal Cartan

hypersurfaces.

In this paper, we generalize this result. More precisely, we characterize all

Cartan hypersurfaces in Snþ1ð1Þ. This includes both minimal hypersurface and

hypersurfaces parallel to them. We obtain the following theorem.
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Theorem 1.2. Let Mn be a closed hypersurface in Snþ1ð1Þ with constant

mean curvature. If the covariant derivative of the Ricci tensor S of Mn satisfies

ð�Þ SX ;Y ;Zhð‘XSÞY ;Zi

:¼ hð‘XSÞY ;Ziþ hð‘YSÞZ;Xiþ hð‘ZSÞX ;Yi

¼ 3 1� 2

n

� �
hhð‘XAÞY ;Zi

for all vector fields X , Y and Z over Mn, then Mn is congruent to one of the

isoparametric hypersurfaces with ga 3. Here A and h denote the shape operator

and the mean curvature of Mn, respectively. Further, if ‘S0 0, then Mn is

congruent to the Cartan hypersurface.

The corresponding local theorem also holds, which is reflected by the fol-

lowing theorem.

Theorem 1.3. Let Mn be a connected hypersurface isometrically immersed

in Snþ1ð1Þ with constant mean curvature. If the covariant derivative of the Ricci

tensor S of Mn satisfies the equation ð�Þ in Theorem 1.2, then Mn is an open

submanifold of one of the compact isoparametric hypersurfaces with ga 3. Further,

if ‘S0 0, then Mn is an open submanifold of the Cartan hypersurface.

In this paper we assume that all manifolds are of class Cy and connected

unless otherwise stated.

The author would like to express his sincere gratitude to the referee for his

valuable suggestions and comments.

2. Preliminaries

In this section, we present some preliminary results of hypersurfaces in a unit

sphere.

Let Snþ1ð1Þ be an ðnþ 1Þ-dimensional unit sphere in an ðnþ 2Þ-dimensional

Euclidean space Enþ2 and consider the induced metric on Snþ1ð1Þ, under which

Snþ1ð1Þ becomes a real space form of constant sectional curvature 1. Further, let

Mn be a connected submanifold of Snþ1ð1Þ with codimension 1. Below, we

refer to this type of manifold as a hypersurface of Snþ1ð1Þ. We will begin by

establishing the structure equations of Mn.

Let e1; . . . ; enþ1 be a local orthonormal frame field of Snþ1ð1Þ such that the

restrictions of the first n vectors to Mn are tangent to Mn. Let o1; . . . ;onþ1
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be the corresponding coframe of Snþ1ð1Þ. The first and the second structure

equations of Snþ1ð1Þ are the following:

do i ¼ �
X
j

o i
j5o j; o i

j þ o
j
i ¼ 0; ð2:1Þ

do i
j ¼ �

X
k

o i
k5ok

j þ o i5o j; i; j; k ¼ 1; . . . ; nþ 1: ð2:2Þ

Let o i and o i
j , respectively, be the restrictions of o i and o i

j (where i; j ¼ 1; . . . ; n)

to Mn. Then, from ð2:1Þ and ð2:2Þ we have the following first and second

structure equations of Mn:

do i ¼ �
X
j

o i
j5o j; o i

j þ o
j
i ¼ 0; ð2:3Þ

do i
j ¼ �

X
k

o i
k5ok

j þW i
j ;

W i
j ¼

1

2

X
k;l

Ri
jklo

k5ol; Ri
jkl þ Ri

jlk ¼ 0; i; j; k; l ¼ 1; . . . ; n: ð2:4Þ

Here, W i
j denotes the curvature form of Mn and Ri

jkl the coe‰cient of the

curvature tensor of Mn.

The second Bianchi identity is given by

Ri
jklm þ Ri

jlmk þ Ri
jmkl ¼ 0; i; j; k; l;m ¼ 1; . . . ; n: ð2:5Þ

Here, Ri
jklm are the coe‰cients of the covariant derivative of the curvature

tensor Ri
jkl defined by

X
m

Ri
jklmo

m ¼ dRi
jkl þ

X
t

o i
tR

t
jkl �

X
t

o t
j R

i
tkl

�
X
t

o t
kR

i
jtl �

X
t

o t
lR

i
jkt:

However, onþ1, the restriction of onþ1 to Mn, vanishes. This gives

0 ¼ donþ1 ¼ �
X
i

onþ1
i 5o i:

Hence, from Cartan’s lemma, onþ1
i can be expressed by

onþ1
i ¼

X
j

hijo
j ; hij ¼ hji; i; j ¼ 1; . . . ; n: ð2:6Þ
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The tensor field A on Mn defined by

A ¼
X
i; j

hijo
i n ej ð2:7Þ

is said to be the second fundamental form of Mn in Snþ1ð1Þ.
From ð2:2Þ, ð2:4Þ and ð2:6Þ, we deduce the following Gauss equation:

Ri
jkl ¼ dikdjl � dildjk þ hikhjl � hilhjk: ð2:8Þ

Covariantly di¤erentiating both sides of ð2:6Þ, and making use of ð2:2Þ and ð2:3Þ,
we obtain X

j;k

hijko
j5ok ¼ 0; ð2:9Þ

where the coe‰cients hijk are defined by

X
k

hijko
k ¼ dhij �

X
l

hljo
l
i �

X
l

hilo
l
j : ð2:10Þ

Comparing these coe‰cients to the coe‰cients of o j5ok in ð2:9Þ, we obtain the

following Codazzi equation:

hijk ¼ hikj ; i; j; k ¼ 1; . . . ; n: ð2:11Þ

Using the Gauss equation ð2:8Þ, the coe‰cients Rij ¼
P

k R
k
jki of the Ricci tensor

S of Mn are given by

Rij ¼ ðn� 1Þdij þ hhij �
X
k

hikhkj

 !
; ð2:12Þ

where h denotes the mean curvature of Mn, defined by h ¼
P

i hii.

Furthermore, the scalar curvature r ¼
P

i Rii of Mn satisfies the following

equation:

r ¼ nðn� 1Þ þ h2 �
X
i; j

hijhij : ð2:13Þ

Covariantly di¤erentiating both sides of ð2:10Þ and using the structure equations

ð2:3Þ and ð2:4Þ, we obtain that

X
k:l

hijklo
k5ol ¼ 1

2

X
k;l;m

hmjR
m
iklo

k5ol þ 1

2

X
k;l;m

himR
m
jklo

k5ol; ð2:14Þ
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where the coe‰cients hijkl are defined by

X
l

hijklo
l ¼ dhijk �

X
l

hljko
l
i �

X
l

hilko
l
j �

X
l

hijlo
l
k :

Comparing these coe‰cients to the coe‰cients of ok5ol in ð2:14Þ, we deduce

the following Ricci formula for hij :

hijkl � hijlk ¼
X
m

hmjR
m
ikl þ

X
m

himR
m
jkl: ð2:15Þ

From ð2:12Þ, our condition ð�Þ in § 1 is equivalent to the following equation:

3

n
hhijk ¼

X
r

ðhirhrjk þ hjrhrik þ hrkhrijÞ: ð2:16Þ

For the sake of brevity, we will write ðhijÞm and am for a tensor and function,

respectively, on Mn for any integer m to mean:

ðhijÞm ¼
X

i1;...; im�1

hii1hi1i2 � � � him�1j; ð2:17Þ

am ¼
X
i

ðhiiÞm; m ¼ 1; 2; . . . : ð2:18Þ

In particular, a1 coincides with the mean curvature h and a2 is related to the

scalar curvature r by

r ¼ nðn� 1Þ þ h2 � a2:

3. Cartan Hypersurfaces

E. Cartan [4] classified all isoparametric hypersurfaces in Snþ1ð1Þ that have at

most three distinct constant principal curvatures. They are homogeneous hyper-

surfaces and orbits under the isotropy representations of symmetric spaces of

rank 2 ([7], [16]). In this paper isoparametric hypersurfaces in Snþ1ð1Þ are

called Cartan hypersurfaces if they have just three distinct constant principal

curvatures.

Remark 3.1. In [8], the name Cartan hypersurface refers to minimal iso-

parametric hypersurfaces in Snþ1ð1Þ with three distinct constant principal curva-

tures, but we use this term for both minimal one and all its parallel hypersurfaces.
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R. Takagi and T. Takahashi [16] determined the principal curvatures and

their multiplicities for all homogeneous hypersurfaces in Snþ1ð1Þ. We know the

following for general isoparametric hypersurfaces.

Theorem 3.2 ([3], [4], [11]). Let Mn be an isoparametric hypersurface in

Snþ1ð1Þ and let l1; . . . ; lg with l1 > � � � > lg be the distinct constant principal

curvatures with multiplicities m1; . . . ;mg. Then the following properties hold.

(1) g is either 1, 2, 3, 4 or 6.

(2) If g ¼ 3, then m1 ¼ m2 ¼ m3 ¼ 2r ð for r ¼ 0; 1; 2; 3Þ.
(3) There is an angle y A

�
0; p

g

�
such that li ¼ cot

�
ði � 1Þ p

g
þ y
�
, i ¼ 1; . . . ; g.

We now consider the case g ¼ 3. Let Mn be the Cartan hypersurface of

Snþ1ð1Þ and ðu; kÞ be the corresponding e¤ective orthogonal symmetric Lie

algebra of compact type and rank 2. Further, let mi ði ¼ 1; 2; 3Þ be the mul-

tiplicities of the principal curvatures of Mn. Then we have the following table 1

([16]).

We can now demonstrate the following proposition:

Proposition 3.3. Let Mn be an n-dimensional Cartan hypersurface in

Snþ1ð1Þ. Then the Ricci tensor S with components Rij of Mn satisfies the fol-

lowing equation:

ð�Þ Si; j;kRijk ¼ 3 1� 2

n

� �
hhijk;

where Rijk are the components of the covariant derivative ‘S of S and Si; j;kRijk

is defined by

Si; j;kRijk ¼ Rijk þ Rjki þ Rkij:

Table 1: Cartan hypersurfaces

u k n mi ði ¼ 1; 2; 3Þ

suð3Þ þ suð3Þ suð3Þ 6 mi ¼ 2 ði ¼ 1; 2; 3Þ

suð3Þ soð3Þ 3 mi ¼ 1 ði ¼ 1; 2; 3Þ

suð6Þ spð3Þ 12 mi ¼ 4 ði ¼ 1; 2; 3Þ

E6 F4 24 mi ¼ 8 ði ¼ 1; 2; 3Þ
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Proof. Because the second fundamental form hij of Mn is diagonalizable,

a local field feig of the orthonormal frames on Mn can be chosen in such a

way that hij ¼ lidij ; namely,

hab ¼ cot ydab; a; b ¼ 1; . . . ;m;

hrs ¼ cot
p

3
þ y

� �
drs; r; s ¼ mþ 1; . . . ; 2m;

hxy ¼ cot
2p

3
þ y

� �
dxy; x; y ¼ 2mþ 1; . . . ; n;

hij ¼ 0 for other i and j: ð3:1Þ

This gives us

0 ¼ dhab ¼
X
k

habko
k þ ðla � lbÞoa

b ¼
X
k

habko
k;

0 ¼ dhrs ¼
X
k

hrsko
k þ ðlr � lsÞor

s ¼
X
k

hrsko
k;

0 ¼ dhxy ¼
X
k

hxyko
k þ ðlx � lyÞox

y ¼
X
k

hxyko
k:

It follows that

habk ¼ hrsk ¼ hxyk ¼ 0; k ¼ 1; . . . ; n ð3:2Þ

and X
r

ðhirhrjk þ hjrhrik þ hrkhrijÞ ¼ ðli þ lj þ lkÞhijk: ð3:3Þ

From (3.1), (3.2) and (3.3), we coclude that

Si; j;kRijk ¼ 3 1� 2

n

� �
hhijk:

This completes the proof. 9

For hypersurfaces with at most two distinct principal curvatures Lawson [10]

proved the following theorem.

Theorem 3.4 (H. B. Lawson, Jr. [10], Theorem 5). Let Mn be a Riemannian

manifold over which the Ricci tensor is covariant constant. Then, if M n is
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isometrically immersed into Snþ1ð1Þ with constant mean curvature, it must be an

open submanifold of Sk � Sn�k, k ¼ 0; . . . ;
�
n
2

�
which is canonically imbedded in

Snþ1ð1Þ.

Remark 3.5. The submanifolds Sk � Sn�k ðk ¼ 0; . . . ;
�
n
2

�
Þ of Theorem 3.4

are characterized by the hypersurfaces with parallel second fundamental form in

Snþ1ð1Þ. Lawson [10] has also classified hypersurfaces in a space form with non-

positive constant sectional curvature whose Ricci tensors are parallel and whose

mean curvatures are constant.

P. J. Ryan [14] generalized Lawson’s results and gave the following theorem:

Theorem 3.6 (P. J. Ryan [14]). Let Mn be a hypersurface in Snþ1ð1Þ with

n > 2. If Mn is not of constant curvature 1 and if the Ricci tensor of Mn is

covariant constant, then Mn is an open subset of Sk � Sn�k, k ¼ 0; . . . ;
�
n
2

�
and is

canonically imbedded in Snþ1ð1Þ.

4. Proof of Theorem

In this section we shall prove our main theorem. We consider an n-

dimensional hypersurface Mn in a unit sphere Snþ1ð1Þ with constant mean

curvature satisfying the condition ð�Þ in § 1. Our condition ð�Þ is equivalent to

the following equations:

3

n
hhijk ¼

X
r

ðhirhrjk þ hjrhrik þ hrkhrijÞ; i; j; k ¼ 1; . . . ; n: ð4:1Þ

By the rigidity of the Cartan hypersurfaces ([13], [15]), it su‰ces to show that

Mn has at most three distinct constant principal curvatures.

First, we prove the following lemma.

Lemma 4.1. Under the same conditions of Theorem 1.3, the functions am

ðm ¼ 1; 2; . . .Þ are constant.

Proof. We prove this lemma by induction on m. The function a1 ¼ h ¼
const is an assumption, so the lemma holds for m ¼ 1.

By using the Gauss equation ð2:8Þ, we have

a2 ¼ nðn� 1Þ þ a21 � r: ð4:2Þ
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By contracting indices j and k in the equation ð4:1Þ, we deduce

ri þ 2
X
j

Rjij ¼ 0; ð4:3Þ

where ri is defined by dr ¼
P

i rio
i. Contracting the second Bianchi identity ð2:5Þ

with respect to the indices j and l, we arrive at

X
j

Rjkj ¼ 0:

Combining this with ð4:2Þ and ð4:3Þ, we have

a2 ¼ const:

Di¤erentiating both sides of ð2:18Þ, we obtain

dam ¼ m
X
i; j

ðhijÞm�1
dhij ðmb 2Þ: ð4:4Þ

Substituting ð2:10Þ to the right-hand side of ð4:4Þ, we have

dam ¼ m
X
i; j;k

hijkðhijÞm�1
ok: ð4:5Þ

Now multiplying ðhijÞm�1 to both sides of ð4:1Þ and contracting indices i and j

in the resulting equation, we have

2
X
i; j;k

hijkðhijÞmok þ
X
i; j;k;r

hkrhrijðhijÞm�1ok ¼
X
i; j;k

hðhijÞm�1
hijko

k:

From ð4:5Þ and the last equation, we obtain

2

mþ 1
damþ1 þ

1

m

X
k; r

hkr damðerÞok ¼ h

m
dam ðmb 2Þ: ð4:6Þ

By ð4:6Þ and the induction hypothesis dam ¼ 0, we have damþ1 ¼ 0. Hence we

conclude that am ¼ const ðmb 1Þ. This gives the desired lemma. 9

Because am ðmb 1Þ are fundamental symmetric functions of the principal

curvatures of Mn, we can deduce the following proposition.
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Proposition 4.2. Under the same conditions of Theorem 1.3, Mn is an

isoparametric hypersurface in Snþ1ð1Þ.

Next, we demonstrate the following lemma.

Lemma 4.3. Under the same conditions of Theorem 1.3, we have

X
k

ðhikÞmk ¼ 0 ðmb 1Þ: ð4:7Þ

Proof. We prove this lemma by induction on m. For m ¼ 1, the Codazzi

equation ð2:11Þ gives us

X
k

hikk ¼
X
k

hkki ¼ ða1Þi ¼ 0:

For mb 2, by using the induction hypotheses
P

kðhikÞ
m�1
k ¼ 0, Lemma 4:1 and

the equation ð4:5Þ, we can deduce

X
k

ðhikÞmk ¼
X
k; s

hiskðhskÞm�1 ¼ 1

m
ðamÞi ¼ 0:

This completes the proof. 9

We now demonstrate the following proposition.

Proposition 4.4. Under the same conditions of Theorem 1.3, the following

equations are satisfied:

X
r;k

hirkhjrk ¼ 3

n
h
X
m

X
k

hmkRmijk þ himRmj

 !
� 2

X
r;m

hirhrmRmj

�
X
k;m; r

hkrhrmRmijk �
X
k;m; r

hjrhmkRmrik: ð4:8Þ

Proof. Covariantly di¤erentiating both sides of ð4:1Þ, we have

3

n
hhijkl ¼

X
r

ðhirlhrjk þ hjrlhrik þ hrklhrijÞ

þ
X
r

ðhirhrjkl þ hjrhrikl þ hrkhrijlÞ: ð4:9Þ
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Taking the skew-symmetric part with respect to the indices i and l and making

use of the Ricci formula ð2:15Þ in the last equation, we obtain

3

n
h
X
m

ðhmkRmjil þ hjmRmkilÞ

¼
X
m; r

hirhrmRmkjl þ
X
m; r

hjrhrmRmkil þ
X
r

hirhrlkj

�
X
r

hlrhrjki þ
X
m; r

hirhmkRmrjl þ
X
m; r

hkrhrmRmjil:

Summing this equation with respect to k and l, and interchanging indices i and j,

we get

X
k; r

hkrhrikj ¼ � 3

n
h
X
k;m

ðhmkRmijk þ himRmkjkÞ

þ
X
k;m; r

hjrhrmRmkik þ
X
k;m; r

hirhrmRmkjk

þ
X
k;m; r

hjrhmkRmrik þ
X
k;m; r

hkrhrmRmijk: ð4:10Þ

Summing the equation ð4:9Þ with respect to k and l, we arrive at

3

n
h
X
k

hijkk ¼ 2
X
k; r

hirkhrjk þ
X
k; r

ðhirhjrkk þ hjrhrikk þ hrkhrijkÞ:

From the Ricci formula applied to the last equation, we deduce

3

n
h
X
k;m

ðhmkRmijk þ himRmkjkÞ ¼ 2
X
k; r

hirkhjrk

þ
X
k;m; r

hirðhmkRmrjk þ hrmRmkjkÞ

þ
X
k;m; r

hjrðhmkRmrik þ hrmRmkikÞ

þ
X
k;m; r

hrkðhrikj þ hmiRmrjk þ hrmRmijkÞ: ð4:11Þ

By combining ð4:10Þ with ð4:11Þ, we have
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X
k; r

hirkhjrk ¼ 3

n
h
X
m

X
k

hmkRmijk þ himRmj

 !

�
X
m; r

hirhrmRmj �
X
m; r

hjrhrmRmi

�
X
k;m; r

hrkhrmRmijk �
X
k;m; r

hjrhmkRmrik:

Additionally, the equations
P

k Rikhkj ¼
P

k hikRkj are satisfied, so we have the

desired conclusion. 9

Next, we establish the following lemma.

Lemma 4.5. Under the same conditions of Theorem 1.3, the following two

equations hold:

ðhijÞ2k ¼ 3

n
hhijk �

X
r

hijrhrk; ð4:12Þ

ðhijÞ3k � ðhikÞ3j ¼ 3

n
h
X
r

ðhjrhrki � hkrhrjiÞ: ð4:13Þ

Proof. From the definition of ðhijÞ2, we have

ðhijÞ2k ¼
X
r

ðhirkhrj þ hirhrjkÞ:

By making use of ð4:1Þ, we get

X
r

ðhirkhrj þ hirhrjkÞ ¼
3

n
hhijk �

X
r

hkrhrij :

This gives ð4:12Þ again. Further, we have

ðhijÞ3k ¼
X
m

ðhimÞ2hmj

( )
k

¼
X
m

3

n
hhimk �

X
r

himrhrk

 !
hmj þ

X
r

ðhirÞ2hrjk: ð4:14Þ
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Accordingly, we can deduce

ðhijÞ3k � ðhikÞ3j ¼ 3

n
h
X
r

ðhjrhrki � hkrhrijÞ:

This proves the lemma. 9

From the Gauss equation ð2:8Þ and ð4:8Þ, we have the following.

Lemma 4.6. Under the same conditions of Theorem 1.3, we obtain

X
k; r

hirkhjrk ¼ a2 �
3

n
a21

� �
dij þ 4a1 þ a3 �

3

n
a1a2

� �
hij

þ a2 þ
3

n
a21 � 2n

� �
ðhijÞ2 � 2a1ðhijÞ3: ð4:15Þ

This leads to the following proposition.

Proposition 4.7. Under the same conditions of Theorem 1.3, any principal

curvature l of Mn satisfies the following equation:

4a1l
4 þ 4 n� 3

n
a21

� �
l3 þ 9

n2
a31 þ

6

n
a1a2 � 3a3 � 12a1

� �
l2

þ 15

n
a21 þ

6

n
a1a3 � a4 � 3a2 �

9

n2
a21a2

� �
l

þ 6

n
a1a2 � a3 �

9

n2
a31 ¼ 0: ð4:16Þ

Proof. By using ð4:14Þ, we have

DðhijÞ3 ¼
X
k

ðhijÞ3kk

¼
X
r; s

ðhirÞ2s hrjs þ
X
r

ðhirÞ2Dhrj

þ 3

n
h
X
r

ðDhirÞhrj þ
X
s

hisrhjsr

( )

�
X
k; r; s

hkrðhisrkhsj þ hisrhjskÞ; ð4:17Þ

where D denotes the Laplacian.
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By means of ð4:13Þ, we obtain

DðhijÞ3 �
X
k

ðhikÞ3jk ¼
3

n
h
X
r

hjrDhir þ
X
s

hrsihrsj �
X
s

hijrshrs

 !
: ð4:18Þ

Further, making use of the Ricci formula ð2:15Þ and Lemma 4:3, we can see

that

X
k

ðhikÞ3jk ¼
X
k;m

ðhmkÞ3Rmijk þ
X
k;m

ðhimÞ3Rmkjk: ð4:19Þ

Combining ð4:18Þ with ð4:19Þ, we are led to

DðhijÞ3 ¼
3

n
h
X
r

hjrDhir þ
X
s

hisrhjsr �
X
s

hijrshrs

 !

þ
X
k;m

ðhmkÞ3Rmijk þ
X
k;m

ðhimÞ3Rmkjk: ð4:20Þ

From ð4:17Þ and ð4:20Þ, we deduce

X
r; s; t

hithtrshjrs þ
X
r

ðhirÞ2Dhrj �
X
k; r; s

hrkhisrkhsj

þ 3

n
h
X
r; s

hrshijrs �
X
k;m

ðhmkÞ3Rmijk �
X
m

ðhimÞ3Rmj ¼ 0: ð4:21Þ

In addition, using the Codazzi equation ð2:11Þ and the Ricci formula ð2:15Þ, we
can reduce: X

r; s

hrshijrs ¼
X
r; s

hrshirjs

¼
X
r; s

hrshrsij þ
X
m; s

ðhsmÞ2Rmijs þ
X
m; r; s

himhrsRmrjs:

This gives

0 ¼ ða2Þij

¼
X
r

ðhrrÞ2ij

¼ 2
X
r; s

ðhrsijhsr þ hrsihrsjÞ:
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So we have that X
r; s

hrsijhsr ¼ �
X
r; s

hrsihrsj:

We can then deduce

X
r; s

hrshijrs ¼ �
X
r; s

hisrhjsr þ
X
m; s

ðhsmÞ2Rmijs þ
X
m; r; s

himhrsRmrjs: ð4:22Þ

Substituting ð4:22Þ into ð4:21Þ, we haveX
r; s; t

hithtrshjrs þ
X
r

ðhirÞ2Dhrj

�
X
m; r; s

�himrhsmr þ ðhrmÞ2Rmisr þ
X
t

himhtrRmtsr

( )
hsj

þ 3

n
h
X
r; s

�hisrhjsr þ ðhsrÞ2Rrijs þ
X
m

himhrsRmrjs

( )

�
X
r; s

ðhrsÞ3Rrijs �
X
r

ðhirÞ3Rrj ¼ 0: ð4:23Þ

By virtue of the Gauss equation ð2:8Þ, the Codazzi equation ð2:11Þ and the Ricci

formula ð2:15Þ, we obtain

Dhrj ¼
X
k

hrjkk

¼
X
k

hrkjk

¼
X
m;k

hmkRmrjk þ
X
m

hrmRmj

¼ �a1drj þ ðn� a2Þhrj þ a1ðhrjÞ2: ð4:24Þ

Finally, from ð4:17Þ, ð4:23Þ and ð4:24Þ, we arrive at

a3 �
6

n
a1a2 þ

9

n2
a31

� �
dij þ a4 þ 3a2 þ

9

n2
a21a2 �

6

n
a1a3 �

15

n
a21

� �
hij

þ 3a3 þ 12a1 �
6

n
a1a2 �

9

n2
a31

� �
ðhijÞ2 þ 4

3

n
a21 � n

� �
ðhijÞ3 � 4a1ðhijÞ4 ¼ 0:

This proves the proposition. 9
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As a result of Proposition 4.7, we have the following corollary.

Corollary 4.8. Under the same conditions of Theorem 1.3, Mn is an

isoparametric hypersurface of Snþ1ð1Þ that has at most four distinct constant

principal curvatures.

As the final part of this section, we shall give a proof of our main theorem.

We assert that Mn has, in fact, at most three distinct constant principal curvatures.

We use reductio ad absurdum to prove this.

Assume that Mn has four distinct constant principal curvatures li

ði ¼ 1; 2; 3; 4Þ, Theorem 3.2 implies

li ¼ cot ði � 1Þ p
4
þ y

	 

; 0 < y <

p

4
:

So, we have

l1l2l3l4 ¼ 1;X
1ai< j<ka4

liljlk ¼ �ðl1 þ l2 þ l3 þ l4Þ:

Since li ði ¼ 1; 2; 3; 4Þ are all distinct solutions of the algebraic equation ð4:16Þ,
the relationship between the solutions and the coe‰cients gives

a3 þ a1 4þ 9

n2
a21 �

6

n
a2

� �
¼ 0; ð4:25Þ

a4 �
6

n
a1a3 þ 3þ 9

n2
a21

� �
a2 �

3

n
a21 � 4n ¼ 0: ð4:26Þ

On the other hand, taking the trace of ð4:16Þ yields

4a1a4 þ 4 n� 3

n
a21

� �
a3 þ

9

n2
a31 þ

6

n
a1a2 � 3a3 � 12a1

� �
a2

þ 15

n
a21 þ

6

n
a1a3 � a4 � 3a2 �

9

n2
a21a2

� �
a1

þ n
6

n
a1a2 � a3 �

9

n2
a31

� �
¼ 0: ð4:27Þ

Substituting ð4:26Þ into ð4:27Þ, we deduce
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12

n
a21 � 3a2 þ 3n

� �
a3 þ

6

n
a2 �

27

n2
a21 � 18

� �
a1a2

þ 15

n
a31 þ 12na1 ¼ 0: ð4:28Þ

Further, summing the equation ð4:15Þ with respect to i and j, we get

X
i;k; r

hirkhirk ¼ �na2 þ a21 þ a22 � a1a3: ð4:29Þ

Substituting ð4:25Þ into ð4:28Þ, we obtain

a1 a2 �
5

n
a21 �

9

n3
a41 þ

6

n2
a21a2 �

1

n
a22

� �
¼ 0: ð4:30Þ

Finally, substituting ð4:25Þ into the right-hand side of ð4:29Þ, we have

X
i;k; r

hirkhirk ¼ �n a2 �
5

n
a21 �

9

n3
a41 þ

6

n2
a21a2 �

1

n
a22

� �
: ð4:31Þ

Combining ð4:30Þ and ð4:31Þ, we conclude that

a1k‘Ak ¼ 0:

Furthermore, by our assumption, the mean curvature a1 0 0. This implies ‘A ¼ 0.

But, according to Theorem 3.4 (also see Remark 3.5), all parallel hypersurfaces in

Snþ1ð1Þ have at most two distinct constant principal curvatures. This contradicts

our assumption that there are four distinct constant principal curvatures. By

contradiction, there must be at most three distinct constant principal curvatures.

This concludes the proof of the theorem.
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