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THE WEIERSTRASS SEMIGROUPS ON DOUBLE

COVERS OF GENUS TWO CURVES

By

Takeshi Harui, Jiryo Komeda and Akira Ohbuchi

Abstract. We show that three numerical semigroups h5; 6; 7; 8i,

h3; 7; 8i and h3; 5i are of double covering type, i.e., the Weierstrass

semigroups of ramification points on double covers of curves. Com-

bining the result with [7] and [4] we can determine the Weierstrass

semigroups of the ramification points on double covers of genus two

curves.

1. Introduction

Let N0 be the additive monoid of non-negative integers. A submonoid H of

N0 is called a numerical semigroup if its complement N0nH is a finite set. The

cardinality of N0nH is called the genus of H, which is denoted by gðHÞ. For any
positive integers a1; a2; . . . ; an we denote by ha1; a2; . . . ; ani the additive monoid

a1N0 þ a2N0 þ � � � þ anN0 generated by a1; a2; . . . ; an. A numerical semigroup

of genus 2 is either h2; 5i or h3; 4; 5i, which plays an important role in this

article.

Let C be a complete nonsingular irreducible curve over an algebraically

closed field of characteristic 0, which is called a curve in this paper. For a point

P of C, we set

HðPÞ ¼ fa A N0 j there exists a rational function f on C with ð f Þy ¼ aPg;
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which is called the Weierstrass semigroup of P. It is known that the Weierstrass

semigroup of a point on a curve of genus g is a numerical semigroup of

genus g.

For a numerical semigroup ~HH we denote by d2ð ~HHÞ the set consisting of the

elements ~hh=2 with even ~hh A ~HH, which becomes a numerical semigroup. A nu-

merical semigroup ~HH is said to be of double covering type if there exists a double

covering p : ~CC ! C of a curve C with a ramification point ~PP A ~CC over P A C

satisfying Hð ~PPÞ ¼ ~HH. In this case we have d2ðHð ~PPÞÞ ¼ HðPÞ (for example, see

Lemma 2 in [3]). We are interested in numerical semigroups of double covering

type. Let ~HH0 be a numerical semigroup of genus ~gg with d2ð ~HH0Þ ¼ N0 where the

genus of N0 is 0. Then the semigroup ~HH0 is h2; 2~ggþ 1i, which is the Weierstrass

semigroup of a ramification point ~PP on a double cover of the projective line

where the covering curve is of genus ~gg. Hence, ~HH0 is of double covering type.

Let ~HH1 be a numerical semigroup of genus ~gg with d2ð ~HH1Þ ¼ h2; 3i where h2; 3i is

the only one numerical semigroup of genus 1. Then the semigroup ~HH1 is either

h3; 4; 5i or h3; 4i or h4; 5; 6; 7i or h4; 6; 2~gg� 3i with ~ggb 4 or h4; 6; 2~gg� 1; 2~ggþ 1i

with ~ggb 4. We can show that there is a double covering of an elliptic curve with

a ramification point whose Weierstrass semigroup is any semigroup in the above

ones (for example, see [2], [4]).

Let ~HH2 be a numerical semigroup of genus ~gg with gðd2ð ~HH2ÞÞ ¼ 2. Oliveira

and Pimentel [7] studied the semigroup ~HH2 ¼ h6; 8; 10; ni with an odd number

nb 11. They showed that the semigroup ~HH2 is of double covering type. In this

case we have d2ð ~HH2Þ ¼ h3; 4; 5i. Moreover, in [4] we proved that any numerical

semigroup ~HH2 with d2ð ~HH2Þ ¼ h3; 4; 5i except ~HH2 ¼ h5; 6; 7; 8i, h3; 7; 8i, h3; 5i

and h3; 5; 7i is of double covering type. The semigroup h3; 5; 7i is not of double

covering type, because of the fact that gðh3; 5; 7iÞ ¼ 3 < 2 � 2. Using the result

of Main Theorem in [6] every numerical semigroup ~HH2 with d2ð ~HH2Þ ¼ h2; 5i is of

double covering type. In this paper we will study the remaining three numerical

semigroups. Namely we prove the following:

Theorem 1.1. The three numerical semigroups h5; 6; 7; 8i, h3; 7; 8i and h3; 5i

are of double covering type.

Combining this theorem with the results in [7] and [4], we have the following

conclusion:

Theorem 1.2. Let ~HH be a numerical semigroup with gðd2ð ~HHÞÞ ¼ 2. If ~HH0

h3; 5; 7i, then it is of double covering type, and vice versa.
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2. Proof of Theorem 1.1

To prove that the three numerical semigroups are of double covering type

we use the following theorem which is stated in Theorem 2.2 of [5].

Theorem 2.1. Let ~HH be a numerical semigroup. We set

n ¼ minf~hh A ~HH j ~hh is oddg:

Then we get

gð ~HHÞ ¼ 2gðd2ð ~HHÞÞ þ ðn� 1Þ=2� r

with some non-negative integer r ( for example, see Lemma 3.1 in [1]). Assume

that H ¼ d2ð ~HHÞ is Weierstrass. Take a pointed curve ðC;PÞ with HðPÞ ¼ H. Let

Q1; . . . ;Qr be points of C di¤erent from P with h0ðQ1 þ � � � þQrÞ ¼ 1. Moreover,

assume that ~HH has an expression

~HH ¼ 2H þ hn; nþ 2l1; . . . ; nþ 2lsi

of generators with positive integers l1; . . . ; ls such that

h0ðliPþQ1 þ � � � þQrÞ ¼ h0ððli � 1ÞPþQ1 þ � � � þQrÞ þ 1

for all i. If the divisor nP� 2Q1 � � � � � 2Qr is linearly equivalent to some reduced

divisor not containing P, then there is a double covering p : ~CC ! C with a

ramification point ~PP over P satisfying Hð ~PPÞ ¼ ~HH, hence ~HH is of double covering

type.

Proof. By seeing the proof of Theorem 2.2 in [5] we may replace the as-

sumption in Theorem 2.2 in [5] that the complete linear system jnP� 2Q1 � � � �
� 2Qrj is base point free by the above assumption that the divisor nP� 2Q1

� � � � 2Qr is linearly equivalent to some reduced divisor not containing P. r

Now we prove Theorem 1.1 in each case.

Case 1. Let ~HH ¼ h5; 6; 7; 8i. Then we have H ¼ d2ð ~HHÞ ¼ h3; 4; 5i and gð ~HHÞ
¼ 5 ¼ 2 � 2þ ð5� 1Þ=2� 1. Moreover, we have ~HH ¼ 2H þ h5; 5þ 2 � 1i. Let C

be a curve of genus 2 and i the hyperelliptic involution on C. If we take a general

point P of C with HðPÞ ¼ h3; 4; 5i, then we may assume that 3ðP� iðPÞÞS 0.

Indeed, assume that 3ðP� iðPÞÞ@ 0 for all point P with HðPÞ ¼ h3; 4; 5i. Then

there are distinct points P1 and P2 with HðPiÞ ¼ h3; 4; 5i, i ¼ 1; 2 such that

P1 � iðP1Þ@P2 � iðP2Þ, because the number of the linearly equivalent classes

of the divisors D of degree 0 satisfying 3D@ 0 is finite. Hence, we get
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P1 þ iðP2Þ@P2 þ iðP1Þ, which implies that P1 þ iðP2Þ@P1 þ iðP1Þ. This is a

contradiction. Now we have h0ðPþ iðPÞÞ ¼ 2 ¼ h0ðiðPÞÞ þ 1. Moreover, if the

complete linear system j5P� 2iðPÞj has a base point R, then we have R0P.

Indeed, we assume that R ¼ P. Then we have

h0ð5P� 2iðPÞ � PÞ ¼ h0ð5P� 2iðPÞÞ ¼ 3þ 1� 2 ¼ 2;

which implies that

4P� 2iðPÞ@ g12 @Pþ iðPÞ:

Hence, we get 3ðP� iðPÞÞ@ 0. This is a contradiction. We assume that

j5P� 2iðPÞj has a base point R. Then we get 5P� 2iðPÞ@Rþ E, where E is

an e¤ective divisor of degree 2 with projective dimension 1. In this case the

complete linear system jEj is base point free. Therefore, the divisor 5P� 2iðPÞ is

linearly equivalent to some reduced divisor not containing P. If j5P� 2iðPÞj is

base point free, then the divisor 5P� 2iðPÞ satisfies the above condition. By

Theorem 2.1 the semigroup ~HH ¼ h5; 6; 7; 8i is of double covering type.

Case 2. Let ~HH ¼ h3; 7; 8i. Then we have H ¼ d2ð ~HHÞ ¼ h3; 4; 5i and

gð ~HHÞ ¼ 4 ¼ 2 � 2þ ð3� 1Þ=2� 1. Moreover, we have ~HH ¼ 2H þ h3; 3þ 2 � 2i.
We may take a pointed curve ðC;PÞ with HðPÞ ¼ h3; 4; 5i such that the cover-

ing j : C ! P1 corresponding to the complete linear system j3Pj has a simple

ramification point Q. Then there is another simple ramification point of j by

Riemann-Hurwitz formula. Hence, we may assume that iP0Q, which implies

that PþQS g12 . Thus, we get h0ð2PþQÞ ¼ 2 ¼ h0ðPþQÞ þ 1. Let R be the

point satisfying 2Qþ R@ 3P. Then we have R0P and 3P� 2Q@R. By

Theorem 2.1 the semigroup ~HH ¼ h3; 7; 8i is of double covering type.

Case 3. Let ~HH ¼ h3; 5i. Then we have H ¼ d2ð ~HHÞ ¼ h3; 4; 5i and

gð ~HHÞ ¼ 4 ¼ 2 � 2þ ð3� 1Þ=2� 1. Moreover, we have ~HH ¼ 2H þ h3; 3þ 2 � 1i.
Let C be a curve whose function field is kðx; yÞ with an equation y3 ¼
ðx� c1Þðx� c2Þðx� c3Þ2, where c1, c2 and c3 are distinct elements of k. Let

p : C ! P1 be the morphism corresponding to the inclusion kðxÞH kðx; yÞ. Then
C is of genus 2 by Riemann-Hurwitz formula. Let P ¼ P1, P2, P3 and P4 be

the ramification points of p. Since p is a cyclic covering, it induces an auto-

morphism s of C with C=hsiGP1. Let i be the hyperelliptic involution on C.

Then we have s � i ¼ i � s. Indeed, we have

ðs � i � s�1Þ � ðs � i � s�1Þ ¼ s � i � i � s�1 ¼ s � s�1 ¼ id:

Hence, the automorphism s � i � s�1 is an involution. Moreover, we have a

bijective correspondence between the sets FixðiÞ and Fixðs � i � s�1Þ sending Q
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to sðQÞ, where FixðiÞ and Fixðs � i � s�1Þ are the sets of the fixed points by i

and s � i � s�1 respectively. Hence, s � i � s�1 is also the hyperelliptic involu-

tion. Thus, we have s � i � s�1 ¼ i. Since sðiðPÞÞ ¼ iðsðPÞÞ ¼ iðPÞ, the point iðPÞ
is a fixed point of s. Moreover, we have HðPÞ C 3, which implies that iP0P.

Hence, we have iP ¼ Pi for some i A f2; 3; 4g. Then we obtain h0ðPþ PiÞ ¼ 2 ¼
h0ðPiÞ þ 1. Moreover, we have

3P� 2Pi @ 3Pi � 2Pi ¼ Pi 0P:

By Theorem 2.1 the semigroup h3; 5i is of double covering type. r
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