THE WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF GENUS TWO CURVES

By

Takeshi Harui, Jiryo Komeda and Akira Ohbuchi

Abstract. We show that three numerical semigroups $\langle 5, 6, 7, 8 \rangle$, $\langle 3, 7, 8 \rangle$ and $\langle 3, 5 \rangle$ are of double covering type, i.e., the Weierstrass semigroups of ramification points on double covers of curves. Combining the result with [7] and [4] we can determine the Weierstrass semigroups of the ramification points on double covers of genus two curves.

1. Introduction

Let \mathbf{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbf{N}_0 is called a *numerical semigroup* if its complement $\mathbf{N}_0 \setminus H$ is a finite set. The cardinality of $\mathbf{N}_0 \setminus H$ is called the *genus* of H, which is denoted by g(H). For any positive integers a_1, a_2, \ldots, a_n we denote by $\langle a_1, a_2, \ldots, a_n \rangle$ the additive monoid $a_1\mathbf{N}_0 + a_2\mathbf{N}_0 + \cdots + a_n\mathbf{N}_0$ generated by a_1, a_2, \ldots, a_n . A numerical semigroup of genus 2 is either $\langle 2, 5 \rangle$ or $\langle 3, 4, 5 \rangle$, which plays an important role in this article.

Let C be a complete nonsingular irreducible curve over an algebraically closed field of characteristic 0, which is called a *curve* in this paper. For a point P of C, we set

 $H(P) = \{ \alpha \in \mathbb{N}_0 \mid \text{there exists a rational function } f \text{ on } C \text{ with } (f)_{\infty} = \alpha P \},$

2010 Mathematics Subject Classification: 14H55, 14H45, 20M14.

The second author is partially supported by Grant-in-Aid for Scientific Research (24540057), Japan Society for the Promotion Science.

The third author is partially supported by Grant-in-Aid for Scientific Research (24540042), Japan Society for the Promotion Science.

Key words and phrases: Numerical semigroup, Weierstrass semigroup, Double cover of a curve, Curve of genus two.

Received February 6, 2014.

Revised August 18, 2014.

which is called the *Weierstrass semigroup of P*. It is known that the Weierstrass semigroup of a point on a curve of genus g is a numerical semigroup of genus g.

For a numerical semigroup \hat{H} we denote by $d_2(\hat{H})$ the set consisting of the elements h/2 with even $h \in \hat{H}$, which becomes a numerical semigroup. A numerical semigroup \tilde{H} is said to be of double covering type if there exists a double covering $\pi: \tilde{C} \to C$ of a curve C with a ramification point $\tilde{P} \in \tilde{C}$ over $P \in C$ satisfying $H(\tilde{P}) = \tilde{H}$. In this case we have $d_2(H(\tilde{P})) = H(P)$ (for example, see Lemma 2 in [3]). We are interested in numerical semigroups of double covering type. Let \tilde{H}_0 be a numerical semigroup of genus \tilde{g} with $d_2(\tilde{H}_0) = \mathbf{N}_0$ where the genus of N₀ is 0. Then the semigroup \tilde{H}_0 is $\langle 2, 2\tilde{g}+1 \rangle$, which is the Weierstrass semigroup of a ramification point \tilde{P} on a double cover of the projective line where the covering curve is of genus \tilde{g} . Hence, H_0 is of double covering type. Let \tilde{H}_1 be a numerical semigroup of genus \tilde{g} with $d_2(\tilde{H}_1) = \langle 2, 3 \rangle$ where $\langle 2, 3 \rangle$ is the only one numerical semigroup of genus 1. Then the semigroup \tilde{H}_1 is either (3,4,5) or (3,4) or (4,5,6,7) or $(4,6,2\tilde{g}-3)$ with $\tilde{g} \ge 4$ or $(4,6,2\tilde{g}-1,2\tilde{g}+1)$ with $\tilde{g} \geq 4$. We can show that there is a double covering of an elliptic curve with a ramification point whose Weierstrass semigroup is any semigroup in the above ones (for example, see [2], [4]).

Let \tilde{H}_2 be a numerical semigroup of genus \tilde{g} with $g(d_2(\tilde{H}_2)) = 2$. Oliveira and Pimentel [7] studied the semigroup $\tilde{H}_2 = \langle 6, 8, 10, n \rangle$ with an odd number $n \ge 11$. They showed that the semigroup \tilde{H}_2 is of double covering type. In this case we have $d_2(\tilde{H}_2) = \langle 3, 4, 5 \rangle$. Moreover, in [4] we proved that any numerical semigroup \tilde{H}_2 with $d_2(\tilde{H}_2) = \langle 3, 4, 5 \rangle$ except $\tilde{H}_2 = \langle 5, 6, 7, 8 \rangle$, $\langle 3, 7, 8 \rangle$, $\langle 3, 5 \rangle$ and $\langle 3, 5, 7 \rangle$ is of double covering type. The semigroup $\langle 3, 5, 7 \rangle$ is not of double covering type, because of the fact that $g(\langle 3, 5, 7 \rangle) = 3 < 2 \cdot 2$. Using the result of Main Theorem in [6] every numerical semigroup \tilde{H}_2 with $d_2(\tilde{H}_2) = \langle 2, 5 \rangle$ is of double covering type. In this paper we will study the remaining three numerical semigroups. Namely we prove the following:

THEOREM 1.1. The three numerical semigroups $\langle 5, 6, 7, 8 \rangle$, $\langle 3, 7, 8 \rangle$ and $\langle 3, 5 \rangle$ are of double covering type.

Combining this theorem with the results in [7] and [4], we have the following conclusion:

THEOREM 1.2. Let \tilde{H} be a numerical semigroup with $g(d_2(\tilde{H})) = 2$. If $\tilde{H} \neq \langle 3, 5, 7 \rangle$, then it is of double covering type, and vice versa.

The Weierstrass semigroups on double covers of genus two curves 203

2. Proof of Theorem 1.1

To prove that the three numerical semigroups are of double covering type we use the following theorem which is stated in Theorem 2.2 of [5].

THEOREM 2.1. Let \hat{H} be a numerical semigroup. We set

 $n = \min\{\tilde{h} \in \tilde{H} \mid \tilde{h} \text{ is odd}\}.$

Then we get

$$g(\tilde{H}) = 2g(d_2(\tilde{H})) + (n-1)/2 - r$$

with some non-negative integer r (for example, see Lemma 3.1 in [1]). Assume that $H = d_2(\tilde{H})$ is Weierstrass. Take a pointed curve (C, P) with H(P) = H. Let Q_1, \ldots, Q_r be points of C different from P with $h^0(Q_1 + \cdots + Q_r) = 1$. Moreover, assume that \tilde{H} has an expression

$$\hat{H} = 2H + \langle n, n + 2l_1, \dots, n + 2l_s \rangle$$

of generators with positive integers l_1, \ldots, l_s such that

$$h^{0}(l_{i}P + Q_{1} + \dots + Q_{r}) = h^{0}((l_{i} - 1)P + Q_{1} + \dots + Q_{r}) + 1$$

for all i. If the divisor $nP - 2Q_1 - \cdots - 2Q_r$ is linearly equivalent to some reduced divisor not containing P, then there is a double covering $\pi : \tilde{C} \to C$ with a ramification point \tilde{P} over P satisfying $H(\tilde{P}) = \tilde{H}$, hence \tilde{H} is of double covering type.

PROOF. By seeing the proof of Theorem 2.2 in [5] we may replace the assumption in Theorem 2.2 in [5] that the complete linear system $|nP - 2Q_1 - \cdots - 2Q_r|$ is base point free by the above assumption that the divisor $nP - 2Q_1 - \cdots 2Q_r$ is linearly equivalent to some reduced divisor not containing P.

Now we prove Theorem 1.1 in each case.

Case 1. Let $\tilde{H} = \langle 5, 6, 7, 8 \rangle$. Then we have $H = d_2(\tilde{H}) = \langle 3, 4, 5 \rangle$ and $g(\tilde{H}) = 5 = 2 \cdot 2 + (5 - 1)/2 - 1$. Moreover, we have $\tilde{H} = 2H + \langle 5, 5 + 2 \cdot 1 \rangle$. Let *C* be a curve of genus 2 and *i* the hyperelliptic involution on *C*. If we take a general point *P* of *C* with $H(P) = \langle 3, 4, 5 \rangle$, then we may assume that $3(P - \iota(P)) \neq 0$. Indeed, assume that $3(P - \iota(P)) \sim 0$ for all point *P* with $H(P) = \langle 3, 4, 5 \rangle$. Then there are distinct points P_1 and P_2 with $H(P_i) = \langle 3, 4, 5 \rangle$, i = 1, 2 such that $P_1 - \iota(P_1) \sim P_2 - \iota(P_2)$, because the number of the linearly equivalent classes of the divisors *D* of degree 0 satisfying $3D \sim 0$ is finite. Hence, we get

 $P_1 + \iota(P_2) \sim P_2 + \iota(P_1)$, which implies that $P_1 + \iota(P_2) \sim P_1 + \iota(P_1)$. This is a contradiction. Now we have $h^0(P + \iota(P)) = 2 = h^0(\iota(P)) + 1$. Moreover, if the complete linear system $|5P - 2\iota(P)|$ has a base point *R*, then we have $R \neq P$. Indeed, we assume that R = P. Then we have

$$h^{0}(5P - 2\iota(P) - P) = h^{0}(5P - 2\iota(P)) = 3 + 1 - 2 = 2,$$

which implies that

$$4P - 2\iota(P) \sim g_2^1 \sim P + \iota(P).$$

Hence, we get $3(P - \iota(P)) \sim 0$. This is a contradiction. We assume that $|5P - 2\iota(P)|$ has a base point *R*. Then we get $5P - 2\iota(P) \sim R + E$, where *E* is an effective divisor of degree 2 with projective dimension 1. In this case the complete linear system |E| is base point free. Therefore, the divisor $5P - 2\iota(P)$ is linearly equivalent to some reduced divisor not containing *P*. If $|5P - 2\iota(P)|$ is base point free, then the divisor $5P - 2\iota(P)$ satisfies the above condition. By Theorem 2.1 the semigroup $\tilde{H} = \langle 5, 6, 7, 8 \rangle$ is of double covering type.

Case 2. Let $\tilde{H} = \langle 3,7,8 \rangle$. Then we have $H = d_2(\tilde{H}) = \langle 3,4,5 \rangle$ and $g(\tilde{H}) = 4 = 2 \cdot 2 + (3-1)/2 - 1$. Moreover, we have $\tilde{H} = 2H + \langle 3,3+2\cdot2 \rangle$. We may take a pointed curve (C, P) with $H(P) = \langle 3,4,5 \rangle$ such that the covering $\varphi: C \to \mathbf{P}^1$ corresponding to the complete linear system |3P| has a simple ramification point Q. Then there is another simple ramification point of φ by Riemann-Hurwitz formula. Hence, we may assume that $iP \neq Q$, which implies that $P + Q \neq g_2^1$. Thus, we get $h^0(2P + Q) = 2 = h^0(P + Q) + 1$. Let R be the point satisfying $2Q + R \sim 3P$. Then we have $R \neq P$ and $3P - 2Q \sim R$. By Theorem 2.1 the semigroup $\tilde{H} = \langle 3,7,8 \rangle$ is of double covering type.

Case 3. Let $\tilde{H} = \langle 3, 5 \rangle$. Then we have $H = d_2(\tilde{H}) = \langle 3, 4, 5 \rangle$ and $g(\tilde{H}) = 4 = 2 \cdot 2 + (3-1)/2 - 1$. Moreover, we have $\tilde{H} = 2H + \langle 3, 3 + 2 \cdot 1 \rangle$. Let *C* be a curve whose function field is k(x, y) with an equation $y^3 = (x - c_1)(x - c_2)(x - c_3)^2$, where c_1 , c_2 and c_3 are distinct elements of *k*. Let $\pi : C \to \mathbf{P}^1$ be the morphism corresponding to the inclusion $k(x) \subset k(x, y)$. Then *C* is of genus 2 by Riemann-Hurwitz formula. Let $P = P_1$, P_2 , P_3 and P_4 be the ramification points of π . Since π is a cyclic covering, it induces an automorphism σ of *C* with $C/\langle \sigma \rangle \cong \mathbf{P}^1$. Let *i* be the hyperelliptic involution on *C*. Then we have $\sigma \circ i = i \circ \sigma$. Indeed, we have

$$(\sigma \circ \iota \circ \sigma^{-1}) \circ (\sigma \circ \iota \circ \sigma^{-1}) = \sigma \circ \iota \circ \iota \circ \sigma^{-1} = \sigma \circ \sigma^{-1} = id.$$

Hence, the automorphism $\sigma \circ \iota \circ \sigma^{-1}$ is an involution. Moreover, we have a bijective correspondence between the sets $Fix(\iota)$ and $Fix(\sigma \circ \iota \circ \sigma^{-1})$ sending Q

to $\sigma(Q)$, where Fix(*i*) and Fix($\sigma \circ \iota \circ \sigma^{-1}$) are the sets of the fixed points by ι and $\sigma \circ \iota \circ \sigma^{-1}$ respectively. Hence, $\sigma \circ \iota \circ \sigma^{-1}$ is also the hyperelliptic involution. Thus, we have $\sigma \circ \iota \circ \sigma^{-1} = \iota$. Since $\sigma(\iota(P)) = \iota(\sigma(P)) = \iota(P)$, the point $\iota(P)$ is a fixed point of σ . Moreover, we have $H(P) \ni 3$, which implies that $\iota P \neq P$. Hence, we have $\iota P = P_i$ for some $i \in \{2, 3, 4\}$. Then we obtain $h^0(P + P_i) = 2 = h^0(P_i) + 1$. Moreover, we have

$$3P - 2P_i \sim 3P_i - 2P_i = P_i \neq P.$$

By Theorem 2.1 the semigroup $\langle 3, 5 \rangle$ is of double covering type.

References

- Harui, T. and Komeda, J., Numerical semigroups of genus eight and double coverings of curves of genus three, Semigroup Forum DOI 10.1007/s00233-014-9590-3.
- [2] Komeda, J., On Weierstrass points whose first non-gaps are four, J. reine angew. Math. 341 (1983), 68–86.
- [3] Komeda, J., Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points, Acta Arith. 81 (1997), 275–297.
- $\label{eq:states} \begin{array}{l} \mbox{[4]} & \mbox{Komeda, J., A numerical semigroup from which the semigroup gained by dividing by two is either N_0 or a 2-semigroup or $\langle 3,4,5\rangle$, Research Reports of Kanagawa Institute of Technology $B-33$ (2009), 37–42. \\ \end{array}$
- [5] Komeda, J., On Weierstrass semigroups of double coverings of genus three curves, Semigroup Forum 83 (2011), 479–488.
- [6] Komeda, J. and Ohbuchi, A., Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve II, Serdica Math. J. 34 (2008), 771–782.
- [7] Oliveira, G. and Pimentel, F. L. R., On Weierstrass semigroups of double covering of genus two curves, Semigroup Forum 77 (2008), 152–162.

Takeshi Harui Academic Support Center Kogakuin University 2665-1 Nakano, Hachioji Tokyo, 192-0015 Japan E-mail: takeshi@cwo.zaq.ne.jp, kt13459@ns.kogakuin.ac.jp

Jiryo Komeda Department of Mathematics Center for Basic Education and Integrated Learning Kanagawa Institute of Technology 1030 Shimo-Ogino, Atsugi Kanagawa, 243-0292 Japan E-mail: komeda@gen.kanagawa-it.ac.jp Akira Ohbuchi Department of Mathematics Faculty of Integrated Arts and Sciences Tokushima University 1-1 Minami-Jyousanjima-cho, Tokushima Tokushima, 770-8502 Japan E-mail: ohbuchi@tokushima-u.ac.jp